Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2019, Vol. 14 Issue (2): 23201   https://doi.org/10.1007/s11467-018-0878-8
  本期目录
Log-periodic quantum oscillations in topological or Dirac materials
Huichao Wang1,2,3, Yanzhao Liu1,2, Haiwen Liu4, Jian Wang1,2,5()
1. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
2. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
3. Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
4. Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
5. CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(4755 KB)  
收稿日期: 2018-12-11      出版日期: 2019-01-07
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(2): 23201.
Huichao Wang, Yanzhao Liu, Haiwen Liu, Jian Wang. Log-periodic quantum oscillations in topological or Dirac materials. Front. Phys. , 2019, 14(2): 23201.
 链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0878-8
http://academic.hep.com.cn/fop/CN/Y2019/V14/I2/23201
1 L. Schubnikow and W. J. De Haas, A new phenomenon in the change of resistance in a magnetic field of single crystals of bismuth, Nature 126(3179), 500 (1930)
https://doi.org/10.1038/126500a0
2 D. Schoenberg, Magnetic Oscillations in Metals, Cambridge University Press, 1984
https://doi.org/10.1017/CBO9780511897870
3 Y. Imry, Introduction to Mesoscopic Physics, Oxford University Press, 1997
4 W. J. de Haas and P. M. van Alphen, The dependence of the susceptibility of diamagnetic metals upon the field, Proc. Netherlands Roy. Acad. Sci. 33(1106), 170 (1930)
5 R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, Observation of h/e Aharonov–Bohm oscillations in normal-metal rings, Phys. Rev. Lett. 54(25), 2696 (1985)
https://doi.org/10.1103/PhysRevLett.54.2696
6 B. L. Al’Tshuler, A. G. Aronov, and B. Z. Spivak, The Aaronov-Bohm effect in disordered conductors, JETP Lett. 33(2), 94 (1981)
7 W. Gao, N. Hao, F. W. Zheng, W. Ning, M. Wu, X. Zhu, G. Zheng, J. Zhang, J. Lu, H. Zhang, C. Xi, J. Yang, H. Du, P. Zhang, Y. Zhang, and M. Tian, Extremely large magnetoresistance in a topological semimetal candidate pyrite PtBi2, Phys. Rev. Lett. 118(25), 256601 (2017)
https://doi.org/10.1103/PhysRevLett.118.256601
8 Y. Zhao, H. Liu, C. Zhang, H. Wang, J. Wang, Z. Lin, Y. Xing, H. Lu, J. Liu, Y. Wang, S. M. Brombosz, Z. Xiao, S. Jia, X. C. Xie, and J. Wang, Anisotropic fermi surface and quantum limit transport in high mobility threedimensional Dirac semimetal Cd3As2, Phys. Rev. X 5(3), 031037 (2015)
https://doi.org/10.1103/PhysRevX.5.031037
9 A. B. Fowler, F. F. Fang, W. E. Howard, and P. J. Stiles, Magneto-oscillatory conductance in silicon surfaces, Phys. Rev. Lett. 16(20), 901 (1966)
https://doi.org/10.1103/PhysRevLett.16.901
10 Z. Xiang, Y. Kasahara, T. Asaba, B. Lawson, C. Tinsman, L. Chen, K. Sugimoto, S. Kawaguchi, Y. Sato, G. Li, S. Yao, Y. L. Chen, F. Iga, J. Singleton, Y. Matsuda, and L. Li, Quantum oscillations of electrical resistivity in an insulator, Science 362(6410), 65 (2018)
https://doi.org/10.1126/science.aap9607
11 M. Tian, J. Wang, Q. Zhang, N. Kumar, T. E. Mallouk, and M. H. W. Chan, Superconductivity and quantum oscillations in crystalline Bi nanowire, Nano Lett. 9(9), 3196 (2009)
https://doi.org/10.1021/nl901431t
12 J. Wang, X. C. Ma, L. Lu, A. Z. Jin, C. Z. Gu, X. C. Xie, J. F. Jia, X. Chen, and Q. K. Xue, Anomalous magnetoresistance oscillations and enhanced superconductivity in single-crystal Pb nanobelts, Appl. Phys. Lett. 92(23), 233119 (2008)
https://doi.org/10.1063/1.2945280
13 H. Wang, H. Liu, Y. Li, Y. Liu, J. Wang, J. Liu, Ji- Yan Dai, Y. Wang, L. Li, J. Yan, D. Mandrus, X. C. Xie, and J. Wang, Discovery of log-periodic oscillations in ultraquantum topological materials, Sci. Adv. 4(11), eaau5096 (2018)
14 H. Weng, X. Dai, and Z. Fang, Transition-metal pentatelluride ZrTe5 and HfTe5: A paradigm for large-gap quantum spin Hall insulators, Phys. Rev. X 4(1), 011002 (2014)
https://doi.org/10.1103/PhysRevX.4.011002
15 Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Chiral magnetic effect in ZrTe5, Nat. Phys. 12(6), 550 (2016)
16 R. Y. Chen, Z. G. Chen, X. Y. Song, J. A. Schneeloch, G. D. Gu, F. Wang, and N. L. Wang, Magnetoinfrared spectroscopy of Landau levels and Zeeman splitting of threedimensional massless Dirac fermions in ZrTe5, Phys. Rev. Lett. 115(17), 176404 (2015)
https://doi.org/10.1103/PhysRevLett.115.176404
17 Z. Fan, Q. F. Liang, Y. B. Chen, S. H. Yao, and J. Zhou, Transition between strong and weak topological insulator in ZrTe5 and HfTe5, Sci. Rep. 7(1), 45667 (2017)
https://doi.org/10.1038/srep45667
18 B. I. Halperin, Possible states for a three-dimensional electron gas in a strong magnetic field, Jpn. J. Appl. Phys. 26, 1913 (1987)
https://doi.org/10.7567/JJAPS.26S3.1913
19 Y. Liu, X. Yuan, C. Zhang, Z. Jin, A. Narayan, C. Luo, Z. Chen, L. Yang, J. Zou, X. Wu, S. Sanvito, Z. Xia, L. Li, Z. Wang, and F. Xiu, Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5, Nat. Commun. 7(1), 12516 (2016)
https://doi.org/10.1038/ncomms12516
20 B. Fauqué, D. LeBoeuf, B. Vignolle, M. Nardone, C. Proust, and K. Behnia, Two phase transitions induced by a magnetic field in graphite, Phys. Rev. Lett. 110(26), 266601 (2013)
https://doi.org/10.1103/PhysRevLett.110.266601
21 D. Sornette, Discrete-scale invariance and complex dimensions, Phys. Rep. 297(5), 239 (1998)
https://doi.org/10.1016/S0370-1573(97)00076-8
22 L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 3rd Ed., Perganon Press, 1977
23 T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H. C. Nägerl, and R. Grimm, Evidence for Efimov quantum states in an ultracold gas of caesium atoms, Nature 440(7082), 315 (2006)
https://doi.org/10.1038/nature04626
24 B. Huang, L. A. Sidorenkov, R. Grimm, and J. M. Hutson, Observation of the second triatomic resonance in Efimov’s scenario, Phys. Rev. Lett. 112(19), 190401 (2014)
https://doi.org/10.1103/PhysRevLett.112.190401
25 R. Pires, J. Ulmanis, S. Häfner, M. Repp, A. Arias, E. D. Kuhnle, and M. Weidemüller, Observation of Efimov resonances in a mixture with extreme mass imbalance, Phys. Rev. Lett. 112(25), 250404 (2014)
https://doi.org/10.1103/PhysRevLett.112.250404
26 S. K. Tung, K. Jiménez-García, J. Johansen, C. V. Parker, and C. Chin, Geometric scaling of Efimov states in a 6Li-133Cs mixture, Phys. Rev. Lett. 113(24), 240402 (2014)
https://doi.org/10.1103/PhysRevLett.113.240402
27 M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L. Ph. H. Schmidt, M. Schöffler, A. Czasch, W. Schöllkopf, R. E. Grisenti, T. Jahnke, D. Blume, and R. Dörner, Observation of the Efimov state of the helium trimer, Science 348(6234), 551 (2015)
https://doi.org/10.1126/science.aaa5601
28 Y. B. Zeldovich and V. S. Popov, Electronic structure of superheavy atoms, Sov. Phys. Usp. 14(6), 673 (1972)
https://doi.org/10.1070/PU1972v014n06ABEH004735
29 W. Greiner, B. Muller, and J. Rafelski, Quantum Electrodynamics of Strong Fields, Springer Science & Business Media, 2013
30 D. Kennedy and C. Norman, So much more to know, Science 309(5731), 78b (2005)
https://doi.org/10.1126/science.309.5731.78b
31 H. Liu, H. Jiang, Z. Wang, R. Joynt, and X. C. Xie, Discrete scale invariance in topological semimetals, arXiv: 1807.02459 (2018)
32 P. Zhang and H. Zhai, Efimov effect in the Dirac Semimetals, Front. Phys. 13(5), 137204 (2018)
https://doi.org/10.1007/s11467-018-0800-4
33 H. Wang, Y. Liu, Y. Liu, C. Xi, J. Wang, J. Liu, Y. Wang, L. Li, S. P. Lau, M. Tian, J. Yan, D. Mandrus, J.-Y. Dai, H. Liu, X. C. Xie, and J. Wang, Log-periodic quantum magneto-oscillations and discrete scale invariance in topological material HfTe5, arXiv: 1810.03109 (2018)
Viewed
Full text


Abstract

Cited