Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (4): 41501   https://doi.org/10.1007/s11467-019-0881-8
  本期目录
Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction
Xiao-Dong Wu, Yi-Jun Wang(), Hai Zhong, Qin Liao, Ying Guo()
School of Automation, Central South University, Changsha 410083, China
 全文: PDF(2603 KB)  
Abstract

Plug-and-play dual-phase-modulated continuous-variable quantum key distribution (CVQKD) protocol can effectively solve the security loopholes associated with transmitting local oscillator (LO). However, this protocol has larger excess noise compared with one-way Gaussian-modulated coherent-states scheme, which limits the maximal transmission distance to a certain degree. In this paper, we show a reliable solution for this problem by employing non-Gaussian operation, especially, photon subtraction operation, which provides a way to improve the performance of plug-and-play dual-phase-modulated CVQKD protocol. The photon subtraction operation shows experimental feasibility in the plug-andplay configuration since it can be implemented under current technology. Security results indicate that the photon subtraction operation can evidently enhance the maximal transmission distance of the plug-and-play dual-phase-modulated CVQKD protocol, which effectively makes up the drawback of the original one. Furthermore, we achieve the tighter bound of the transmission distance by considering the finite-size effect, which is more practical compared with that achieved in the asymptotic limit.

Key wordsplug-and-play    dual-phase-modulated    continuous variable    quantum key distribution    photon subtraction
收稿日期: 2018-12-04      出版日期: 2019-03-26
Corresponding Author(s): Yi-Jun Wang,Ying Guo   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(4): 41501.
Xiao-Dong Wu, Yi-Jun Wang, Hai Zhong, Qin Liao, Ying Guo. Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction. Front. Phys. , 2019, 14(4): 41501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0881-8
https://academic.hep.com.cn/fop/CN/Y2019/V14/I4/41501
1 H. K. Lo, M. Curty, and K. Tamaki, Secure quantum key distribution, Nat. Photonics 8(8), 595 (2014)
https://doi.org/10.1038/nphoton.2014.149
2 N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74(1), 145 (2002)
https://doi.org/10.1103/RevModPhys.74.145
3 V. Scarani, H. Bechmann-Pasquinucci, N. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, The security of practical quantum key distribution, Rev. Mod. Phys. 81(3), 1301 (2009)
https://doi.org/10.1103/RevModPhys.81.1301
4 C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys. 84(2), 621 (2012)
https://doi.org/10.1103/RevModPhys.84.621
5 W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature 299(5886), 802 (1982)
https://doi.org/10.1038/299802a0
6 H. K. Lo and H. F. Chau, Unconditional security of quantum key distribution over arbitrarily long distances, Science 283(5410), 2050 (1999)
https://doi.org/10.1126/science.283.5410.2050
7 M. Gessner, L. Pezzè, and A. Smerzi, Efficient entanglement criteria for discrete, continuous, and hybrid variables, Phys. Rev. A 94(2), 020101 (2016)
https://doi.org/10.1103/PhysRevA.94.020101
8 S. Takeda, M. Fuwa, P. van Loock, and A. Furusawa, Entanglement swapping between discrete and continuous variables, Phys. Rev. Lett. 114(10), 100501 (2015)
https://doi.org/10.1103/PhysRevLett.114.100501
9 X. D. Wu, Q. Liao, D. Huang, X. H. Wu, and Y. Guo, Balancing four-state continuous-variable quantum key distribution with linear optics cloning machine, Chin. Phys. B 26(11), 110304 (2017)
https://doi.org/10.1088/1674-1056/26/11/110304
10 D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, Continuous-variable quantum key distribution with 1 Mbps secure key rate, Opt. Express 23(13), 17511 (2015)
https://doi.org/10.1364/OE.23.017511
11 D. Huang, P. Huang, D. Lin, and G. Zeng, Long-distance continuous-variable quantum key distribution by controlling excess noise, Sci. Rep. 6(1), 19201 (2016)
https://doi.org/10.1038/srep19201
12 S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, High-rate measurement-deviceindependent quantum cryptography, Nat. Photonics 9(6), 397 (2015)
https://doi.org/10.1038/nphoton.2015.83
13 D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, and G. Zeng, Field demonstration of a continuous-variable quantum key distribution network, Opt. Lett. 41(15), 3511 (2016)
https://doi.org/10.1364/OL.41.003511
14 R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, Entanglement-based quantum communication over 144 km, Nat. Phys. 3(7), 481 (2007)
15 C. Erven, C. Couteau, R. Laflamme, and G. Weihs, Entangled quantum key distribution over two free-space optical links, Opt. Express 16(21), 16840 (2008)
https://doi.org/10.1364/OE.16.016840
16 Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits, npj Quantum Inform. 3(1), 25 (2017)
17 J. Fang, P. Huang, and G. Zeng, Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation, Phys. Rev. A 89(2), 022315 (2014)
https://doi.org/10.1103/PhysRevA.89.022315
18 F. Grosshans and P. Grangier, Continuous variable quantum cryptography using coherent states, Phys. Rev. Lett. 88(5), 057902 (2002)
https://doi.org/10.1103/PhysRevLett.88.057902
19 P. Huang, J. Fang, and G. Zeng, State-discrimination attack on discretely modulated continuous-variable quantum key distribution, Phys. Rev. A 89(4), 042330 (2014)
https://doi.org/10.1103/PhysRevA.89.042330
20 Y. Guo, Q. Liao, Y. Wang, D. Huang, P. Huang, and G. Zeng, Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction, Phys. Rev. A 95(3), 032304 (2017)
https://doi.org/10.1103/PhysRevA.95.032304
21 P. Jouguet, S. Kunzjacques, A. Leverrier, P. Grangier, and E. Diamanti, Experimental demonstration of longdistance continuous-variable quantum key distribution, Nat. Photonics 7(5), 378 (2013)
https://doi.org/10.1038/nphoton.2013.63
22 A. Leverrier and P. Grangier, Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation, Phys. Rev. Lett. 102(18), 180504 (2009)
https://doi.org/10.1103/PhysRevLett.102.180504
23 A. Leverrier and P. Grangier, Continuous-variablequantum-key-distribution protocols with a non-Gaussian modulation, Phys. Rev. A 83(4), 042312 (2011)
https://doi.org/10.1103/PhysRevA.83.042312
24 F. Grosshans, Collective attacks and unconditional security in continuous variable quantum key distribution, Phys. Rev. Lett. 94(2), 020504 (2005)
https://doi.org/10.1103/PhysRevLett.94.020504
25 M. Navascués and A. Acín, Security bounds for continuous variables quantum key distribution, Phys. Rev. Lett. 94(2), 020505 (2005)
https://doi.org/10.1103/PhysRevLett.94.020505
26 F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks, Phys. Rev. Lett. 109(10), 100502 (2012)
https://doi.org/10.1103/PhysRevLett.109.100502
27 A. Leverrier, F. Grosshans, and P. Grangier, Finite-size analysis of a continuous-variable quantum key distribution, Phys. Rev. A 81(6), 062343 (2010)
https://doi.org/10.1103/PhysRevA.81.062343
28 A. Leverrier, Composable security proof for continuousvariable quantum key distribution with coherent states, Phys. Rev. Lett. 114(7), 070501 (2015)
https://doi.org/10.1103/PhysRevLett.114.070501
29 B. Qi, L. L. Huang, L. Qian, and H. K. Lo, Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers, Phys. Rev. A 76(5), 052323 (2007)
https://doi.org/10.1103/PhysRevA.76.052323
30 X. Q. Dinh, Z. Zhang, and P. L. Voss, A 24 km fiber-based discretely signaled continuous variable quantum key distribution system, Opt. Express 17(26), 24244 (2009)
https://doi.org/10.1364/OE.17.024244
31 J. Lodewyck, M. Bloch, R. Garc’ıa-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuiss-chert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, Quantum key distribution over 25 km with an all-fiber continuous-variable system, Phys. Rev. A 76(4), 042305 (2007)
https://doi.org/10.1103/PhysRevA.76.042305
32 J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack, Phys. Rev. A 87(6), 062329 (2013)
https://doi.org/10.1103/PhysRevA.87.062329
33 X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Wavelength attack on practical continuous-variable quantumkey-distribution system with a heterodyne protocol, Phys. Rev. A 87(5), 052309 (2013)
https://doi.org/10.1103/PhysRevA.87.052309
34 H. Qin, R. Kumar, and R. Alléaume, Saturation attack on continuous-variable quantum key distribution system, Proc. SPIE 8899, Emerging Technologies in Security and Defence, and Quantum Security II, and Unmanned Sensor Systems X, 88990N (2013)
35 X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems, Phys. Rev. A 88(2), 022339 (2013)
https://doi.org/10.1103/PhysRevA.88.022339
36 D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, High-speed continuous-variable quantum key distribution without sending a local oscillator, Opt. Lett. 40(16), 3695 (2015)
https://doi.org/10.1364/OL.40.003695
37 B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, Generating the local oscillator “locally” in continuousvariable quantum key distribution based on coherent detection, Phys. Rev. X 5(4), 041009 (2015)
https://doi.org/10.1103/PhysRevX.5.041009
38 D. B. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, Self-referenced continuous-variable quantum key distribution protocol, Phys. Rev. X 5(4), 041010 (2015)
https://doi.org/10.1103/PhysRevX.5.041010
39 J. Trapani, B. Teklu, S. Olivares, and M. G. Paris, Quantum phase communication channels in the presence of static and dynamical phase diffusion, Phys. Rev. A 92(1), 012317 (2015)
https://doi.org/10.1103/PhysRevA.92.012317
40 B. Teklu, J. Trapani, S. Olivares, and M. G. Paris, Noisy quantum phase communication channels, Phys. Scr. 90(7), 074027 (2015)
https://doi.org/10.1088/0031-8949/90/7/074027
41 Y. Y. Jin, S. X. Qin, H. Zu, L. Zhou, W. Zhong, and Y. B. Sheng, Heralded amplification of single-photon entanglement with polarization feature, Front. Phys. 13(5), 130321 (2018)
https://doi.org/10.1007/s11467-018-0823-x
42 M. Legre, H. Zbinden, and N. Gisin, Implementation of continuous variable quantum cryptography in optical fibres using a go-&-return configuration, Quantum Inf. Comput. 6, 326 (2006)
43 N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, Trojan-horse attacks on quantum-key-distribution systems, Phys. Rev. A 73(2), 022320 (2006)
https://doi.org/10.1103/PhysRevA.73.022320
44 N. Jain, E. Anisimova, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, Trojan-horse attacks threaten the security of practical quantum cryptography, New J. Phys. 16(12), 123030 (2014)
https://doi.org/10.1088/1367-2630/16/12/123030
45 D. Huang, P. Huang, T. Wang, H. Li, Y. Zhou, and G. Zeng, Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol, Phys. Rev. A 94(3), 032305 (2016)
https://doi.org/10.1103/PhysRevA.94.032305
46 P. Huang, G. He, J. Fang, and G. Zeng, Performance improvement of continuous-variable quantum key distribution via photon subtraction, Phys. Rev. A 87(1), 012317 (2013)
https://doi.org/10.1103/PhysRevA.87.012317
47 C. J. Liu, W. Ye, W. D. Zhou, H. L. Zhang, J. H. Huang, and L. Y. Hu, Entanglement of coherent superposition of photon-subtraction squeezed vacuum, Front. Phys. 12(5), 120307 (2017)
https://doi.org/10.1007/s11467-017-0694-6
48 Z. Li, Y. Zhang, X. Wang, B. Xu, X. Peng, and H. Guo, Non-Gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution, Phys. Rev. A 93(1), 012310 (2016)
https://doi.org/10.1103/PhysRevA.93.012310
49 S. Zhang, Y. Dong, X. Zou, B. Shi, and G. Guo, Continuous-variable-entanglement distillation with photon addition, Phys. Rev. A 88(3), 032324 (2013)
https://doi.org/10.1103/PhysRevA.88.032324
50 X. G. Meng, J. S. Wang, B. L. Liang, and C. X. Han, Evolution of a two-mode squeezed vacuum for amplitude decay via continuous-variable entangled state approach, Front. Phys. 13(5), 130322 (2018)
https://doi.org/10.1007/s11467-018-0856-1
51 R. García-Patrón and N. J. Cerf, Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution, Phys. Rev. Lett. 97(19), 190503 (2006)
https://doi.org/10.1103/PhysRevLett.97.190503
52 Y. Shen, X. Peng, J. Yang, and H. Guo, Continuousvariable quantum key distribution with Gaussian source noise, Phys. Rev. A 83(5), 052304 (2011)
https://doi.org/10.1103/PhysRevA.83.052304
53 K. Wang, X. T. Yu, and Z. C. Zhang, Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state, Front. Phys. 13(5), 130320 (2018)
https://doi.org/10.1007/s11467-018-0832-9
54 M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, Single-photon sources and detectors, Rev. Sci. Instrum. 82(7), 071101 (2011)
https://doi.org/10.1063/1.3610677
55 A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states, Phys. Rev. A 73(4), 042310 (2006)
https://doi.org/10.1103/PhysRevA.73.042310
56 G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65(3), 032314 (2002)
https://doi.org/10.1103/PhysRevA.65.032314
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed