Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (3): 31601   https://doi.org/10.1007/s11467-018-0880-1
  本期目录
Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions
Ying-Yue Yang1, Wen-Yang Sun1, Wei-Nan Shi1, Fei Ming1, Dong Wang1,2(), Liu Ye1
1. School of Physics & Material Science, Anhui University, Hefei 230601, China
2. CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
 全文: PDF(2112 KB)  
Abstract

The dynamics of measurement’s uncertainty via entropy for a one-dimensional Heisenberg XY Z mode is examined in the presence of an inhomogeneous magnetic field and Dzyaloshinskii–Moriya (DM) interaction. It shows that the uncertainty of interest is intensively in connection with the filed’s temperature, the direction-oriented coupling strengths and the magnetic field. It turns out that the stronger coupling strengths and the smaller magnetic field would induce the smaller measurement’s uncertainty of interest within the current spin model. Interestingly, we reveal that the evolution of the uncertainty exhibits quite different dynamical behaviors in antiferromagnetic (Ji>0) and ferromagnetic (Ji<0) frames. Besides, an analytical solution related to the systematic entanglement (i.e., concurrence) is also derived in such a scenario. Furthermore, it is found that the DM-interaction is desirably working to diminish the magnitude of the measurement’s uncertainty in the region of high-temperature. Finally, we remarkably offer a resultful strategy to govern the entropy-based uncertainty through utilizing quantum weak measurements, being of fundamentally importance to quantum measurement estimation in the context of solid-state-based quantum information processing and computation.

Key wordsmeasurement uncertainty    concurrence    Heisenberg XY Z chain    weak measurement    lower bound
收稿日期: 2018-08-25      出版日期: 2019-01-30
Corresponding Author(s): Dong Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(3): 31601.
Ying-Yue Yang, Wen-Yang Sun, Wei-Nan Shi, Fei Ming, Dong Wang, Liu Ye. Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions. Front. Phys. , 2019, 14(3): 31601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0880-1
https://academic.hep.com.cn/fop/CN/Y2019/V14/I3/31601
1 W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Phys. 43(3–4), 172 (1927)
https://doi.org/10.1007/BF01397280
2 M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
3 I. Bialynicki-Birula, Rényi entropy and the uncertainty relations, AIP Conf. Proc. 889, 52 (2007)
https://doi.org/10.1063/1.2713446
4 E. H. Kennard, Zur Quantenmechanik einfacher Bewegungstypen, Z. Phys. 44(4–5), 326 (1927)
https://doi.org/10.1007/BF01391200
5 H. P. Robertson, The uncertainty principle, Phys. Rev. 34(1), 163 (1929)
https://doi.org/10.1103/PhysRev.34.163
6 L. Maccone and A. K. Pati, Stronger Uncertainty Relations for All Incompatible Observables., Phys. Rev. Lett. 113(26), 260401 (2014)
https://doi.org/10.1103/PhysRevLett.113.260401
7 K. K. Wang, X. Zhan, Z. H. Bian, J. Li, Y. S. Zhang, and P. Xue, Experimental investigation of the stronger uncertainty relations for all incompatible observables, Phys. Rev. A 93(5), 052108 (2016)
https://doi.org/10.1103/PhysRevA.93.052108
8 K. Kraus, Complementary observables and uncertainty relations, Phys. Rev. D 35(10), 3070 (1987)
https://doi.org/10.1103/PhysRevD.35.3070
9 H. Maassen and J. B. M. Uffink, Generalized entropic uncertainty relations, Phys. Rev. Lett. 60(12), 1103 (1988)
https://doi.org/10.1103/PhysRevLett.60.1103
10 A. E. Rastegin, Entropic uncertainty relations for successive measurements of canonically conjugate observables, Ann. Phys. (Berlin) 528(11–12), 835 (2016)
https://doi.org/10.1002/andp.201600130
11 A. Ghasemi, M. R. Hooshmandasl, and M. K. Tavassoly, On the quantum information entropies and squeezing associated with the eigenstates of the isotonic oscillator, Phys. Scr. 84(3), 035007 (2011)
https://doi.org/10.1088/0031-8949/84/03/035007
12 D. Wang, A. J. Huang, R. D. Hoehn, F. Ming, W. Y. Sun, J. D. Shi, L. Ye, and S. Kais, Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir, Sci. Rep. 7(1), 1066 (2017)
https://doi.org/10.1038/s41598-017-01094-8
13 J. M. Renes and J. C. Boileau, Conjectured strong complementary information tradeoff, Phys. Rev. Lett. 103(2), 020402 (2009)
https://doi.org/10.1103/PhysRevLett.103.020402
14 M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, The uncertainty principle in the presence of quantum memory, Nat. Phys. 6(9), 659 (2010)
15 R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement, Nat. Phys. 7(10), 757 (2011)
16 C. F. Li, J. S. Xu, X. Y. Xu, K. Li, and G. C. Guo, Experimental investigation of the entanglement-assisted entropic uncertainty principle, Nat. Phys. 7(10), 752 (2011)
17 Z. Jin, S. L. Su, A. D. Zhu, H. F. Wang, and S. Zhang, Engineering multipartite steady entanglement of distant atoms via dissipation, Front. Phys. 13(5), 134209 (2018)
https://doi.org/10.1007/s11467-018-0826-7
18 P. J. Coles, R. Colbeck, L. Yu, and M. Zwolak, Uncertainty Relations from Simple Entropic Properties, Phys. Rev. Lett. 108(21), 210405 (2012)
https://doi.org/10.1103/PhysRevLett.108.210405
19 Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013)
https://doi.org/10.1103/RevModPhys.85.623
20 M. J. W. Hall and H. M. Wiseman, Heisenberg-style bounds for arbitrary estimates of shift parameters including prior information, New J. Phys. 14(3), 033040 (2012)
https://doi.org/10.1088/1367-2630/14/3/033040
21 C. S. Yu, Quantum coherence via skew information and its polygamy, Phys. Rev. A 95(4), 042337 (2017)
https://doi.org/10.1103/PhysRevA.95.042337
22 P. J. Coles and M. Piani, Complementary sequential measurements generate entanglement, Phys. Rev. A 89(1), 010302 (2014)
https://doi.org/10.1103/PhysRevA.89.010302
23 M. L. Hu and H. Fan, Upper bound and shareability of quantum discord based on entropic uncertainty relations, Phys. Rev. A 88(1), 014105 (2013)
https://doi.org/10.1103/PhysRevA.88.014105
24 X. Y. Chen, L. Z. Jiang, and Z. A. Xu, Precise detection of multipartite entanglement in four-qubit Greenberger– Horne–Zeilinger diagonal states, Front. Phys. 13(5), 130317 (2018)
https://doi.org/10.1007/s11467-018-0799-6
25 X. M. Liu, W. W. Cheng, and J. M. Liu, Renormalization-group approach to quantum Fisher information in an XY model with staggered Dzyaloshinskii– Moriya interaction, Sci. Rep. 6, 19359 (2016)
https://doi.org/10.1038/srep19359
26 X. M. Liu, Z. Z. Du, and J. M. Liu, Quantum Fisher information for periodic and quasiperiodic anisotropic XY chains in a transverse field, Quantum Inform. Process. 15(4), 1793 (2016)
https://doi.org/10.1007/s11128-015-1237-0
27 N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Security of quantum key distribution using d-level systems, Phys. Rev. Lett. 88(12), 127902 (2002)
https://doi.org/10.1103/PhysRevLett.88.127902
28 F. Grosshans and N. J. Cerf, Continuous-variable quantum cryptography is secure against non-Gaussian attacks, Phys. Rev. Lett. 92(4), 047905 (2004)
https://doi.org/10.1103/PhysRevLett.92.047905
29 F. Dupuis, O. Fawzi, and S. Wehner, Entanglement Sampling and Applications, IEEE Trans. Inf. Theory 61(2), 1093 (2015)
https://doi.org/10.1109/TIT.2014.2371464
30 R. Konig, S. Wehner, and J. Wullschleger, Unconditional security from noisy quantum storage, IEEE Trans. Inf. Theory 58(3), 1962 (2012)
https://doi.org/10.1109/TIT.2011.2177772
31 G. Vallone, D. G. Marangon, M. Tomasin, and P. Villoresi, Quantum randomness certified by the uncertainty principle, Phys. Rev. A 90(5), 052327 (2014)
https://doi.org/10.1103/PhysRevA.90.052327
32 C. A. Miller and Y. Shi, Proceedings of ACM STOC, New York: ACM Press, 2014, pp 417–426
33 D. Mondal, S. Bagchi, and A. K. Pati, Tighter uncertainty and reverse uncertainty relations, Phys. Rev. A 95(5), 052117 (2017)
https://doi.org/10.1103/PhysRevA.95.052117
34 A. Riccardi, C. Macchiavello, and L. Maccone, Tight entropic uncertainty relations for systems with dimension three to five, Phys. Rev. A 95(3), 032109 (2017)
https://doi.org/10.1103/PhysRevA.95.032109
35 Z. Y. Xu, W. L. Yang, and M. Feng, Quantum-memoryassisted entropic uncertainty relation under noise, Phys. Rev. A 86(1), 012113 (2012)
https://doi.org/10.1103/PhysRevA.86.012113
36 Z. Y. Zhang, D. X. Wei, and J. M. Liu, Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence, Laser Phys. Lett. 15(6), 065207 (2018)
https://doi.org/10.1088/1612-202X/aabb36
37 M. Yu and M. F. Fang, Controlling the quantummemory- assisted entropic uncertainty relation by quantum-jump-based feedback control in dissipative environments, Quantum Inform. Process. 16(9), 213 (2017)
https://doi.org/10.1007/s11128-017-1666-z
38 Y. L. Zhang, M. F. Fang, G. D. Kang, and Q. P. Zhou, Reducing quantum-memory-assisted entropic uncertainty by weak measurement and weak measurement reversal, Int. J. Quant. Inf. 13(05), 1550037 (2015)
https://doi.org/10.1142/S0219749915500379
39 H. M. Zou, M. F. Fang, B. Y. Yang, Y. N. Guo, W. He, and S. Y. Zhang, The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments, Phys. Scr. 89(11), 115101 (2014)
https://doi.org/10.1088/0031-8949/89/11/115101
40 L. J. Jia, Z. H. Tian, and J. L. Jing, Entropic uncertainty relation in de Sitter space, Ann. Phys. 353, 37 (2015)
https://doi.org/10.1016/j.aop.2014.10.019
41 A. J. Huang, J. D. Shi, D. Wang, and L. Ye, Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations, Quantum Inform. Process. 16(2), 46 (2017)
https://doi.org/10.1007/s11128-016-1503-9
42 X. Zheng and G. F. Zhang, The effects of mixedness and entanglement on the properties of the entropic uncertainty in Heisenberg model with Dzyaloshinski-Moriya interaction, Quantum Inform. Process. 16(1), 1 (2017)
https://doi.org/10.1007/s11128-016-1481-y
43 D. Wang, F. Ming, A. J. Huang, W. Y. Sun, J. D. Shi, and L. Ye, Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame, Laser Phys. Lett. 14(5), 055205 (2017)
https://doi.org/10.1088/1612-202X/aa66fc
44 D. Wang, W. N. Shi, R. D. Hoehn, F. Ming, W. Y. Sun, S. Kais, and L. Ye, Effects of Hawking radiation on the entropic uncertainty in a Schwarzschild space-time, Ann. Phys. (Berlin) 530(9), 1800080 (2018)
https://doi.org/10.1002/andp.201800080
45 Z. M. Huang, Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field, Quantum Inform. Process. 17(4), 73 (2018)
https://doi.org/10.1007/s11128-018-1846-5
46 Z. Y. Zhang, J. M. Liu, Z. F. Hu, and Y. Z. Wang, Entropic uncertainty relation for dirac particles in Garfinkle- Horowitz-Strominger dilation space-time, Ann. Phys. (Berlin) 530(11), 1800208 (2018)
https://doi.org/10.1002/andp.201800208
47 L. M. Yang, B. Chen, S. M. Fei, and Z. X. Wang, Dynamics of coherence-induced state ordering under Markovian channels, Front. Phys. 13(5), 130310 (2018)
https://doi.org/10.1007/s11467-018-0780-4
48 J. W. Zhou, P. F. Wang, F. Z. Shi, P. Huang, X. Kong, X. K. Xu, Q. Zhang, Z. X. Wang, X. Rong, and J. F. Du, Quantum information processing and metrology with color centers in diamonds, Front. Phys. 9(5), 587 (2014)
https://doi.org/10.1007/s11467-014-0421-5
49 P. F. Yu, J. G. Cai, J. M. Liu, and G. T. Shen, Teleportation via a two-qubit Heisenberg XYZmodel in the presence of phase decoherence, Physica A 387(18), 4723 (2008)
https://doi.org/10.1016/j.physa.2008.03.036
50 R. Daneshmand and M. K. Tavassoly, The generation and properties of new classes of multipartite entangled coherent squeezed states in a conducting cavity, Ann. Phys. (Berlin) 529(5), 1600246 (2017)
https://doi.org/10.1002/andp.201600246
51 M. Qin, X. Wang, Y. B. Li, Z. Bai, and S. J. Lin, Effects of inhomogeneous magnetic fields and different Dzyaloshinskii–Moriya interaction on entanglement and teleportation in a two-qubit Heisenberg XYZ chain, Chin. Phys. C 37(11), 113102 (2013)
https://doi.org/10.1088/1674-1137/37/11/113102
52 G. Bowen and S. Bose, Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity, Phys. Rev. Lett. 87(26), 267901 (2001)
https://doi.org/10.1103/PhysRevLett.87.267901
53 W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)
https://doi.org/10.1103/PhysRevLett.80.2245
54 Y. Aharonov, D. Z. Albert, and L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. 60(14), 1351 (1988)
https://doi.org/10.1103/PhysRevLett.60.1351
55 A. N. Korotkov, Continuous quantum measurement of a double dot, Phys. Rev. B 60(8), 5737 (1999)
https://doi.org/10.1103/PhysRevB.60.5737
56 A. N. Korotkov and A. N. Jordan, Undoing a weak quantum measurement of a solid-state qubit, Phys. Rev. Lett. 97(16), 166805 (2006)
https://doi.org/10.1103/PhysRevLett.97.166805
57 X. P. Liao, M. S. Rong, and M. F. Fang, Protecting and enhancing spin squeezing from decoherence using weak measurements, Laser Phys. Lett. 14(6), 065201 (2017)
https://doi.org/10.1088/1612-202X/aa6dc7
58 R. Y. Yang and J. M. Liu, Enhancing the fidelity of remote state preparation by partial measurements, Quantum Inform. Process. 16(5), 125 (2017)
https://doi.org/10.1007/s11128-017-1575-1
59 A. N. Korotkov and K. Keane, Decoherence suppression by quantum measurement reversal, Phys. Rev. A 81(4), 040103 (2010)
https://doi.org/10.1103/PhysRevA.81.040103
60 S. C. Wang, Z. W. Yu, W. J. Zou, and X. B. Wang, Protecting quantum states from decoherence of finite temperature using weak measurement, Phys. Rev. A 89(2), 022318 (2014)
https://doi.org/10.1103/PhysRevA.89.022318
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed