Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2019, Vol. 14 Issue (2): 21603   https://doi.org/10.1007/s11467-018-0876-x
  本期目录
Entanglement measures of a new type pseudo-pure state in accelerated frames
Qian Dong1(), Ariadna J. Torres-Arenas1(), Guo-Hua Sun2(), Wen-Chao Qiang3(), Shi-Hai Dong1()
1. Laboratorio de Información Cuántica, CIDETEC, Instituto Politécnico Nacional, UPALM, CDMX 07700, Mexico
2. Catedrática CONACyT, Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, Mexico D. F. 07700, Mexico
3. Faculty of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China
 全文: PDF(3909 KB)  
Abstract

In this work we analyze the characteristics of quantum entanglement of the Dirac field in noninertial reference frames in the context of a new type pseudo-pure state, which is composed of the Bell states. This will help us to understand the relationship between the relativity and quantum information theory. Some states will be changed from entangled states into separable ones around the critical value F = 1/4, but there is no such a critical value for the variable y related to acceleration a. We find that the negativity NABI (ρTAABI) increases with F but decreases with the variable y, while the variation of the negativity NBIBII(ρTAABI) is opposite to that of the negativity NABI (ρTAABI). We also study the von Neumann entropies S(ρABI) and S(ρBIBII). We find that the S(ρABI) increases with variable y but S(ρBIBII) is independent of it. However, both S(ρABI) and S(ρBIBII) first decreases with F and then increases with it. The concurrences C(ρABI) and C(ρBIBII) are also discussed. We find that the former decreases with y while the latter increases with y but both of them first increase with F and then decrease with it.

Key wordsnegativity    pseudo-pure state    noninertial frame    entanglement    von Neumann entropy    concurrence
收稿日期: 2018-09-21      出版日期: 2018-12-29
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(2): 21603.
Qian Dong, Ariadna J. Torres-Arenas, Guo-Hua Sun, Wen-Chao Qiang, Shi-Hai Dong. Entanglement measures of a new type pseudo-pure state in accelerated frames. Front. Phys. , 2019, 14(2): 21603.
 链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0876-x
http://academic.hep.com.cn/fop/CN/Y2019/V14/I2/21603
1 P. M. Alsing and G. J. Milburn, Teleportation with a uniformly accelerated partner, Phys. Rev. Lett. 91(18), 180404 (2003)
https://doi.org/10.1103/PhysRevLett.91.180404
2 A. Peres and D. R. Terno, Quantum information and relativity theory, Rev. Mod. Phys. 76(1), 93 (2004) (and references therein)
https://doi.org/10.1103/RevModPhys.76.93
3 I. Fuentes-Schuller and R. B. Mann, Alice falls into a black hole: Entanglement in noninertial frames, Phys. Rev. Lett. 95(12), 120404 (2005)
https://doi.org/10.1103/PhysRevLett.95.120404
4 L. Lamata, M. A. Martin-Delgado, and E. Solano, Relativity and Lorentz invariance of entanglement distillability, Phys. Rev. Lett. 97(25), 250502 (2006)
https://doi.org/10.1103/PhysRevLett.97.250502
5 P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, Entanglement of Dirac fields in noninertial frames, Phys. Rev. A 74(3), 032326 (2006)
https://doi.org/10.1103/PhysRevA.74.032326
6 K. Bradler, Eavesdropping of quantum communication from a noninertial frame, Phys. Rev. A 75(2), 022311 (2007)
https://doi.org/10.1103/PhysRevA.75.022311
7 Y. C. Ou and H. Fan, Monogamy inequality in terms of negativity for three-qubit states, Phys. Rev. A 75(6), 062308 (2007)
https://doi.org/10.1103/PhysRevA.75.062308
8 D. E. Bruschi, J. Louko, E. Martín-Martínez, A. Dragan, and I. Fuentes, Unruh effect in quantum information beyond the single-mode approximation, Phys. Rev. A 82(4), 042332 (2008)
https://doi.org/10.1103/PhysRevA.82.042332
9 J. Wang and J. Jing, Multipartite entanglement of fermionic systems in noninertial frames, Phys. Rev. A 83(2), 022314 (2011)
https://doi.org/10.1103/PhysRevA.83.022314
10 M.-R. Hwang, D. Park, and E. Jung, Tripartite entanglement in noninertial frame, Phys. Rev. A 83, 012111 (2001)
https://doi.org/10.1103/PhysRevA.83.012111
11 Y. Yao, X. Xiao, L. Ge, X. G. Wang, and C. P. Sun, Quantum Fisher information in noninertial frames, Phys. Rev. A 89(4), 042336 (2014)
https://doi.org/10.1103/PhysRevA.89.042336
12 S. Khan, Tripartite entanglement of fermionic system in accelerated frames, Ann. Phys. 348, 270 (2014)
https://doi.org/10.1016/j.aop.2014.05.022
13 S. Khan, N. A. Khan, and M. K. Khan, Non-maximal tripartite entanglement degradation of Dirac and scalar fields in non-inertial frames, Commum. Theor. Phys. 61(3), 281 (2014)
https://doi.org/10.1088/0253-6102/61/3/02
14 D. E. Bruschi, A. Dragan, I. Fuentes, and J. Louko, Particle and antiparticle bosonic entanglement in noninertial frames, Phys. Rev. D 86(2), 025026 (2012)
https://doi.org/10.1103/PhysRevD.86.025026
15 E. Martín-Martínez and I. Fuentes, Redistribution of particle and antiparticle entanglement in noninertial frames, Phys. Rev. A 83(5), 052306 (2011)
https://doi.org/10.1103/PhysRevA.83.052306
16 I. Fuentes-Schuller and R. B. Mann, Alice falls into a black hole: Entanglement in noninertial frames, Phys. Rev. Lett. 95(12), 120404 (2005)
https://doi.org/10.1103/PhysRevLett.95.120404
17 X. Xiao, Y. M. Xie, Y. Yao, Y. L. Li, and J. Wang, Retrieving the lost fermionic entanglement by partial measurement in noninertial frames, Ann. Phys. 390, 83 (2018)
https://doi.org/10.1016/j.aop.2018.01.006
18 W. C. Qiang, G. H. Sun, O. Camacho-Nieto, and S. H. Dong, Multipartite entanglement of fermionic systems in noninertial frames revisited, arXiv: 1711.04230 (2017)
19 S. Moradi, Distillability of entanglement in accelerated frames, Phys. Rev. A 79(6), 064301 (2009)
https://doi.org/10.1103/PhysRevA.79.064301
20 H. Mehri-Dehnavi, B. Mirza, H. Mohammadzadeh, and R. Rahimi, Pseudo-entanglement evaluated in noninertial frames, Ann. Phys. 326(5), 1320 (2011)
https://doi.org/10.1016/j.aop.2011.02.001
21 R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A 40(8), 4277 (1989)
https://doi.org/10.1103/PhysRevA.40.4277
22 W. C. Qiang, Q. Dong, G. H. Sun and S. H. Dong (submitted)
23 R. A. Horn and C. R. Johnson, Matrix Analysis, New York: Cambridge University Press, 1985, pp 205–415, 441
24 W. C. Qiang, G. H. Sun, Q. Dong, and S. H. Dong, Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames, Phys. Rev. A 98(2), 022320 (2018)
https://doi.org/10.1103/PhysRevA.98.022320
25 S. A. Najafizade, H. Hassanabadi, and S. Zarrinkamar, Nonrelativistic Shannon information entropy for Kratzer potential, Chin. Phys. B 25(4), 040301 (2016)
https://doi.org/10.1088/1674-1056/25/4/040301
26 S. A. Najafizade, H. Hassanabadi, and S. Zarrinkamar, Nonrelativistic Shannon information entropy for Killingbeck potential, Can. J. Phys. 94(10), 1085 (2016)
https://doi.org/10.1139/cjp-2016-0113
27 Y. Q. Li and G. Q. Zhu, Concurrence vectors for entanglement of high-dimensional systems, Front. Phys. China 3(3), 250 (2008)
https://doi.org/10.1007/s11467-008-0022-2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed