Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2019, Vol. 14 Issue (2): 23605   https://doi.org/10.1007/s11467-018-0874-z
  本期目录
Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films
Guo-Feng Zhang1,4(), Yong-Gang Peng2, Hai-Qing Xie3, Bin Li1, Zhi-Jie Li1, Chang-Gang Yang1, Wen-Li Guo1, Cheng-Bing Qin1,4, Rui-Yun Chen1,4, Yan Gao1,4, Yu-Jun Zheng2, Lian-Tuan Xiao1,4(), Suo-Tang Jia1,4
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
2. School of Physics, Shandong University, Jinan 250100, China
3. Department of Physics, Taiyuan Normal University, Jinzhong 030619, China
4. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
 全文: PDF(3618 KB)  
Abstract

Understanding of charge/energy exchange processes and interfacial interactions that occur between quantum dots (QDs) and the metal oxides is of critical importance to these QD-based optoelectronic devices. This work reports on linear dipole behavior of single near-infrared emitting CdSeTe/ZnS core/shell QDs which are encased in indium tin oxide (ITO) semiconductor nanoparticles films. A strong polarization anisotropy in photoluminescence emission is observed by defocused wide-field imaging and polarization measurement techniques, and the average polarization degree is up to 0.45. A possible mechanism for the observation is presented in which the electrons, locating at single QD surface from ITO by electron transfer due to the equilibration of the Fermi levels, result in a significant Stark distortion of the QD electron/hole wavefunctions. The Stark distortion results in the linear polarization property of the single QDs. The investigation of linear dipole behavior for single QDs encased in ITO films would be helpful for further improving QD-based device performance.

Key wordssingle quantum dots    linear dipole behavior    electron transfer    polarization property    metal oxide nanoparticles
收稿日期: 2018-09-11      出版日期: 2018-11-29
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(2): 23605.
Guo-Feng Zhang, Yong-Gang Peng, Hai-Qing Xie, Bin Li, Zhi-Jie Li, Chang-Gang Yang, Wen-Li Guo, Cheng-Bing Qin, Rui-Yun Chen, Yan Gao, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films. Front. Phys. , 2019, 14(2): 23605.
 链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0874-z
http://academic.hep.com.cn/fop/CN/Y2019/V14/I2/23605
1 M. R. Kim and D. L. Ma, Quantum-dot-based solar cells: Recent advances, strategies, and challenges, J. Phys. Chem. Lett. 6(1), 85 (2015)
https://doi.org/10.1021/jz502227h
2 J. Kwak, J. Lim, M. Park, S. Lee, K. Char, and C. Lee, High-power genuine ultraviolet light-emitting diodes based on colloidal nanocrystal quantum dots, Nano Lett. 15(6), 3793 (2015)
https://doi.org/10.1021/acs.nanolett.5b00392
3 C. H. M. Chuang, P. R. Brown, V. Bulovic, and M. G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering, Nat. Mater. 13(8), 796 (2014)
https://doi.org/10.1038/nmat3984
4 G. C. Shan, Z. Q. Yin, C. H. Shek, and W. Huang, Single photon sources with single semiconductor quantum dots, Front. Phys. 9(2), 170 (2014)
https://doi.org/10.1007/s11467-013-0360-6
5 S. Y. Jin, N. H. Song, and T. Q. Lian, Suppressed blinking dynamics of single QDs on ITO, ACS Nano 4(3), 1545 (2010)
https://doi.org/10.1021/nn901808f
6 N. H. Song, H. M. Zhu, Z. Liu, Z. Q. Huang, D. Wu, and T. Q. Lian, Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO2 films by transient absorption and single dot fluorescence spectroscopy, ACS Nano 7(2), 1599 (2013)
https://doi.org/10.1021/nn3054494
7 H. Cho, J. Kwak, J. Lim, M. Park, D. Lee, W. K. Bae, Y. S. Kim, K. Char, S. Lee, and C. Lee, Soft contact transplanted nanocrystal quantum dots for light-emitting diodes: Effect of surface energy on device performance, ACS Appl. Mater. Interfaces 7(20), 10828 (2015)
https://doi.org/10.1021/acsami.5b01738
8 G. Luo, Z. Z. Zhang, H. O. Li, X. X. Song, G. W. Deng, G. Cao, M. Xiao, and G. P. Guo, Quantum dot behavior in transition metal dichalcogenides nanostructures, Front. Phys. 12(4), 128502 (2017)
https://doi.org/10.1007/s11467-017-0652-3
9 Q. B. Zeng, S. Chen, L. You, and R. Lu, Transport through a quantum dot coupled to two majorana bound states, Front. Phys. 12(4), 127302 (2017)
https://doi.org/10.1007/s11467-016-0620-3
10 S. Y. Jin and T. Q. Lian, Electron transfer dynamics from single CdSe/ZnS quantum dots to TiO2 nanoparticles, Nano Lett. 9(6), 2448 (2009)
https://doi.org/10.1021/nl9011744
11 J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, Schottky solar cells based on colloidal nanocrystal films, Nano Lett. 8(10), 3488 (2008)
https://doi.org/10.1021/nl802476m
12 W. Ma, S. L. Swisher, T. Ewers, J. Engel, V. E. Ferry, H. A. Atwater, and A. P. Alivisatos, Photovoltaic performance of ultrasmall PbSe quantum dots,ACS Nano 5(10), 8140 (2011)
https://doi.org/10.1021/nn202786g
13 J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, Quantum junction solar cells, Nano Lett. 12(9), 4889 (2012)
https://doi.org/10.1021/nl302436r
14 Z. Ning, Y. Ren, S. Hoogland, O. Voznyy, L. Levina, P. Stadler, X. Lan, D. Zhitomirsky, and E. H. Sargent, Allinorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation, Adv. Mater. 24(47), 6295 (2012)
https://doi.org/10.1002/adma.201202942
15 A. Issac, S. Y. Jin, and T. Q. Lian, Intermittent electron transfer activity from single CdSe/ZnS quantum dots, J. Am. Chem. Soc. 130(34), 11280 (2008)
https://doi.org/10.1021/ja8043085
16 P. P. Jha and P. Guyot-Sionnest, Trion decay in colloidal quantum dots, ACS Nano 3(4), 1011 (2009)
https://doi.org/10.1021/nn9001177
17 S. E. Yalcin, B. Q. Yang, J. A. Labastide, and M. D. Barnes, Electrostatic force microscopy and spectral studies of electron attachment to single quantum dots on indium tin oxide substrates, J. Phys. Chem. C 116(29), 15847 (2012)
https://doi.org/10.1021/jp305857d
18 Y. Nagao, H. Fujiwara, and K. Sasaki, Analysis of trapstate dynamics of single CdSe/ZnS quantum dots on a TiO2 substrate with different Nb concentrations, J. Phys. Chem. C 118(35), 20571 (2014)
https://doi.org/10.1021/jp501096q
19 H. W. Cheng, C. T. Yuan, J. S. Wang, T. N. Lin, J. L. Shen, Y. J. Hung, J. Tang, and F. G. Tseng, Modification of photon emission statistics from single colloidal CdSe quantum dots by conductive materials, J. Phys. Chem. C 118(31), 18126 (2014)
https://doi.org/10.1021/jp503426a
20 B. Li, G. Zhang, Z. Wang, Z. Li, R. Chen, C. Qin, Y. Gao, L. Xiao, and S. Jia, Suppressing the fluorescence blinking of single quantum dots encased in N-type semiconductor nanoparticles, Sci. Rep. 6(1), 32662 (2016)
https://doi.org/10.1038/srep32662
21 Z. J. Li, G. F. Zhang, B. Li, R. Y. Chen, C. B. Qin, Y. Gao, L. T. Xiao, and S. T. Jia, Enhanced biexciton emission from single quantum dots encased in N-type semiconductor nanoparticles, Appl. Phys. Lett. 111(15), 153106 (2017)
https://doi.org/10.1063/1.4989605
22 P. P. Jha and P. Guyot-Sionnest, Electrochemical switching of the photoluminescence of single quantum dots, J. Phys. Chem. C 114(49), 21138 (2010)
https://doi.org/10.1021/jp1074626
23 C. Lethiec, J. Laverdant, H. Vallon, C. Javaux, B. Dubertret, J. M. Frigerio, C. Schwob, L. Coolen, and A. Maitre, Measurement of three-dimensional dipole orientation of a single fluorescent nanoemitter by emission polarization analysis, Phys. Rev. X 4(2), 021037 (2014)
https://doi.org/10.1103/PhysRevX.4.021037
24 A. G. Silva, C. A. Parra-Murillo, P. T. Valentim, J. S. Morais, F. Plentz, P. S. Guimaraes, H. Vinck-Posada, B. A. Rodriguez, M. S. Skolnick, A. Tahraoui, and M. Hopkinson, Quantum dot dipole orientation and excitation efficiency of micropillar modes, Opt. Express 16(23), 19201 (2008)
https://doi.org/10.1364/OE.16.019201
25 X. Brokmann, L. Coolen, J. P. Hermier, and M. Dahan, Emission properties of single CdSe/ZnS quantum dots close to a dielectric interface, Chem. Phys. 318(1–2), 91 (2005)
https://doi.org/10.1016/j.chemphys.2005.06.032
26 Q. A. Li, X. J. Chen, Y. Xu, S. Lan, H. Y. Liu, Q. F. Dai, and L. J. Wu, Photoluminescence properties of the CdSe quantum dots accompanied with rotation of the defocused wide-field fluorescence images, J. Phys. Chem. C 114(32), 13427 (2010)
https://doi.org/10.1021/jp1006632
27 W. D. Sheng, M. Korkusinski, A. D. Guclu, M. Zielinski, P. Potasz, E. S. Kadantsev, O. Voznyy, and P. Hawrylak, Electronic and optical properties of semiconductor and graphene quantum dots, Front. Phys. 7(3), 328 (2012)
https://doi.org/10.1007/s11467-011-0200-5
28 J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, Imaging and time-resolved spectroscopy of single molecules at an interface, Science 272(5259), 255 (1996)
https://doi.org/10.1126/science.272.5259.255
29 P. Dedecker, B. Muls, A. Deres, H. Uji-i, J. Hotta, M. Sliwa, J. P. Soumillion, K. Müllen, J. Enderlein, and J. Hofkens, Defocused wide-field imaging unravels structural and temporal heterogeneity in complex systems, Adv. Mater. 21(10–11), 1079 (2009)
https://doi.org/10.1002/adma.200801873
30 G. F. Zhang, L. T. Xiao, F. Zhang, X. B. Wang, and S. T. Jia, Single molecules reorientation reveals the dynamics of polymer glasses surface, Phys. Chem. Chem. Phys. 12(10), 2308 (2010)
https://doi.org/10.1039/B917686A
31 T. Ha, T. Enderle, S. Chemla, R. Selvin, and S. Weiss, Single molecule dynamics studied by polarization modulation, Phys. Rev. Lett. 77(19), 3979 (1996)
https://doi.org/10.1103/PhysRevLett.77.3979
32 R. Y. Chen, G. F. Zhang, C. B. Qin, Y. Gao, L. T. Xiao, and S. T. Jia, Modification of single molecule fluorescence using external fields, Front. Phys. 12(5), 128101 (2017)
https://doi.org/10.1007/s11467-016-0627-9
33 A. L. Efros, Luminescence polarization of CdSe microcrystals, Phys. Rev. B 46(12), 7448 (1992)
https://doi.org/10.1103/PhysRevB.46.7448
34 A. L. Efros and A. V. Rodina, Band-edge absorption and luminescence of nonspherical nanometer-size crystals, Phys. Rev. B 47(15), 10005 (1993)
https://doi.org/10.1103/PhysRevB.47.10005
35 J. T. Hu, L. S. Li, W. D. Yang, L. Manna, L. W. Wang, and A. P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods, Science 292(5524), 2060 (2001)
https://doi.org/10.1126/science.1060810
36 H. Htoon, M. Furis, S. A. Crooker, S. Jeong, and V. I. Klimov, Linearly polarized ‘fine structure’ of the bright exciton state in individual CdSe nanocrystal quantum dots, Phys. Rev. B 77(3), 035328 (2008)
https://doi.org/10.1103/PhysRevB.77.035328
37 D. Montiel and H. Yang, Observation of correlated emission intensity and polarization fluctuations in single CdSe/ZnS quantum dots, J. Phys. Chem. A 112(39), 9352 (2008)
https://doi.org/10.1021/jp802317a
38 C. Lethiec, F. Pisanello, L. Carbone, A. Bramati, L. Coolen, and A. Maitre, Polarimetry-based analysis of dipolar transitions of single colloidal CdSe/CdS dot-inrods, New J. Phys. 16(9), 093014 (2014)
https://doi.org/10.1088/1367-2630/16/9/093014
39 S. Vezzoli, M. Manceau, G. Lemenager, Q. Glorieux, E. Giacobino, L. Carbone, M. De Vittorio, and A. Bramati, Exciton fine structure of CdSe/CdS nanocrystals determined by polarization microscopy at room temperature, ACS Nano 9(8), 7992 (2015)
https://doi.org/10.1021/acsnano.5b01354
40 K. T. Early, K. D. McCarthy, M. Y. Odoi, P. K. Sudeep, T. Emrick, and M. D. Barnes, Linear dipole behavior in single CdSe-oligo(phenylene vinylene) nanostructures, ACS Nano 3(2), 453 (2009)
https://doi.org/10.1021/nn800785s
41 K. T. Early, P. K. Sudeep, T. Emrick, and M. D. Barnes, Polarization-driven stark shifts in quantum dot luminescence from single CdSe/oligo-PPV nanoparticles, Nano Lett. 10(5), 1754 (2010)
https://doi.org/10.1021/nl1001789
42 N. I. Hammer, K. T. Early, K. Sill, M. Y. Odoi, T. Emrick, and M. D. Barnes, Coverage-mediated suppression of blinking in solid state quantum dot conjugated organic composite nanostructures, J. Phys. Chem. B 110(29), 14167 (2006)
https://doi.org/10.1021/jp062065f
43 M. Y. Odoi, K. T. Early, R. Tangirala, P. K. Sudeep, T. Emrick, and M. D. Barnes, Probing multiexcitonic emission in single CdSe-oligo(phenylenevinylene) composite nanostructures, J. Phys. Chem. C 113(31), 13462 (2009)
https://doi.org/10.1021/jp9051787
44 S. Rühle, Tabulated values of the shockley-queisser limit for single junction solar cells, Sol. Energy 130, 139 (2016)
https://doi.org/10.1016/j.solener.2016.02.015
45 A. Deres, G. A. Floudas, K. Müllen, M. Van der Auweraer, F. De Schryver, J. Enderlein, H. Uji-i, and J. Hofkens, The origin of heterogeneity of polymer dynamics near the glass temperature as probed by defocused imaging, Macromolecules 44(24), 9703 (2011)
https://doi.org/10.1021/ma201449p
46 M. Böhmer and J. Enderlein, Orientation imaging of single molecules by wide-field epifluorescence microscopy, J. Opt. Soc. Am. B 20(3), 554 (2003)
https://doi.org/10.1364/JOSAB.20.000554
47 D. Patra, I. Gregor, and J. Enderlein, Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies, J. Phys. Chem. A 108(33), 6836 (2004)
https://doi.org/10.1021/jp048188m
48 T. Ihara, R. Sato, T. Teranishi, and Y. Kanemitsu, Delocalized and localized charged excitons in single CdSe/CdS dot-in-rods revealed by polarized photoluminescence blinking, Phys. Rev. B 90(3), 035309 (2014)
https://doi.org/10.1103/PhysRevB.90.035309
49 F. Hu, B. Lv, C. Yin, C. Zhang, X. Wang, B. Lounis, and M. Xiao, Carrier multiplication in a single semiconductor nanocrystal, Phys. Rev. Lett. 116(10), 106404 (2016)
https://doi.org/10.1103/PhysRevLett.116.106404
50 D. Patra, I. Gregor, J. Enderlein, and M. Sauer, Defocused imaging of quantum-dot angular distribution of radiation, Appl. Phys. Lett. 87(10), 101103 (2005)
https://doi.org/10.1063/1.2037194
51 R. Schuster, M. Barth, A. Gruber, and F. Cichos, Defocused wide field fluorescence imaging of single CdSe/ZnS quantum dots, Chem. Phys. Lett. 413(4–6), 280 (2005)
https://doi.org/10.1016/j.cplett.2005.07.049
52 A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states, Phys. Rev. B 54(7), 4843 (1996)
https://doi.org/10.1103/PhysRevB.54.4843
53 C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots, Nature 479(7372), 203 (2011)
https://doi.org/10.1038/nature10569
54 L. W. Wang, Calculating the influence of external charges on the photoluminescence of a CdSe quantum dot, J. Phys. Chem. B 105(12), 2360 (2001)
https://doi.org/10.1021/jp0032053
[1] Supplementary Material Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed