Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2019, Vol. 14 Issue (2): 23502   https://doi.org/10.1007/s11467-018-0870-3
  本期目录
Physical properties of quaternary compounds Gd2CoAl4T2 (T= Si, Ge) single crystals
Kaijian Huang1, Yuanshuai Sun2, Shanshan Sun2, Xiao Zhang3(), Hechang Lei2()
1. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
2. Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
3. State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
 全文: PDF(5107 KB)  
Abstract

We have synthesized and investigated physical properties of two new quaternary compounds Gd2CoAl4T2 (T= Si, Ge) single crystals, which are isostructural to Tb2NiAl4Ge2 and Er2CoAl4Ge2. The most important structural feature of these materials is the anti-CaF2-type CoAl4T2 slabs. These materials show metallic behavior below 300 K and there is a long-range antiferromagnetic (AFM) transition appearing at 20 and 27 K for Gd2CoAl4Ge2 and Gd2CoAl4Si2, respectively. Resistivity and heat capacity measurements also confirm these bulk AFM transitions. Further analysis indicates that this long-range antiferromagnetism should result from the magnetic interaction between local moments of Gd3+ ions.

Key wordsmagnetic materials    rare earth compounds    single crystal growth
收稿日期: 2018-10-02      出版日期: 2018-11-29
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(2): 23502.
Kaijian Huang, Yuanshuai Sun, Shanshan Sun, Xiao Zhang, Hechang Lei. Physical properties of quaternary compounds Gd2CoAl4T2 (T= Si, Ge) single crystals. Front. Phys. , 2019, 14(2): 23502.
 链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0870-3
http://academic.hep.com.cn/fop/CN/Y2019/V14/I2/23502
1 P. C. Canfield and Z. Fisk, Growth of single crystals from metallic fluxes, Philos. Mag. B 65, 1117 (1992)
https://doi.org/10.1080/13642819208215073
2 M. G. Kanatzidis, R. Pöttgen, and W. Jeitschko, The metal flux: A preparative tool for the exploration of intermetallic compounds, Angew. Chem. Int. Ed. 44(43), 6996 (2005)
https://doi.org/10.1002/anie.200462170
3 S. Okada, Y. Yu, T. Lundström, K. Kudou, and T. Tanaka, Crystal growth and some properties of LuB4, LuAlB4, and Lu2AlB6, Jpn. J. Appl. Phys. 35(Part 1, No. 9A), 4718 (1996)
4 S. Okada, K. Kudou, K. Iizumi, K. Kudaka, I. Higashi, and T. Lundström, Single-crystal growth and properties of CrB, Cr3B4, Cr2B3 and CrB2 from high-temperature aluminum solutions, J. Cryst. Growth 166(1–4), 429 (1996)
https://doi.org/10.1016/0022-0248(95)00890-X
5 B. Sieve, X. Z. Chen, J. A. Cowen, P. Larson, S. D. Mahanti, and M. G. Kanatzidis, Multinary intermetallics from molten Al. Synthesis of SmNiAl4Ge2 and YNiAl4Ge2. Possible spin frustration in separated triangular Sm3+ layers, Chem. Mater. 11(9), 2451 (1999)
https://doi.org/10.1021/cm990155+
6 X. Z. Chen, S. Sportouch, B. Sieve, P. Brazis, C. R. Kannewurf, J. A. Cowen, R. Patschke, and M. G. Kanatzidis, Exploratory synthesis with molten aluminum as a solvent and routes to multinary aluminum silicides. Sm2Ni(NixSi1–x)Al4Si6 (x= 0.18–0.27): A new silicide with a ferromagnetic transition at 17.5 K, Chem. Mater. 10(10), 3202 (1998)
https://doi.org/10.1021/cm980291z
7 B. Sieve, X. Z. Chen, R. Henning, P. Brazis, C. R. Kannewurf, J. A. Schultz, and M. G. Kanatzidis, Cubic aluminum silicides RE8Ru12Al49Si9 (AlxSi12–x) (RE= Pr, Sm) from liquid aluminum. Empty (Si,Al)12 cuboctahedral clusters and assignment of the Al/Si distribution with neutron diffraction, J. Am. Chem. Soc. 123(29), 7040 (2001)
https://doi.org/10.1021/ja010135k
8 B. Sieve, P. N. Trikalitis, and M. G. Kanatzidis, Quaternary germanides formed in molten aluminum: Tb2NiAl4Ge2 and Ce2NiAl6–xGe4–y (x~0.24, y~1.34), Z. Anorg. Allg. Chem. 628(7), 1568 (2002)
https://doi.org/10.1002/1521-3749(200207)628:7<1568::AID-ZAAC1568>3.0.CO;2-A
9 G. Demchenko, J. Kónczyk, P. Demchenko, R. Gladyshevskii, W. Majzner, and L. Muratova, Quaternary alumogermanides in the Er-{Co,Ni}-Al-Ge systems, Chem. Met. Alloys 1, 254 (2008)
10 M. E. Fisher, Relation between the specific heat and susceptibility of an antiferromagnet, Philos. Mag. 7(82), 1731 (1962)
https://doi.org/10.1080/14786436208213705
11 F. Canepa, M. Napoletano, M. L. Fornasini, and F. Merlo, Structure and magnetism of Gd2Co2Ga, Gd2Co2Al and Gd14Co3In2.7, J. Alloys Compd. 345(1–2), 42 (2002)
https://doi.org/10.1016/S0925-8388(02)00395-X
12 F. B. Anderson and H. B. Callen, Statistical mechanics and field-induced phase transitions of the Heisenberg antiferromagnet, Phys. Rev. 136(4A), A1068 (1964)
https://doi.org/10.1103/PhysRev.136.A1068
13 Y. Shapira and S. Foner, Magnetic phase diagram of MnF2 from ultrasonic and differential magnetization measurements, Phys. Rev. B 1(7), 3083 (1970)
https://doi.org/10.1103/PhysRevB.1.3083
14 F. Keffer and H. Chow, Dynamics of the antiferromagnetic spin-flop transition, Phys. Rev. Lett. 31(17), 1061 (1973)
https://doi.org/10.1103/PhysRevLett.31.1061
15 S. N. de Medeiros, M. A. Continentino, M. T. D. Orlando, M. B. Fontes, E. M. Baggio-Saitovitch, A. Rosch, and A. Eichler, Quantum critical point in CeCo(Ge1–xSix)3, Physica B 281–282, 340 (2000)
https://doi.org/10.1016/S0921-4526(99)01222-3
16 M. B. Fontes, J. C. Trochez, B. Giordanengo, S. L. Budko, D. R. Sanchez, E. M. Baggio-Saitovitch, and M. A. Continentino, Electron-magnon interaction in RNiBC (R= Er, Ho, Dy, Tb, and Gd) series of compounds based on magnetoresistance measurements, Phys. Rev. B 60(9), 6781 (1999)
https://doi.org/10.1103/PhysRevB.60.6781
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed