Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (2): 23604   https://doi.org/10.1007/s11467-018-0872-1
  本期目录
A two-density approach to the general many-body problem and a proof of principle for small atoms and molecules
Thomas Pope1(), Werner Hofer1,2
1. School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, United Kingdom
2. Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(866 KB)  
Abstract

An extended electron model fully recovers many of the experimental results of quantum mechanics while it avoids many of the pitfalls and remains generally free of paradoxes. The formulation of the manybody electronic problem here resembles the Kohn–Sham formulation of standard density functional theory. However, rather than referring electronic properties to a large set of single electron orbitals, the extended electron model uses only mass density and field components, leading to a substantial increase in computational efficiency. To date, the Hohenberg–Kohn theorems have not been proved for a model of this type, nor has a universal energy functional been presented. In this paper, we address these problems and show that the Hohenberg–Kohn theorems do also hold for a density model of this type. We then present a proof-of-concept practical implementation of this method and show that it reproduces the accuracy of more widely used methods on a test-set of small atomic systems, thus paving the way for the development of fast, efficient and accurate codes on this basis.

Key wordsmany-body    condensed matter    Hartree–Fock    density functional theory    extended electrons
收稿日期: 2018-06-27      出版日期: 2018-11-29
Corresponding Author(s): Thomas Pope   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(2): 23604.
Thomas Pope, Werner Hofer. A two-density approach to the general many-body problem and a proof of principle for small atoms and molecules. Front. Phys. , 2019, 14(2): 23604.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0872-1
https://academic.hep.com.cn/fop/CN/Y2019/V14/I2/23604
1 M. Levy, Universal variational functionals of electron densities, first-order density matrices, and natural spinorbitals and solution of the v-representability problem, Proc. Natl. Acad. Sci. USA 76, 6062 (1979)
https://doi.org/10.1073/pnas.76.12.6062
2 M. Levy, J. P. Perdew, and V. Sahni, Exact differential equation for the density and ionization energy of a manyparticle system, Phys. Rev. A 30(5), 2745 (1984)
https://doi.org/10.1103/PhysRevA.30.2745
3 M. Pearson, E. Smargiassi, and P. A. Madden, Ab initio molecular dynamics with an orbital-free density functional, J. Phys.: Condens. Matter 5(19), 3221 (1993)
https://doi.org/10.1088/0953-8984/5/19/019
4 T. A. Wesolowski and Y. A. Wang, Recent Progress in Orbital-Free Density Functional Theory, Vol. 6, World Scientific,2013
https://doi.org/10.1142/8633
5 J. Lehtomäki, I. Makkonen, A. Harju, O. Lopez-Acevedo, and M. A. Caro, Orbital-free density functional theory implementation with the projector augmented-wave method, J. Chem. Phys. 141, 234102 (2014)
https://doi.org/10.1063/1.4903450
6 V. V. Karasiev and S. B. Trickey, in Advances in Quantum Chemistry, Vol. 71, Elsevier, 2015, pp 221–245
7 D. Garcia-Aldea and J. Alvarellos, Approach to kinetic energy density functionals: Nonlocal terms with the structure of the von Weizsäcker functional, Phys. Rev. A 77(2), 022502 (2008)
https://doi.org/10.1103/PhysRevA.77.022502
8 C. Huang and E. A. Carter, Nonlocal orbital-free kinetic energy density functional for semiconductors, Phys. Rev. B 81(4), 045206 (2010)
https://doi.org/10.1103/PhysRevB.81.045206
9 I. Shin and E. A. Carter, Enhanced von Weizsäcker Wang–Govind–Carter kinetic energy density functional for semiconductors, J. Chem. Phys. 140, 18A531 (2014)
10 W. Mi, A. Genova, and M. Pavanello, Nonlocal kinetic energy functionals by functional integration, J. Chem. Phys. 148(18), 184107 (2018)
https://doi.org/10.1063/1.5023926
11 L. A. Constantin, E. Fabiano, and F. Della Sala, Nonlocal kinetic energy functional from the jellium-with-gap model: Applications to orbital-free density functional theory, Phys. Rev. B 97, 205137 (2018)
https://doi.org/10.1103/PhysRevB.97.205137
12 L. A. Constantin, E. Fabiano, and F. Della Sala, Semilocal Pauli–Gaussian kinetic functionals for orbital-free density functional theory calculations of solids, J. Phys. Chem. Lett. 9(15), 4385 (2018)
https://doi.org/10.1021/acs.jpclett.8b01926
13 W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
https://doi.org/10.1103/PhysRev.140.A1133
14 R. O. Jones, Density functional theory: Its origins, rise to prominence, and future, Rev. Mod. Phys. 87(3), 897 (2015)
https://doi.org/10.1103/RevModPhys.87.897
15 V. Michaud-Rioux, L. Zhang, and H. Guo, RESCU: A real space electronic structure method, J. Comput. Phys. 307, 593 (2016)
https://doi.org/10.1016/j.jcp.2015.12.014
16 J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation,J. Phys.: Condens. Matter 14(11), 2745 (2002)
https://doi.org/10.1088/0953-8984/14/11/302
17 C. K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne, Introducing ONETEP: Linear-scaling density functional simulations on parallel computers, J. Chem. Phys. 122(8), 084119 (2005)
https://doi.org/10.1063/1.1839852
18 F. Brockherde, L. Vogt, L. Li, M. E. Tuckerman, K. Burke, and K. R. Müller, Bypassing the Kohn–Sham equations with machine learning, Nat. Commun. 8(1), 872 (2017)
https://doi.org/10.1038/s41467-017-00839-3
19 W. A. Hofer, Unconventional approach to orbital-free density functional theory derived from a model of extended electrons, Found. Phys. 41(4), 754 (2011)
https://doi.org/10.1007/s10701-010-9517-0
20 T. Pope and W. Hofer, Spin in the extended electron model, Front. Phys. 12(3), 128503 (2017)
https://doi.org/10.1007/s11467-017-0669-7
21 P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
https://doi.org/10.1103/PhysRev.136.B864
22 L. de Broglie, Wave mechanics and the atomic structure of matter and of radiation, J. Phys. Radium 8, 225 (1927)
https://doi.org/10.1051/jphysrad:0192700805022500
23 D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables (I), Phys. Rev. 85, 166 (1952)
https://doi.org/10.1103/PhysRev.85.166
24 D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables (II), Phys. Rev. 85, 180 (1952)
https://doi.org/10.1103/PhysRev.85.180
25 D. Hestenes, Local observables in the Dirac theory, J. Math. Phys. 14, 893 (1973)
https://doi.org/10.1063/1.1666413
26 D. Hestenes, Quantum mechanics from self-interaction, Found. Phys. 15, 63 (1985)
https://doi.org/10.1007/BF00738738
27 D. Hestenes, The zitterbewegung interpretation of quantum Mechanics, Found. Phys. 20, 1213 (1990)
https://doi.org/10.1007/BF01889466
28 J. S. Bell, On the problem of hidden variables in quantum mechanics, Rev. Mod. Phys. 38(3), 447 (1966)
https://doi.org/10.1103/RevModPhys.38.447
29 K. S. Bell, H. Rieder, G. Meyer, S. W. Hla, F. Moresco, K. F. Braun, K. Morgenstern, J. Repp, S. Foelsch, and L. Bartels, The scanning tunnelling microscope as an operative tool: Doing physics and chemistry with single atoms and molecules, Phil. Trans. R. Soc. Lond. A 362, 1207 (2004)
https://doi.org/10.1098/rsta.2004.1373
30 W. A. Hofer, Heisenberg, uncertainty, and the scanning tunneling microscope, Front. Phys. 7(2), 218 (2012)
https://doi.org/10.1007/s11467-012-0246-z
31 D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus: A unified language for mathematics and physics, Vol. 5, Springer Science & Business Media, 2012
32 S. Gull, A. Lasenby, and C. Doran, Imaginary numbers are not real — The geometric algebra of spacetime, Found. Phys. 23(9), 1175 (1993)
https://doi.org/10.1007/BF01883676
33 C. Doran and A. Lasenby, Geometric Algebra for Physicists, Cambridge University Press, 2003
https://doi.org/10.1017/CBO9780511807497
34 G. Benenti, G. Strini, and G. Casati, Principles of Quantum Computation and Information, World Scientific, 2004
https://doi.org/10.1142/5528
35 C. Doran, A. Lasenby, and S. Gull, States and operators in the spacetime algebra, Found. Phys. 23(9), 1239 (1993)
https://doi.org/10.1007/BF01883678
36 W. A. Hofer, Elements of physics for the 21st century, in: Journal of Physics: Conference Series, Vol. 504, IOP Publishing, 2014, p. 012014
37 W. A. Hofer, Solving the Einstein–Podolsky–Rosen puzzle: The origin of non-locality in Aspect-type experiments, Front. Phys. 7(5), 504 (2012)
https://doi.org/10.1007/s11467-012-0256-x
38 M. Hamermesh, Galilean invariance and the Schrodinger equation, Ann. Phys. 9, 518 (1960)
https://doi.org/10.1016/0003-4916(60)90106-8
39 L. M. Sander, H. B. Shore, and L. Sham, Surface Structure of Electron–Hole Droplets, Phys. Rev. Lett. 31(8), 533 (1973)
https://doi.org/10.1103/PhysRevLett.31.533
40 R. Kalia and P. Vashishta, Surface structure of electronhole drops in germanium and silicon, Phys. Rev. B 17(6), 2655 (1978)
https://doi.org/10.1103/PhysRevB.17.2655
41 E. Boroński and R. Nieminen, Electron–positron densityfunctional theory, Phys. Rev. B 34(6), 3820 (1986)
https://doi.org/10.1103/PhysRevB.34.3820
42 T. Kreibich and E. Gross, Multicomponent densityfunctional theory for electrons and nuclei, Phys. Rev. Lett. 86, 2984 (2001)
https://doi.org/10.1103/PhysRevLett.86.2984
43 T. Kreibich, R. van Leeuwen, and E. K. U. Gross, Multicomponent density-functional theory for electrons and nuclei, Phys. Rev. A 78(2), 022501 (2008)
https://doi.org/10.1103/PhysRevA.78.022501
44 J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23(10), 5048 (1981)
https://doi.org/10.1103/PhysRevB.23.5048
45 J. Paier, R. Hirschl, M. Marsman, and G. Kresse, The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set, J. Chem. Phys. 122(23), 234102 (2005)
https://doi.org/10.1063/1.1926272
46 D. R. Hamann, M. Schlüter, and C. Chiang, Normconserving pseudopotentials, Phys. Rev. Lett. 43(20), 1494 (1979)
https://doi.org/10.1103/PhysRevLett.43.1494
47 J. P. Perdew and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Phys. Rev. B 33(12), 8800 (1986)
https://doi.org/10.1103/PhysRevB.33.8800
48 J. A. Pople, P. M. Gill, and B. G. Johnson, Kohn–Sham density-functional theory within a finite basis set, Chem. Phys. Lett. 199(6), 557 (1992)
https://doi.org/10.1016/0009-2614(92)85009-Y
49 J. White and D. Bird, Implementation of gradientcorrected exchange-correlation potentials in Car- Parrinello total-energy calculations, Phys. Rev. B 50(7), 4954 (1994)
https://doi.org/10.1103/PhysRevB.50.4954
50 U. Barth and L. Hedin, A local exchange-correlation potential for the spin polarized case (i), J. Phys. C 5(13), 1629 (1972)
51 In this case, rather than summing equations (21) and (24), we subtract one from the other.
52 H. Eschrig and W. Pickett, Density functional theory of magnetic systems revisited, Solid State Commun. 118(3), 123 (2001)
https://doi.org/10.1016/S0038-1098(01)00053-9
53 N. I. Gidopoulos, Potential in spin-density-functional theory of noncollinear magnetism determined by the manyelectron ground state, Phys. Rev. B 75(13), 134408 (2007)
https://doi.org/10.1103/PhysRevB.75.134408
54 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson, and M. C. Payne, First principles methods using CASTEP, Z. Kristallogr. Cryst. Mater. 220(5/6), 567 (2005)
https://doi.org/10.1524/zkri.220.5.567.65075
55 P. Hasnip and M. Probert, Auxiliary density functionals: A new class of methods for efficient, stable density functional theory calculations, arXiv: 1503.01420 (2015)
56 M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, and K. A. Lyssenko, Density functional theory is straying from the path toward the exact functional, Science 355(6320), 49 (2017)
https://doi.org/10.1126/science.aah5975
57 E. Sim, S. Song, and K. Burke, Quantifying density errors in DFT, arXiv: 1809.10347 (2018)
58 D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41(11), 7892 (1990)
https://doi.org/10.1103/PhysRevB.41.7892
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed