Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (3): 33401   https://doi.org/10.1007/s11467-018-0879-7
  本期目录
Local electrical characterization of two-dimensional materials with functional atomic force microscopy
Sabir Hussain1,3, Kunqi Xu1, Shili Ye1,2,3, Le Lei2, Xinmeng Liu2, Rui Xu1,2(), Liming Xie1, Zhihai Cheng2
1. CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
2. Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(15049 KB)  
Abstract

Research about two-dimensional (2D) materials is growing exponentially across various scientific and engineering disciplines due to the wealth of unusual physical phenomena that occur when charge transport is confined to a plane. The applications of 2D materials are highly affected by the electrical properties of these materials, including current distribution, surface potential, dielectric response, conductivity, permittivity, and piezoelectric response. Hence, it is very crucial to characterize these properties at the nanoscale. The Atomic Force Microscopy (AFM)-based techniques are powerful tools that can simultaneously characterize morphology and electrical properties of 2D materials with high spatial resolution, thus being more and more extensively used in this research field. Here, the principles of these AFM techniques are reviewed in detail. After that, their representative applications are further demonstrated in the local characterization of various 2D materials’ electrical properties.

Key wordsadvanced AFM techniques    nanoscale characterization    electrical properties    2D materials
收稿日期: 2018-09-07      出版日期: 2019-02-19
Corresponding Author(s): Rui Xu   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(3): 33401.
Sabir Hussain, Kunqi Xu, Shili Ye, Le Lei, Xinmeng Liu, Rui Xu, Liming Xie, Zhihai Cheng. Local electrical characterization of two-dimensional materials with functional atomic force microscopy. Front. Phys. , 2019, 14(3): 33401.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0879-7
https://academic.hep.com.cn/fop/CN/Y2019/V14/I3/33401
1 H. T. Yuan, H. T. Wang, and Y. Cui, Two-dimensional layered chalcogenides: From rational synthesis to property control via orbital occupation and electron filling, Acc. Chem. Res. 48(1), 81 (2015)
https://doi.org/10.1021/ar5003297
2 K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
https://doi.org/10.1126/science.aac9439
3 J. W. May, Platinum surface LEED rings, Surf. Sci. 17(1), 267 (1969)
https://doi.org/10.1016/0039-6028(69)90227-1
4 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
5 I. Meric, N. Baklitskaya, P. Kim, and K. L. Shepard, RF performance of top-gated, zero-bandgap graphene fieldeffect transistors, 2008 International Electron Devices Meeting, San Francisco, CA, 2008, pp 1–4
https://doi.org/10.1109/IEDM.2008.4796738
6 I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Current saturation in zerobandgap, top-gated graphene field-effect transistors, Nat. Nanotechnol. 3(11), 654 (2008)
https://doi.org/10.1038/nnano.2008.268
7 M. I. Katsnelson, Graphene: Carbon in two dimensions, Mater. Today 10(1–2), 20 (2007)
https://doi.org/10.1016/S1369-7021(06)71788-6
8 A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)
https://doi.org/10.1021/nl0731872
9 X. Xu, L. F. C. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae, C. Tinh Bui, R. Xie, J. T. L. Thong, B. H. Hong, K. P. Loh, D. Donadio, B. Li, and B. Özyilmaz, Length-dependent thermal conductivity in suspended single-layer graphene, Nat. Commun. 5(1), 3689 (2014)
https://doi.org/10.1038/ncomms4689
10 S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett. 100(1), 016602 (2008)
https://doi.org/10.1103/PhysRevLett.100.016602
11 M. Han, B. Ozyilmaz, Y. Zhang, P. Jarillo-Herero, and P. Kim, Electronic transport measurements in graphene nanoribbons, Phys. Status Solidi B 244(11), 4134 (2007)
https://doi.org/10.1002/pssb.200776197
12 A. Sikora, M. Woszczyna, M. Friedemann, F. J. Ahlers, and M. Kalbac, AFM diagnostics of graphene-based quantum Hall devices, Micron 43(2–3), 479 (2012)
https://doi.org/10.1016/j.micron.2011.11.010
13 C. Zhu, D. Du and Y. Lin, Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review, 2D Mater. 2(3), 032004 (2015)
14 M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, A graphene field-effect device, IEEE Electr. Device L, 28(4), 282 (2007)
https://doi.org/10.1109/LED.2007.891668
15 N. D. Lu, L. F. Wang, L. Li, and M. Liu, A review for compact model of graphene field-effect transistors, Chin. Phys. B 26(3), 036804 (2017)
https://doi.org/10.1088/1674-1056/26/3/036804
16 F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics 4(9), 611 (2010)
https://doi.org/10.1038/nphoton.2010.186
17 Q. L. Bao and K. P. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices, ACS Nano 6(5), 3677 (2012)
https://doi.org/10.1021/nn300989g
18 F. Yavari and N. Koratkar, Graphene-based chemical sensors, J. Phys. Chem. Lett. 3(13), 1746 (2012)
https://doi.org/10.1021/jz300358t
19 J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, Practical chemical sensors from chemically derived graphene, ACS Nano 3(2), 301 (2009)
https://doi.org/10.1021/nn800593m
20 M. S. Lee, K. Lee, S. Y. Kim, H. Lee, J. Park, K. H. Choi, H. K. Kim, D. G. Kim, D. Y. Lee, S. Nam, and J. U. Park, High-performance, transparent, and stretchable electrodes using graphene–metal nanowire hybrid structures, Nano Lett. 13(6), 2814 (2013)
https://doi.org/10.1021/nl401070p
21 I. N. Kholmanov, S. H. Domingues, H. Chou, X. H. Wang, C. Tan, J. Y. Kim, H. F. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes, ACS Nano 7(2), 1811 (2013)
https://doi.org/10.1021/nn3060175
22 X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, High efficiency graphene solar cells by chemical doping, Nano Lett. 12(6), 2745 (2012)
https://doi.org/10.1021/nl204414u
23 Z. Liu, J. Li, and F. Yan, Package-free flexible organic solar cells with graphene top electrodes, Adv. Mater. 25(31), 4296 (2013)
https://doi.org/10.1002/adma.201205337
24 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Twodimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102(30), 10451 (2005)
https://doi.org/10.1073/pnas.0502848102
25 S. Z. Butler, S. M. Hollen, L. Y. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. X. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
https://doi.org/10.1021/nn400280c
26 Mas-Ballesté, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora, 2D materials: To graphene and beyond, Nanoscale 3(1), 20 (2011)
https://doi.org/10.1039/C0NR00323A
27 L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Fieldeffect tunneling transistor based on vertical graphene heterostructures, Science 335(6071), 947 (2012)
https://doi.org/10.1126/science.1218461
28 L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. Castro Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, Electron tunneling through ultrathin boron nitride crystalline barriers, Nano Lett. 12(3), 1707 (2012)
https://doi.org/10.1021/nl3002205
29 C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Boron nitride substrates for highquality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)
https://doi.org/10.1038/nnano.2010.172
30 R. A. Doganov, E. C. T. O’Farrell, S. P. Koenig, Y. Yeo, A. Ziletti, A. Carvalho, D. K. Campbell, D. F. Coker, K. Watanabe, T. Taniguchi, A. H. C. Neto, and B. Özyilmaz, Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere, Nat. Commun. 6(1), 6647 (2015)
https://doi.org/10.1038/ncomms7647
31 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
https://doi.org/10.1038/nnano.2012.193
32 A. Kumar, and P. K. Ahluwalia, Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: New direct band gap semiconductors, Eur. Phys. J. B 85(6), 186 (2012)
https://doi.org/10.1140/epjb/e2012-30070-x
33 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
https://doi.org/10.1038/nnano.2010.279
34 A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)
https://doi.org/10.1021/nl903868w
35 S. V. Kalinin and D. A. Bonnell, Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces, Phys. Rev. B 65(12), 125408 (2002)
https://doi.org/10.1103/PhysRevB.65.125408
36 X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forro, J. Shan, and K. F. Mak, Strongly enhanced charge-density-wave order in monolayer NbSe2, Nat. Nanotechnol. 10(9), 765 (2015)
https://doi.org/10.1038/nnano.2015.143
37 X. Xi, Z. Wang, W. Zhao, J. H. Park, K. T. Law, H. Berger, L. Forró, J. Shan, and K. F. Mak, Ising pairing in superconducting NbSe2 atomic layers, Nat. Phys. 12(2), 139 (2016)
38 A. W. Tsen, B. Hunt, Y. D. Kim, Z. J. Yuan, S. Jia, R. J. Cava, J. Hone, P. Kim, C. R. Dean, and A. N. Pasupathy, Nature of the quantum metal in a two-dimensional crystalline superconductor, Nat. Phys. 12(3), 208 (2016)
39 S. J. Kim, K. Choi, B. Lee, Y. Kim, and B. H. Hong, Materials for flexible, stretchable electronics: Graphene and 2D materials, Annu. Rev. Mater. Res. 45(1), 63 (2015)
https://doi.org/10.1146/annurev-matsci-070214-020901
40 J. Pu, Y. Yomogida, K. K. Liu, L. J. Li, Y. Iwasa, and T. Takenobu, Highly flexible MoS2 thin-film transistors with ion gel dielectrics, Nano Lett. 12(8), 4013 (2012)
https://doi.org/10.1021/nl301335q
41 D. Deng, K. S. Novoselov, Q. Fu, N. Zheng, Z. Tian and X. Bao, Catalysis with two-dimensional materials and their heterostructures, Nat. Nanotechnol. 11(3), 218 (2016)
https://doi.org/10.1038/nnano.2015.340
42 J. Deng, D. Deng, and X. Bao, Robust catalysis on 2D materials encapsulating metals: Concept, application, and perspective, Adv. Mater. 29(43), 1606967 (2017)
https://doi.org/10.1002/adma.201606967
43 F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, and B. T. Jonker, Chemical vapor sensing with monolayer MoS2, Nano Lett. 13(2), 668 (2013)
https://doi.org/10.1021/nl3043079
44 B. Cho, A. R. Kim, D. J. Kim, H. S. Chung, S. Y. Choi, J. D. Kwon, S. W. Park, Y. Kim, B. H. Lee, K. H. Lee, D. H. Kim, J. Nam, and M. G. Hahm, Two-dimensional atomic-layered alloy junctions for high-performance wearable chemical sensor, ACS Appl. Mater. Interfaces 8(30), 19635 (2016)
https://doi.org/10.1021/acsami.6b05943
45 J. Seo, J. Jang, S. Park, C. Kim, B. Park, and J. Cheon, Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries, Adv. Mater. 20(22), 4269 (2008)
https://doi.org/10.1002/adma.200703122
46 K. S. Chen, I. Balla, N. S. Luu, and M. C. Hersam, Emerging opportunities for two-dimensional materials in lithium-ion batteries, ACS Energy Lett. 2(9), 2026 (2017)
https://doi.org/10.1021/acsenergylett.7b00476
47 N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, Photosensor device based on few-layered WS2 films, Adv. Funct. Mater. 23(44), 5511 (2013)
https://doi.org/10.1002/adfm.201300760
48 N. Perea-López, Z. Lin, N. R. Pradhan, A. Iñiguez-Rábago, A. Laura Elías, A. McCreary, J. Lou, P. M. Ajayan, H. Terrones, L. Balicas and M. Terrones, CVDgrown monolayered MoS2 as an effective photosensor operating at low-voltage, 2D Mater. 1(1), 011004 (2014)
49 M. Amani, M. L. Chin, A. G. Birdwell, T. P. O’Regan, S. Najmaei, Z. Liu, P. M. Ajayan, J. Lou, and M. Dubey, Electrical performance of monolayer MoS2 fieldeffect transistors prepared by chemical vapor deposition, Appl. Phys. Lett. 102(19), 193107 (2013)
https://doi.org/10.1063/1.4804546
50 S. Ahmed and J. Yi, Two-dimensional transition metal dichalcogenides and their charge carrier mobilities in field-effect transistors, Nano-Micro Lett. 9(4), 50 (2017)
https://doi.org/10.1007/s40820-017-0152-6
51 G. Binnig, C. F. Quate, and C. Gerber, Atomic force microscope, Phys. Rev. Lett. 56(9), 930 (1986)
https://doi.org/10.1103/PhysRevLett.56.930
52 G. Binnig, C. Gerber, E. Stoll, T. R. Albrecht, and C. F. Quate, Atomic resolution with atomic force microscope, Europhys. Lett. 3(12), 1281 (1987)
https://doi.org/10.1209/0295-5075/3/12/006
53 Y. Martin, C. C. Williams, and H. K. Wickramasinghe, Atomic force microscope–force mapping and profiling on a sub 100‐Å scale, J. Appl. Phys. 61(10), 4723 (1987)
https://doi.org/10.1063/1.338807
54 M. Nonnenmacher, M. P. Oboyle, and H. K. Wickramasinghe, Kelvin probe force microscopy, Appl. Phys. Lett. 58(25), 2921 (1991)
https://doi.org/10.1063/1.105227
55 F. Pérez-Murano, G. Abadal, N. Barniol, X. Aymerich, J. Servat, P. Gorostiza, and F. Sanz, Nanometer-scale oxidation of Si(100) surfaces by tapping mode atomic force microscopy,J. Appl. Phys. 78(11), 6797 (1995)
https://doi.org/10.1063/1.360505
56 R. García and R. Perez, Dynamic atomic force microscopy methods, Surf. Sci. Rep. 47(6–8), 197 (2002)
https://doi.org/10.1016/S0167-5729(02)00077-8
57 H. Hölscher and U. D. Schwarz, Theory of amplitude modulation atomic force microscopy with and without Q-control, Int. J. Non-linear Mech. 42(4), 608 (2007)
https://doi.org/10.1016/j.ijnonlinmec.2007.01.018
58 Y. Sugawara, T. Uchihashi, M. Abe, and S. Morita, True atomic resolution imaging of surface structure and surface charge on the GaAs(110), Appl. Surf. Sci. 140(3–4), 371 (1999)
https://doi.org/10.1016/S0169-4332(98)00557-1
59 S. K. Jang, J. Youn, Y. J. Song, and S. Lee, Synthesis and characterization of hexagonal boron nitride as a gate dielectric, Sci. Rep. 6(1), 30449 (2016)
https://doi.org/10.1038/srep30449
60 A. Belianinov, S. V. Kalinin, and S. Jesse, Complete information acquisition in dynamic force microscopy, Nat. Commun. 6(1), 6550 (2015)
https://doi.org/10.1038/ncomms7550
61 H. Martinez, C. Auriel, D. Gonbeau, M. Loudet, and G. Pfister-Guillouzo, Studies of 1T TiS2 by STM, AFM and XPS: The mechanism of hydrolysis in air, Appl. Surf. Sci. 93(3), 231 (1996)
https://doi.org/10.1016/0169-4332(95)00339-8
62 M. G. Ruppert, D. M. Harcombe, M. R. P. Ragazzon, S. O. R. Moheimani, and A. J. Fleming, A review of demodulation techniques for amplitude-modulation atomic force microscopy, Beilstein J. Nanotechnol. 8, 1407 (2017)
https://doi.org/10.3762/bjnano.8.142
63 Z. Zheng, R. Xu, S. Ye, S. Hussain, W. Ji, P. Cheng, Y. Li, Y. Sugawara, and Z. Cheng, High harmonic exploring on different materials in dynamic atomic force microscopy, Sci. China Tech. Sci. 61(3), 446 (2018)
https://doi.org/10.1007/s11431-017-9161-4
64 G. Benstetter, R. Biberger, and D. P. Liu, A review of advanced scanning probe microscope analysis of functional films and semiconductor devices, Thin Solid Films 517(17), 5100 (2009)
https://doi.org/10.1016/j.tsf.2009.03.176
65 R. A. Oliver, Advances in AFM for the electrical characterization of semiconductors, Rep. Prog. Phys. 71(7), 076501 (2008)
https://doi.org/10.1088/0034-4885/71/7/076501
66 A. Avila and B. Bhushan, Electrical measurement techniques in atomic force microscopy, Crit. Rev. Solid State Mater. Sci. 35(1), 38 (2010)
https://doi.org/10.1080/10408430903362230
67 S. Liu and Y. Wang, A review of the application of atomic force microscopy (AFM) in food science and technology, Adv. Food Nutr. Res. 62, 201 (2011)
https://doi.org/10.1016/B978-0-12-385989-1.00006-5
68 I. Pecorari, L. Puzzi, and O. Sbaizero, Atomic force microscopy and lamins: A review study towards future, combined investigations, Microsc. Res. Tech. 80(1), 97 (2017)
https://doi.org/10.1002/jemt.22801
69 S. V. Kontomaris and A. Stylianou, Atomic force microscopy for university students: Applications in biomaterials, Eur. J. Phys. 38(3), 033003 (2017)
https://doi.org/10.1088/1361-6404/aa5cd6
70 M. Li, D. Dang, L. Q. Liu, N. Xi, and Y. C. Wang, Atomic force microscopy in characterizing cell mechanics for biomedical applications: A review, IEEE. T. Nanobiosci. 16(6), 523 (2017)
https://doi.org/10.1109/TNB.2017.2714462
71 F. Houzé, R. Meyer, O. Schneegans, and L. Boyer, Imaging the local electrical properties of metal surfaces by atomic force microscopy with conducting probes, Appl. Phys. Lett. 69(13), 1975 (1996)
https://doi.org/10.1063/1.117179
72 J. E. Shaw, A. Perumal, D. D. C. Bradley, P. N. Stavrinou, and T. D. Anthopoulos, Nanoscale current spreading analysis in solution-processed graphene oxide/silver nanowire transparent electrodes via conductive atomic force microscopy, J. Appl. Phys. 119(19), 195501 (2016)
https://doi.org/10.1063/1.4949502
73 F. Giannazzo, G. Fisichella, A. Piazza, S. Di Franco, I. P. Oliveri, S. Agnello, and F. Roccaforte, Current injection from metal to MoS2 probed at nanoscale by conductive atomic force microscopy, Mater. Sci. Semicond. Process. 42, 174 (2016)
https://doi.org/10.1016/j.mssp.2015.07.062
74 J. Yang, P. Gordiichuk, O. Zheliuk, J. Lu, A. Herrmann, and J. Ye, Role of defects in tuning the electronic properties of monolayer WS2 grown by chemical vapor deposition, Phys. Status Solidi RRL. 11(10), 1700302 (2017)
https://doi.org/10.1002/pssr.201700302
75 M. R. Rosenberger, H. J. Chuang, K. M. McCreary, C. H. Li, and B. T. Jonker, Electrical characterization of discrete defects and impact of defect density on photoluminescence in monolayer WS2, ACS Nano 12(2), 1793 (2018)
https://doi.org/10.1021/acsnano.7b08566
76 S. J. O’Shea, Conducting atomic force microscopy study of silicon dioxide breakdown, J. Vac. Sci. Technol. B 13(5), 1945 (1995)
https://doi.org/10.1116/1.588113
77 L. Zhang and Y. Mitani, Structural and electrical evolution of gate dielectric breakdown observed by conductive atomic force microscopy, Appl. Phys. Lett. 88(3), 032906 (2006)
https://doi.org/10.1063/1.2166679
78 E. Koren, Y. Rosenwaks, J. E. Allen, E. R. Hemesath, and L. J. Lauhon, Nonuniform doping distribution along silicon nanowires measured by Kelvin probe force microscopy and scanning photocurrent microscopy, Appl. Phys. Lett. 95(9), 092105 (2009)
https://doi.org/10.1063/1.3207887
79 H. J. Lee and S. M. Park, Electrochemistry of conductive polymers. 30. Nanoscale measurements of doping distributions and current-voltage characteristics of electrochemically deposited polypyrrole films, J. Phys. Chem. B 108(5), 1590 (2004)
https://doi.org/10.1021/jp035766a
80 R. Vidyasagar, B. Camargo, K. Romanyuk, and A. L. Kholkin, Surface potential distribution of multilayer graphene using Kelvin probe and electric-field force microscopies, Ferroelectr. 508(1), 115 (2017)
https://doi.org/10.1080/00150193.2017.1289583
81 A. Y. Lu, H. Zhu, J. Xiao, C. P. Chuu, Y. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D. A. Muller, M. Y. Chou, X. Zhang, and L. J. Li, Janus monolayers of transition metal dichalcogenides, Nat. Nanotechnol. 12(8), 744 (2017)
https://doi.org/10.1038/nnano.2017.100
82 V. Kaushik, D. Varandani, and B. R. Mehta, Nanoscale mapping of layer-dependent surface potential and junction properties of cvd-grown MoS2 domains, J. Phys. Chem. C 119(34), 20136 (2015)
https://doi.org/10.1021/acs.jpcc.5b05818
83 T. Filleter, K. V. Emtsev, T. Seyller, and R. Bennewitz, Local work function measurements of epitaxial graphene, Appl. Phys. Lett. 93(13), 133117 (2008)
https://doi.org/10.1063/1.2993341
84 Y. Shen, X. Zhang, Y. Wang, X. Zhou, J. Hu, S. Guo, and Y. Zhang, Charge transfer between reduced graphene oxide sheets on insulating substrates, Appl. Phys. Lett. 103(5), 053107 (2013)
https://doi.org/10.1063/1.4817252
85 A. Liscio, G. P. Veronese, E. Treossi, F. Suriano, F. Rossella, V. Bellani, R. Rizzoli, P. Samorì, and V. Palermo, Charge transport in graphene–polythiophene blends as studied by Kelvin probe force microscopy and transistor characterization, J. Mater. Chem. 21(9), 2924 (2011)
https://doi.org/10.1039/c0jm02940h
86 L. Yan, C. Punckt, I. A. Aksay, W. Mertin, and G. Bacher, Local voltage drop in a single functionalized graphene sheet characterized by Kelvin probe force microscopy, Nano Lett. 11(9), 3543 (2011)
https://doi.org/10.1021/nl201070c
87 M. Lucchesi, G. Privitera, M. Labardi, D. Prevosto, S. Capaccioli, and P. Pingue, Electrostatic force microscopy and potentiometry of realistic nanostructured systems, J. Appl. Phys. 105(5), 054301 (2009)
https://doi.org/10.1063/1.3082125
88 S. S. Datta, D. R. Strachan, E. J. Mele, and A. T. C. Johnson, Surface potentials and layer charge distributions in few-layer graphene films, Nano Lett. 9(1), 7 (2009)
https://doi.org/10.1021/nl8009044
89 C. K. Oliveira, M. J. S. Matos, M. S. C. Mazzoni, H. Chacham, and B. R. A. Neves, Anomalous response of supported few-layer hexagonal boron nitride to DC electric fields: A confined water effect? Nanotechnol. 23(17), 175703 (2012)
https://doi.org/10.1088/0957-4484/23/17/175703
90 L. Collins, J. I. Kilpatrick, S. A. L. Weber, A. Tselev, I. V. Vlassiouk, I. N. Ivanov, S. Jesse, S. V. Kalinin and B. J. Rodriguez, Open loop Kelvin probe force microscopy with single and multi-frequency excitation, Nanotechnol. 24(47), 475702 (2013)
https://doi.org/10.1088/0957-4484/24/47/475702
91 C. Li, X. D. Ding, and G. C. Lin, Study on multifrequency method for electrostatic force microscopy in air, Integr. Ferroelectr. 145(1), 59 (2013)
https://doi.org/10.1080/10584587.2013.788385
92 Y. P. Jiang, Q. Qi, R. Wang, J. Zhang, Q. K. Xue, C. Wang, C. Jiang, and X. H. Qiu, Direct observation and measurement of mobile charge carriers in a monolayer organic semiconductor on a dielectric substrate, ACS Nano 5(8), 6195 (2011)
https://doi.org/10.1021/nn200760r
93 C. Gao, T. Wei, F. Duewer, Y. Lu, and X. D. Xiang, High spatial resolution quantitative microwave impedance microscopy by a scanning tip microwave near-field microscope, Appl. Phys. Lett. 71(13), 1872 (1997)
https://doi.org/10.1063/1.120444
94 D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes, Nano Lett. 15(12), 8136 (2015)
https://doi.org/10.1021/acs.nanolett.5b03575
95 Y. Feng, K. Zhang, F. Wang, Z. Liu, M. Fang, R. Cao, Y. Miao, Z. Yang, W. Mi, Y. Han, Z. Song, and H. S. Wong, Synthesis of large-area highly crystalline monolayer molybdenum disulfide with tunable grain size in a H2 atmosphere, ACS Appl. Mater. Interfaces 7(40), 22587 (2015)
https://doi.org/10.1021/acsami.5b07038
96 Y. Liu, C. Tan, H. Chou, A. Nayak, D. Wu, R. Ghosh, H. Y. Chang, Y. Hao, X. Wang, J. S. Kim, R. Piner, R. S. Ruoff, D. Akinwande, and K. Lai, Thermal oxidation of WSe2 nanosheets adhered on SiO2/Si substrates, Nano Lett. 15(8), 4979 (2015)
https://doi.org/10.1021/acs.nanolett.5b02069
97 W. Kundhikanjana, K. Lai, H. Wang, H. Dai, M. A. Kelly, and Z. Shen, Hierarchy of electronic properties of chemically derived and pristine graphene probed by microwave imaging, Nano Lett. 9(11), 3762 (2009)
https://doi.org/10.1021/nl901949z
98 S. Berweger, P. T. Blanchard, M. D. Brubaker, K. J. Coakley, N. A. Sanford, T. M. Wallis, K. A. Bertness, and P. Kabos, Near-field control and imaging of free charge carrier variations in GaN nanowires, Appl. Phys. Lett. 108(7), 073101 (2016)
https://doi.org/10.1063/1.4942107
99 E. Brinciotti, G. Gramse, S. Hommel, T. Schweinboeck, A. Altes, M. A. Fenner, J. Smoliner, M. Kasper, G. Badino, S. S. Tuca, and F. Kienberger, Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy, Nanoscale 7(35), 14715 (2015)
https://doi.org/10.1039/C5NR04264J
100 H. P. Huber, I. Humer, M. Hochleitner, M. Fenner, M. Moertelmaier, C. Rankl, A. Imtiaz, T. M. Wallis, H. Tanbakuchi, P. Hinterdorfer, P. Kabos, J. Smoliner, J. J. Kopanski, and F. Kienberger, Calibrated nanoscale dopant profiling using a scanning microwave microscope, J. Appl. Phys. 111(1), 014301 (2012)
https://doi.org/10.1063/1.3672445
101 S. K. Kim, R. Bhatia, T. H. Kim, D. Seol, J. H. Kim, H. Kim, W. Seung, Y. Kim, Y. H. Lee, and S. W. Kim, Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators, Nano Energy 22, 483 (2016)
https://doi.org/10.1016/j.nanoen.2016.02.046
102 M. Park, S. Hong, J. Kim, J. Hong, and K. No, Nanoscale ferroelectric switching behavior at charged domain boundaries studied by angle-resolved Piezoresponse force microscopy, Appl. Phys. Lett. 99(14), 142909 (2011)
https://doi.org/10.1063/1.3646761
103 S. Kim, V. Gopalan, and A. Gruverman, Coercive fields in ferroelectrics: A case study in lithium niobate and lithium tantalate, Appl. Phys. Lett. 80(15), 2740 (2002)
https://doi.org/10.1063/1.1470247
104 R. Xu, L. J. Yin, J. B. Qiao, K. K. Bai, J. C. Nie, and L. He, Direct probing of the stacking order and electronic spectrum of rhombohedral trilayer graphene with scanning tunneling microscopy, Phys. Rev. B 91(3), 035410 (2015)
https://doi.org/10.1103/PhysRevB.91.035410
105 C. J. Chen, Introduction to Scanning Tunneling Microscopy, Columbia University, 2008
106 M. P. Murrell, M. E. Welland, S. J. O’Shea, T. M. H. Wong, J. R. Barnes, A. W. McKinnon, M. Heyns, and S. Verhaverbeke, Spatially resolved electrical measurements of SiO2 gate oxides using atomic force microscopy, Appl. Phys. Lett. 62(7), 786 (1993)
https://doi.org/10.1063/1.108579
107 A. A. Pomarico, D. Huang, J. Dickinson, A. A. Baski, R. Cingolani, H. Morkoc, and R. Molnar, Current mapping of GaN films by conductive atomic force microscopy, Appl. Phys. Lett. 82(12), 1890 (2003)
https://doi.org/10.1063/1.1563054
108 W. Frammelsberger, G. Benstetter, J. Kiely, and R. Stamp, C-AFM-based thickness determination of thin and ultra-thin SiO2 films by use of different conductivecoated probe tips, Appl. Surf. Sci. 253(7), 3615 (2007)
https://doi.org/10.1016/j.apsusc.2006.07.070
109 P. De Wolf, T. Clarysse, and W. Vandervorst, Quantification of nanospreading resistance profiling data, J. Vac. Sci. Technol. B 16(1), 320 (1998)
https://doi.org/10.1116/1.589804
110 J. M. Mativetsky, Y. L. Loo, and P. Samorì, Elucidating the nanoscale origins of organic electronic function by conductive atomic force microscopy, J. Mater. Chem. C Mater. Opt. Electron. Devices 2(17), 3118 (2014)
https://doi.org/10.1039/C3TC32050B
111 H. O. Jacobs, P. Leuchtmann, O. J. Homan, and A. Stemmer, Resolution and contrast in Kelvin probe force microscopy,J. Appl. Phys. 84(3), 1168 (1998)
https://doi.org/10.1063/1.368181
112 J. W. P. Hsu, H. M. Ng, A. M. Sergent, and S. N. G. Chu, Scanning Kelvin force microscopy imaging of surface potential variations near threading dislocations in GaN, Appl. Phys. Lett. 81(19), 3579 (2002)
https://doi.org/10.1063/1.1519732
113 J. Ren, H. D. Liess, R. Mackel, and H. Baumgartner, Scanning kelvin microscope: A new method for surface investigations, Fresenius J. Anal. Chem. 353(3–4), 303 (1995)
https://doi.org/10.1007/BF00322056
114 L. Collins, S. Jesse, N. Balke, B. J. Rodriguez, S. Kalinin, and Q. Li, Band excitation Kelvin probe force microscopy utilizing photothermal excitation, Appl. Phys. Lett. 106(10), 104102 (2015)
https://doi.org/10.1063/1.4913910
115 S. Guo, S. V. Kalinin, and S. Jesse, Open-loop band excitation Kelvin probe force microscopy, Nanotechnol. 23(12), 125704 (2012)
https://doi.org/10.1088/0957-4484/23/12/125704
116 M. Neek-Amal, L. Covaci, K. Shakouri, and F. Peeters, Electronic structure of a hexagonal graphene flake subjected to triaxial stress, Phys. Rev. B 88(11), 115428 (2013)
https://doi.org/10.1103/PhysRevB.88.115428
117 P. De Wolf, R. Stephenson, T. Trenkler, T. Clarysse, T. Hantschel, and W. Vandervorst., Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy, J. Vac. Sci. Technol. B 18(1), 361 (2000)
https://doi.org/10.1116/1.591198
118 W. Melitz, J. Shen, A. C. Kummel, and S. Lee, Kelvin probe force microscopy and its application, Surf. Sci. Rep. 66(1), 1 (2011)
https://doi.org/10.1016/j.surfrep.2010.10.001
119 B. Bhushan and A. V. Goldade, Kelvin probe microscopy measurements of surface potential change under wear at low loads, Wear 244(1–2), 104 (2000)
https://doi.org/10.1016/S0043-1648(00)00450-6
120 L. Tetard, A. Passian, and T. Thundat, New modes for subsurface atomic force microscopy through nanomechanical coupling, Nat. Nanotechnol. 5(2), 105 (2010)
https://doi.org/10.1038/nnano.2009.454
121 R. W. Stark, N. Naujoks, and A. Stemmer, Multifrequency electrostatic force microscopy in the repulsive regime, Nanotechnol. 18(6), 065502 (2007)
https://doi.org/10.1088/0957-4484/18/6/065502
122 X. D. Ding, J. An, J. B. Xu, C. Li, and R. Y. Zeng, Improving lateral resolution of electrostatic force microscopy by multifrequency method under ambient conditions, Appl. Phys. Lett. 94(22), 223109 (2009)
https://doi.org/10.1063/1.3147198
123 T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, Frequency modulation detection using high-Qcantilevers for enhanced force microscope sensitivity, J. Appl. Phys. 69(2), 668 (1991)
https://doi.org/10.1063/1.347347
124 L. Fumagalli, M. A. Edwards, and G. Gomila, Quantitative electrostatic force microscopy with sharp silicon tips, Nanotechnol. 25(49), 495701 (2014)
https://doi.org/10.1088/0957-4484/25/49/495701
125 S. Gómez-Mońivas, L. S. Froufe, R. Carminati, J. J. Greffet, and J. J. Saenz, Tip-shape effects on electrostatic force microscopy resolution, Nanotechnol. 12(4), 496 (2001)
https://doi.org/10.1088/0957-4484/12/4/323
126 C. Schönenberger and S. F. Alvarado, Observation of single charge carriers by force microscopy, Phys. Rev. Lett. 65(25), 3162 (1990)
https://doi.org/10.1103/PhysRevLett.65.3162
127 C. Schönenberger, Charge flow during metal-insulator contact, Phys. Rev. B 45, 3861 (1992)
https://doi.org/10.1103/PhysRevB.45.3861
128 S. Gómez-Mońivas, L. S. Froufe-Pérez, A. J. Caamańo, and J. J. Sáenz, Electrostatic forces between sharp tips and metallic and dielectric samples, Appl. Phys. Lett. 79(24), 4048 (2001)
https://doi.org/10.1063/1.1424478
129 K. Zhang, N. Marzari, and Q. Zhang, Covalently functionalized metallic single-walled carbon nanotubes studied using electrostatic force microscopy and dielectric force microscopy, J. Phys. Chem. C 117(46), 24570 (2013)
https://doi.org/10.1021/jp4076178
130 S. C. Jr Fain, K. A. Barry, M. G. Bush, B. Pittenger, and R. N. Louie, Measuring average tip-sample forces in intermittent-contact (tapping) force microscopy in air, Appl. Phys. Lett. 76, 930 (2000)
https://doi.org/10.1063/1.125633
131 C. Riedel, G. A. Schwartz, R. Arinero, P. Tordjeman, G. Leveque, A. Alegria, and J. Colmenero, Nanoscale dielectric properties of insulating thin films: From single point measurements to quantitative images, Ultramicroscopy 110(6), 634 (2010)
https://doi.org/10.1016/j.ultramic.2010.02.024
132 P. Girard, Electrostatic force microscopy: Principles and some applications to semiconductors, Nanotechnol. 12(4), 485 (2001)
https://doi.org/10.1088/0957-4484/12/4/321
133 C. Riedel, R. Arinero, P. Tordjeman, M. Ramonda, G. Lévêque, G. A. Schwartz, D. G. Oteyza, A. Alegria, and J. Colmenero, Determination of the nanoscale dielectric constant by means of a double pass method using electrostatic force microscopy, J. Appl. Phys. 106(2), 024315 (2009)
https://doi.org/10.1063/1.3182726
134 L. Collins, J. I. Kilpatrick, I. V. Vlassiouk, A. Tselev, S. A. L. Weber, S. Jesse, S. V. Kalinin, and B. J. Rodriguez, Dual harmonic Kelvin probe force microscopy at the graphene–liquid interface, Appl. Phys. Lett. 104(13), 133103 (2014)
https://doi.org/10.1063/1.4870074
135 L. Lei, R. Xu, S. Ye, X. Wang, K. Xu, S. Hussain, Y. Li, Y. Sugawara, L. Xie, W. Ji, and Z. Cheng, Local characterization of mobile charge carriers by two electrical AFM modes: Multi-harmonic EFM versus sMIM, J. Phys. Commun. 2(2), 025013 (2018)
https://doi.org/10.1088/2399-6528/aaa85f
136 J. P. Colinge and C. A. Colinge, Physics of Semiconductor, University of California, 2005
137 B. D. Terris, J. E. Stern, D. Rugar, and H. J. Mamin, Localized charge force microscopy, J. Vac. Sci. Technol. A 8(1), 374 (1990)
https://doi.org/10.1116/1.576399
138 Y. Martin, D. W. Abraham, and H. K. Wickramasinghe, High-resolution capacitance measurement and potentiometry by force microscopy, Appl. Phys. Lett. 52(13), 1103 (1988)
https://doi.org/10.1063/1.99224
139 K. Lai, W. Kundhikanjana, M. Kelly, and Z. X. Shen, Modeling and characterization of a cantilever-based nearfield scanning microwave impedance microscope, Rev. Sci. Instrum. 79(6), 063703 (2008)
https://doi.org/10.1063/1.2949109
140 K. Lai, M. B. Ji, N. Leindecker, M. A. Kelly, and Z. X. Shen, Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes, Rev. Sci. Instrum. 78(6), 063702 (2007)
https://doi.org/10.1063/1.2746768
141 Y. Tsai, Z. Chu, Y. Han, C. P. Chuu, D. Wu, A. Johnson, F. Cheng, M. Y. Chou, D. A. Muller, X. Li, K. Lai, and C. K. Shih, Tailoring semiconductor lateral multijunctions for giant photoconductivity enhancement, Adv. Mater. 29(41), 1703680 (2017)
https://doi.org/10.1002/adma.201703680
142 D. Wu, X. Li, L. Luan, X. Y. Wu, W. Li, M. N. Yogeesh, R. Ghosh, Z. D. Chu, D. Akinwande, Q. Niu, and K. Lai, Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors, Proc. Natl. Acad. Sci. USA 113(31), 8583 (2016)
https://doi.org/10.1073/pnas.1605982113
143 X. Rui, Z. Zhiyue, J. Wei, and C. Zhihai, Advance scanning microwave microscopy, Prog. Phys. 35(6), 241 (2015)
144 K. Lai, W. Kundhikanjana, M. A. Kelly, and Z. X. Shen, Nanoscale microwave microscopy using shielded cantilever probes, Appl. Nanosci. 1(1), 13 (2011)
https://doi.org/10.1007/s13204-011-0002-7
145 Y. Yang, K. Lai, Q. Tang, W. Kundhikanjana, M. A. Kelly, K. Zhang, Z. Shen, and X. Li, Batch-fabricated cantilever probes with electrical shielding for nanoscale dielectric and conductivity imaging, J. Micromech. Microeng. 22(11), 115040 (2012)
https://doi.org/10.1088/0960-1317/22/11/115040
146 G. Agustí, S. Cobo, A. B. Gaspar, G. Molnár, N. O. Moussa, P. Á. Szilágyi, V. Pálfi, C. Vieu, M. C. Munoz, J. A. Real, and A. Bousseksou, Thermal and light-induced spin crossover phenomena in new 3D Hofmann-like microporous metalorganic frameworks produced as bulk materials and nanopatterned thin films, Chem. Mater. 20(21), 6721 (2008)
https://doi.org/10.1021/cm8019878
147 A. Tselev, N. V. Lavrik, I. Vlassiouk, D. P. Briggs, M. Rutgers, R. Proksch, and S. V. Kalinin, Near-field microwave scanning probe imaging of conductivity inhomogeneities in CVD graphene, Nanotechnol. 23(38), 385706 (2012)
https://doi.org/10.1088/0957-4484/23/38/385706
148 H. Madan, M. Jerry, A. Pogrebnyakov, T. Mayer, and S. Datta, quantitative mapping of phase coexistence in Mott-Peierls insulator during electronic and thermally driven phase transition, ACS Nano 9(2), 2009 (2015)
https://doi.org/10.1021/nn507048d
149 G. Gramse, M. Kasper, L. Fumagalli, G. Gomila, P. Hinterdorfer and F. Kienberger, Calibrated complex impedance and permittivity measurements with scanning microwave microscopy, Nanotechnol. 25(14), 145703 (2014)
https://doi.org/10.1088/0957-4484/25/14/145703
150 T. Dargent, K. Haddadi, T. Lasri, N. Clement, D. Ducatteau, B. Legrand, H. Tanbakuchi, and D. Theron, An interferometric scanning microwave microscope and calibration method for sub-fF microwave measurements, Rev. Sci. Instrum. 84(12), 123705 (2013)
https://doi.org/10.1063/1.4848995
151 H. P. Huber, M. Moertelmaier, T. M. Wallis, C. J. Chiang, M. Hochleitner, A. Imtiaz, Y. J. Oh, K. Schilcher, M. Dieudonne, J. Smoliner, P. Hinterdorfer, S. J. Rosner, H. Tanbakuchi, P. Kabos, and F. Kienberger, Calibrated nanoscale capacitance measurements using a scanning microwave microscope, Rev. Sci. Instrum. 81(11), 113701 (2010)
https://doi.org/10.1063/1.3491926
152 S. Dunn, Determination of cross sectional variation of ferroelectric properties for thin film (Ca. 500 nm) PZT (30/70) via PFM, Integr. Ferroelectr. 59(1), 1505 (2003)
https://doi.org/10.1080/10584580390259993
153 M. S. Ivanov, N. E. Sherstyuk, E. D. Mishina, V. A. Khomchenko, A. Tselev, V. M. Mukhortov, J. A. Paixão, and A. L. Kholkin, Enhancement of local piezoelectric properties of a perforated ferroelectric thin film visualized via piezoresponse force microscopy, J. Phys. D 50(42), 425303 (2017)
https://doi.org/10.1088/1361-6463/aa8604
154 S. Dunn, C. P. Shaw, Z. Huang, and R. W. Whatmore, Ultrahigh resolution of lead zirconate titanate 30/70 domains as imaged by piezoforce microscopy, Nanotechnol. 13(4), 456 (2002)
https://doi.org/10.1088/0957-4484/13/4/303
155 P. Güthner, and K. Dransfeld, Local poling of ferroelectric polymers by scanning force microscopy, Appl. Phys. Lett. 61(9), 1137 (1992)
https://doi.org/10.1063/1.107693
156 Z. Jiang, G. Zheng, K. Zhan, Z. Han, and H. Wang, Mechanisms of polarization switching in graphene oxides and poly (vinylidene fluoride)–graphene oxide films, Jpn. J. Appl. Phys. 55(4S), 04EP04 (2016)
https://doi.org/10.7567/JJAP.55.04EP04
157 D. Seol, B. Kim, and Y. Kim, Non-piezoelectric effects in piezoresponse force microscopy, Curr. Appl. Phys. 17(5), 661 (2017)
https://doi.org/10.1016/j.cap.2016.12.012
158 F. Li, J. Qi, M. Xu, J. Xiao, Y. Xu, X. Zhang, S. Liu, and Y. Zhang, Layer dependence and light tuning surface potential of 2D MoS2 on various substrates, Small 13(14), 1603103 (2017)
https://doi.org/10.1002/smll.201603103
159 E. Soergel, Piezoresponse force microscopy (PFM), J. Phys. D 44(46), 464003 (2011)
https://doi.org/10.1088/0022-3727/44/46/464003
160 N. A. Burnham, X. Chen, C. S. Hodges, G. A. Matei, E. J. Thoreson, C. J. Roberts, M. C. Davies, and S. J. B. Tendler, Comparison of calibration methods for atomicforce microscopy cantilevers, Nanotechnol. 14(1), 1 (2003)
https://doi.org/10.1088/0957-4484/14/1/301
161 S. Hong, H. Shin, J. Woo, and K. No, Effect of cantilever–sample interaction on piezoelectric force microscopy, Appl. Phys. Lett. 80(8), 1453 (2002)
https://doi.org/10.1063/1.1454219
162 J. A. Christman, R. R. Jr Woolcott, A. I. Kingon, and R. J. Nemanich, Piezoelectric measurements with atomic force microscopy, Appl. Phys. Lett. 73(26), 3851 (1998)
https://doi.org/10.1063/1.122914
163 C. J. Brennan, R. Ghosh, K. Koul, S. K. Banerjee, N. Lu, and E. T. Yu, Out-of-plane electromechanical response of monolayer molybdenum disulfide measured by Piezoresponse force microscopy, Nano Lett. 17(9), 5464 (2017)
https://doi.org/10.1021/acs.nanolett.7b02123
164 S. V. Kalinin and D. A. Bonnell, Local potential and polarization screening on ferroelectric surfaces, Phys. Rev. B 63(12), 125411 (2001)
https://doi.org/10.1103/PhysRevB.63.125411
165 S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. J. Lei, Z. H. Hu, R. Shao, and J. H. Ferris, Ferroelectric Lithography of Multicomponent Nanostructures, Adv. Mater. 16(910), 795 (2004)
https://doi.org/10.1002/adma.200305702
166 K. Franke, H. Huelz, and M. Weihnacht, How to extract spontaneous polarization information from experimental data in electric force microscopy, Surf. Sci. 415(1–2), 178 (1998)
https://doi.org/10.1016/S0039-6028(98)00585-8
167 I. Szafraniak, C. Harnagea, R. Scholz, S. Bhattacharyya, D. Hesse, and M. Alexe, Ferroelectric epitaxial nanocrystals obtained by a self-patterning method, Appl. Phys. Lett. 83(11), 2211 (2003)
https://doi.org/10.1063/1.1611258
168 J. M. Mativetsky, E. Treossi, E. Orgiu, M. Melucci, G. P. Veronese, P. Samori, and V. Palermo, local current mapping and patterning of reduced graphene oxide, J. Am. Chem. Soc. 132(40), 14130 (2010)
https://doi.org/10.1021/ja104567f
169 G. H. Lee, Y. J. Yu, C. Lee, C. Dean, K. L. Shepard, P. Kim, and J. Hone, Electron tunneling through atomically flat and ultrathin hexagonal boron nitride, Appl. Phys. Lett. 99(24), 243114 (2011)
https://doi.org/10.1063/1.3662043
170 L. Jiang, Y. Shi, F. Hui, K. Tang, Q. Wu, C. Pan, X. Jing, H. Uppal, F. Palumbo, G. Lu, T. Wu, H. Wang, M. A. Villena, X. Xie, P. C. McIntyre, and M. Lanza, Dielectric breakdown in chemical vapor deposited hexagonal boron nitride, ACS Appl. Mater. Interfaces 9(45), 39758 (2017)
https://doi.org/10.1021/acsami.7b10948
171 Y. Hattori, T. Taniguchi, K. Watanabe, and K. Nagashio, Layer-by-layer dielectric breakdown of hexagonal boron nitride, ACS Nano 9(1), 916 (2015)
https://doi.org/10.1021/nn506645q
172 Y. Kobayashi, S. Yoshida, R. Sakurada, K. Takashima, T. Yamamoto, T. Saito, S. Konabe, T. Taniguchi, K. Watanabe, Y. Maniwa, O. Takeuchi, H. Shigekawa, and Y. Miyata, Modulation of electrical potential and conductivity in an atomic-layer semiconductor heterojunction, Sci. Rep. 6(1), 31223 (2016)
https://doi.org/10.1038/srep31223
173 H. Lee, N. Son, H. Y. Jeong, T. G. Kim, G. S. Bang, J. Y. Kim, G. W. Shim, K. C. Goddeti, J. H. Kim, N. Kim, H. J. Shin, W. Kim, S. Kim, S. Y. Choi, and J. Y. Park, Friction and conductance imaging of sp2- and sp3-hybridized subdomains on single-layer graphene oxide, Nanoscale 8, 4063 (2016)
https://doi.org/10.1039/C5NR06469D
174 D. Ruzmetov, K. H. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride, ACS Nano 10(3), 3580 (2016)
https://doi.org/10.1021/acsnano.5b08008
175 C. S. Pathak, M. Garg, J. P. Singh, and R. Singh, Current transport properties of monolayer graphene/n-Si Schottky diodes, Semicond. Sci. Technol. 33(5), 055006 (2018)
https://doi.org/10.1088/1361-6641/aab8a6
176 J. Choi, H. Y. Zhang, H. D. Du, and J. H. Choi, understanding solvent effects on the properties of twodimensional transition metal dichalcogenides, ACS Appl. Mater. Interfaces 8(14), 8864 (2016)
https://doi.org/10.1021/acsami.6b01491
177 S. Choi, Z. Shaolin, and W. Yang, Layer-numberdependent work function of MoS2 nanoflakes, J. Korean Phys. Soc. 64(10), 1550 (2014)
https://doi.org/10.3938/jkps.64.1550
178 K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, and J. B. Xu, Electronic properties of MoS2–WS2 heterostructures synthesized with two-step lateral epitaxial strategy, ACS Nano 9(10), 9868 (2015)
https://doi.org/10.1021/acsnano.5b03188
179 F. C. Salomão, E. M. Lanzoni, C. A. Costa, C. Deneke, and E. B. Barros, Determination of high-frequency dielectric constant and surface potential of graphene oxide and influence of humidity by Kelvin probe force microscopy, Langmuir 31(41), 11339 (2015)
https://doi.org/10.1021/acs.langmuir.5b01786
180 O. Ochedowski, K. Marinov, N. Scheuschner, A. Poloczek, B. K. Bussmann, J. Maultzsch, and M. Schleberger, Effect of contaminations and surface preparation on the work function of single layer MoS2, Beilstein J. Nanotechnol. 5, 291 (2015)
https://doi.org/10.3762/bjnano.5.32
181 Y. Li, C. Y. Xu, J. Y. Wang, and L. Zhen, Photodiodelike behavior and excellent photoresponse of vertical Si/monolayer MoS2 heterostructures, Sci. Rep. 4(1), 7186 (2014)
https://doi.org/10.1038/srep07186
182 C. B. Jacobs, K. Wang, A. V. Ievlev, L. Collins, E. S. Muckley, and I. N. Ivanov, Functional two/threedimensional assembly of monolayer WS2 and nickel oxide, J. Photonics Energy 7(1), 014001 (2017)
https://doi.org/10.1117/1.JPE.7.014001
183 B. J. Robinson, C. E. Giusca, Y. T. Gonzalez, N. D. Kay, O. Kazakova and O. V. Kolosov, Structural, optical and electrostatic properties of single and few-layers MoS2: effect of substrate, 2D Mater. 2(1), 015005 (2015)
184 H. F. Wen, Y. J. Li, E. Arima, Y. Naitoh, Y. Sugawara, R. Xu, and Z. H. Cheng, Investigation of tunneling current and local contact potential difference on the TiO2 (110) surface by AFM/KPFM at 78 K, Nanotechnol. 28(10), 105704 (2017)
https://doi.org/10.1088/1361-6528/aa5aef
185 K. Chen, X. Wan, W. Xie, J. Wen, Z. Kang, X. Zeng, H. Chen, and J. Xu, Lateral built-in potential of monolayer MoS2-WS2 in-plane heterostructures by a shortcut growth strategy, Adv. Mater. 27(41), 6431 (2015)
https://doi.org/10.1002/adma.201502375
186 Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, Tuning the graphene work function by electric field effect, Nano Lett. 9(10), 3430 (2009)
https://doi.org/10.1021/nl901572a
187 F. Long, R. Yasaei, R. Sanoj, W. T. Yao, P. Kral, A. Salehi-Khojin, and R. Shahbazian-Yassar, Characteristic work function variations of graphene line defects, ACS Appl. Mater. Interfaces 8(28), 18360 (2016)
https://doi.org/10.1021/acsami.6b04853
188 C. Zheng, Q. Zhang, B. Weber, H. Ilatikhameneh, F. Chen, H. Sahasrabudhe, R. Rahman, S. Li, Z. Chen, J. Hellerstedt, Y. Zhang, W. H. Duan, Q. Bao, and M. S. Fuhrer, Direct observation of 2D electrostatics and ohmic contacts in template-grown graphene/WS2 heterostructures, ACS Nano 11(3), 2785 (2017)
https://doi.org/10.1021/acsnano.6b07832
189 M. Precner, T. Polakovic, Q. Qiao, D. J. Trainer, A. V. Putilov, C. Di Giorgio, I. Cone, Y. Zhu, X. X. Xi, M. Iavarone, and G. Karapetrov, Evolution of metastable defects and its effect on the electronic properties of MoS2 films, Sci. Rep. 8(1), 6724 (2018)
https://doi.org/10.1038/s41598-018-24913-y
190 J. Shim, A. Oh, D. H. Kang, S. Oh, S. K. Jang, J. Jeon, M. H. Jeon, M. Kim, C. Choi, J. Lee, S. Lee, G. Y. Yeom, Y. J. Song, and J. H. Park, High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment, Adv. Mater. 28(32), 6985 (2016)
https://doi.org/10.1002/adma.201601002
191 R. Wang, S. N. Wang, D. D. Zhang, Z. J. Li, Y. Fang, and X. H. Qiu, Control of carrier type and density in exfoliated graphene by interface engineering, ACS Nano 5(1), 408 (2011)
https://doi.org/10.1021/nn102236x
192 V. Panchal, R. Pearce, R. Yakimova, A. Tzalenchuk, and O. Kazakova, Standardization of surface potential measurements of graphene domains, Sci. Rep. 3(1), 2597 (2013)
https://doi.org/10.1038/srep02597
193 J. Li, X. Qi, G. Hao, K. Huang, and J. Zhong, Surface Potential of Graphene Oxide Investigated by Kelvin probe force microscopy, Fuller. Nanotub. Carbon Nanostruct. 23(9), 777 (2015)
https://doi.org/10.1080/1536383X.2014.997353
194 G. Hao, Z. Huang, Y. Liu, X. Qi, L. Ren, X. Peng, L. Yang, X. Wei, and J. Zhong, Electrostatic properties of few-layer MoS2 films, AIP Adv. 3(4), 042125 (2013)
https://doi.org/10.1063/1.4802921
195 X. Zhang, Q. Liao, S. Liu, Z. Kang, Z. Zhang, J. Du, F. Li, S. Zhang, J. Xiao, B. Liu, Y. Ou, X. Liu, L. Gu, and Y. Zhang, Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode, Nat. Commun. 8, 15881 (2017)
https://doi.org/10.1038/ncomms15881
196 C. Zheng, Z. Q. Xu, Q. Zhang, M. T. Edmonds, K. Watanabe, T. Taniguchi, Q. Bao, and M. S. Fuhrer, profound effect of substrate hydroxylation and hydration on electronic and optical properties of monolayer MoS2, Nano Lett. 15(5), 3096 (2015)
https://doi.org/10.1021/acs.nanolett.5b00098
197 T. H. Ly, H. Kim, Q. H. Thi, S. P. Lau, and J. Zhao, Superior dielectric screening in two-dimensional MoS2 spirals, ACS Appl. Mater. Interfaces 9(43), 37941 (2017)
https://doi.org/10.1021/acsami.7b11468
198 K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, Interlayer transition and infrared photodetection in atomically thin type-II MoTe2 /MoS2 van der Waals heterostructures, ACS Nano 10(3), 3852 (2016)
https://doi.org/10.1021/acsnano.6b00980
199 A. Verdaguer, M. Cardellach, J. J. Segura, G. M. Sacha, J. Moser, M. Zdrojek, A. Bachtold, and J. Fraxedas, Charging and discharging of graphene in ambient conditions studied with scanning probe microscopy, Appl. Phys. Lett. 94(23), 233105 (2009)
https://doi.org/10.1063/1.3149770
200 Y. S. Zhou, S. Wang, Y. Yang, G. Zhu, S. Niu, Z. H. Lin, Y. Liu, and Z. L. Wang, Manipulating nanoscale contact electrification by an applied electric field, Nano Lett. 14(3), 1567 (2014)
https://doi.org/10.1021/nl404819w
201 S. Kim, T. Y. Kim, K. H. Lee, T. H. Kim, F. A. Cimini, S. K. Kim, R. Hinchet, S. W. Kim, and C. Falconi, Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics, Nat. Commun. 8, 15891 (2017)
https://doi.org/10.1038/ncomms15891
202 T. Burnett, R. Yakimova, and O. Kazakova, Mapping of local electrical properties in epitaxial graphene using electrostatic force microscopy, Nano Lett. 11(6), 2324 (2011)
https://doi.org/10.1021/nl200581g
203 V. K. Sangwan, D. Jariwala, I. S. Kim, K. S. Chen, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2, Nat. Nanotechnol. 10(5), 403 (2015)
https://doi.org/10.1038/nnano.2015.56
204 S. Luo, G. Hao, Y. Fan, L. Kou, C. He, X. Qi, C. Tang, J. Li, K. Huang, and J. Zhong, Formation of ripples in atomically thin MoS2 and local strain engineering of electrostatic properties, Nanotechnol. 26(10), 105705 (2015)
https://doi.org/10.1088/0957-4484/26/10/105705
205 G. Hao, L. Kou, D. Lu, J. Peng, J. Li, C. Tang, and J. Zhong, Electrostatic properties of two-dimensional WSe2 nanostructures, J. Appl. Phys. 119(3), 035301 (2016)
https://doi.org/10.1063/1.4940160
206 S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater. 9, 555 (2010)
https://doi.org/10.1038/nmat2753
207 S. E. Yalcin, C. Galande, R. Kappera, H. Yamaguchi, U. Martinez, K. A. Velizhanin, S. K. Doorn, A. M. Dattelbaum, M. Chhowalla, P. M. Ajayan, G. Gupta, and A. D. Mohite, Direct imaging of charge transport in progressively reduced graphene oxide using electrostatic force microscopy, ACS Nano 9(3), 2981 (2015)
https://doi.org/10.1021/nn507150q
208 G. L. Hao, X. Qi, J. Li, L. W. Yang, J. J. Yin, F. Lu, and J. X. Zhong, Surface potentials of few-layer graphene films in high vacuum and ambient conditions, Solid State Commun. 151(11), 818 (2011)
https://doi.org/10.1016/j.ssc.2011.03.025
209 O. Kazakova, V. Panchal, and T. Burnett, Epitaxial graphene and graphene–based devices studied by electrical scanning probe microscopy, Crystals 3(1), 191 (2013)
https://doi.org/10.3390/cryst3010191
210 S. H. Zhao, Y. Lv, and X. J. Yang, Layer-dependent nanoscale electrical properties of graphene studied by conductive scanning probe microscopy, Nanoscale Res. Lett. 6(1), 498 (2011)
https://doi.org/10.1186/1556-276X-6-498
211 H. Jeong, K. M. Lee, Y. H. Ahn, S. Lee, and J. Y. Park, Non-contact local conductance mapping of individual graphene oxide sheets during the reduction process, J. Phys. Chem. Lett. 6(13), 2629 (2015)
https://doi.org/10.1021/acs.jpclett.5b01008
212 S. Hao, B. Yang, J. Yuan, and Y. Gao, Substrate induced anomalous electrostatic and photoluminescence properties of monolayer MoS2 edges, Solid State Commun. 249, 1 (2017)
https://doi.org/10.1016/j.ssc.2016.10.007
213 L. Jiang, B. Wu, H. Liu, Y. Huang, J. Chen, D. Geng, H. Gao, and Y. Liu, A general approach for fast detection of charge carrier type and conductivity difference in nanoscale materials, Adv. Mater. 25(48), 7015 (2013)
https://doi.org/10.1002/adma.201302941
214 C. Tan, Y. Liu, H. Chou, J. S. Kim, D. Wu, D. Akinwande, and K. Lai, Laser-assisted oxidation of multi-layer tungsten diselenide nanosheets, Appl. Phys. Lett. 108(8), 083112 (2016)
https://doi.org/10.1063/1.4942802
215 Y. Liu, R. Ghosh, D. Wu, A. Ismach, R. Ruoff, and K. Lai, Mesoscale imperfections in MoS2 atomic layers grown by a vapor transport technique, Nano Lett. 14(8), 4682 (2014)
https://doi.org/10.1021/nl501782e
216 P. J. d. Visser, R. Chua, J. O. Island, M. Finkel, A. J. Katan, H. Thierschmann, H. S. J. v. d. Zant and T. M. Klapwijk, Spatial conductivity mapping of unprotected and capped black phosphorus using microwave microscopy, 2D Mater. 3(2), 021002 (2016)
217 J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, Toward airstable multilayer phosphorene thin-films and transistors, Sci. Rep. 5(1), 8989 (2015)
https://doi.org/10.1038/srep08989
218 V. V. Talanov, C. D. Barga, L. Wickey, I. Kalichava, E. Gonzales, E. A. Shaner, A. V. Gin, and N. G. Kalugin, Few-layer graphene characterization by near-field scanning microwave microscopy, ACS Nano 4, 3831 (2010)
https://doi.org/10.1021/nn100493f
219 C. J. Brennan, R. Ghosh, K. Koul, S. K. Banerjee, N. S. Lu, and E. T. Yu, Out-of-plane electromechanical response of monolayer molybdenum disulfide measured by Piezoresponse force microscopy, Nano Lett. 17(9), 5464 (2017)
https://doi.org/10.1021/acs.nanolett.7b02123
220 Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, Out-of-plane piezoelectricity and ferroelectricity in layered a-In2Se3 nanoflakes,Nano Lett. 17(9), 5508 (2017)
https://doi.org/10.1021/acs.nanolett.7b02198
221 M. J. Loiacono, E. L. Granstrom, and C. D. Frisbie, Investigation of charge transport in thin, doped sexithiophene crystals by conducting probe atomic force microscopy, J. Phys. Chem. B 102(10), 1679 (1998)
https://doi.org/10.1021/jp973269m
222 J. Nozaki, S. Mori, Y. Miyata, Y. Maniwa, and K. Yanagi, Local optical absorption spectra of MoS2 monolayers obtained using scanning near-field optical microscopy measurements, Jpn. J. Appl. Phys. 55(3), 038003 (2016)
https://doi.org/10.7567/JJAP.55.038003
223 J. Nozaki, Y. Kobayashi, Y. Miyata, Y. Maniwa, K. Watanabe, T. Taniguchi, and K. Yanagi, Local optical absorption spectra of h-BN–MoS2 van der Waals heterostructure revealed by scanning near-field optical microscopy, Jpn. J. Appl. Phys. 55(6S1), 06GB01 (2016)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed