Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (3): 33402   https://doi.org/10.1007/s11467-019-0882-7
  本期目录
Anomalous spatial shifts in interface electronic scattering
Zhi-Ming Yu(), Ying Liu(), Shengyuan A. Yang()
Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
 全文: PDF(3491 KB)  
Abstract

The anomalous spatial shifts at interface scattering, first studied in geometric optics, recently found their counterparts in the electronic context. It was shown that both longitudinal and transverse shifts, analogous to the Goos–Hänchen and Imbert–Fedorov effects in optics, can exist when electrons are scattered at a junction interface. More interestingly, the shifts are also discovered in the process of Andreev reflection at a normal/superconductor interface. Particularly, for the case with unconventional superconductors, it was discovered that the transverse shift can arise solely from the superconducting pair potential and exhibit characteristic features depending on the pairing. Here, we briefly review the recent works in this field, with an emphasis on the physical picture and theoretical understanding.

Key wordsinterface scattering    transverse shift    electron optics
收稿日期: 2018-12-20      出版日期: 2019-04-04
Corresponding Author(s): Zhi-Ming Yu,Ying Liu,Shengyuan A. Yang   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(3): 33402.
Zhi-Ming Yu, Ying Liu, Shengyuan A. Yang. Anomalous spatial shifts in interface electronic scattering. Front. Phys. , 2019, 14(3): 33402.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0882-7
https://academic.hep.com.cn/fop/CN/Y2019/V14/I3/33402
1 F. Goos and H. Hänchen, Ein neuer und fundamentaler Versuch zur Totalreflexion, Ann. Phys. 436(7–8), 333 (1947)
https://doi.org/10.1002/andp.19474360704
2 F. Fornel, Evanescent Waves from Newtonian Optics to Atomic Optics, Berlin: Springer, 2010
3 F. Fedorov, K teorii polnogo otrazheniya, Dokl. Akad. Nauk SSSR 105, 465 (1955)
4 C. Imbert, Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam, Phys. Rev. D 5(4), 787 (1972)
https://doi.org/10.1103/PhysRevD.5.787
5 M. Onoda, S. Murakami, and N. Nagaosa, Hall effect of light, Phys. Rev. Lett. 93(8), 083901 (2004)
https://doi.org/10.1103/PhysRevLett.93.083901
6 M. C. Chang and Q. Niu, Berry phase, hyperorbits, and the Hofstadter spectrum, Phys. Rev. Lett. 75(7), 1348 (1995)
https://doi.org/10.1103/PhysRevLett.75.1348
7 M. C. Chang and Q. Niu, Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands, Phys. Rev. B 53(11), 7010 (1996)
https://doi.org/10.1103/PhysRevB.53.7010
8 G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev. B 59(23), 14915 (1999)
https://doi.org/10.1103/PhysRevB.59.14915
9 S. Murakami, N. Nagaosa, and S. C. Zhang, Dissipationless quantum spin current at room temperature, Science 301(5638), 1348 (2003)
https://doi.org/10.1126/science.1087128
10 J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Universal intrinsic spin Hall effect, Phys. Rev. Lett. 92(12), 126603 (2004)
https://doi.org/10.1103/PhysRevLett.92.126603
11 K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, Spin–orbit interactions of light, Nat. Photonics 9(12), 796 (2015)
https://doi.org/10.1038/nphoton.2015.201
12 O. Hosten and P. Kwiat, Observation of the spin Hall effect of light via weak measurements, Science 319(5864), 787 (2008)
https://doi.org/10.1126/science.1152697
13 X. Zhou, Z. Xiao, H. Luo, and S. Wen, Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements, Phys. Rev. A 85(4), 043809 (2012)
https://doi.org/10.1103/PhysRevA.85.043809
14 X. Yin , Z. Ye, J. Rho, Y. Wang, and X. Zhang, Photonic spin Hall effect at metasurfaces, Science 339(6126), 1405 (2013)
https://doi.org/10.1126/science.1231758
15 X. Zhou, X. Ling, H. Luo, and S. Wen, Identifying graphene layers via spin Hall effect of light, Appl. Phys. Lett. 101(25), 251602 (2012)
https://doi.org/10.1063/1.4772502
16 S. C. Miller and N. Ashby, Shifts of electron beam position due to total reflection at a barrier, Phys. Rev. Lett. 29(11), 740 (1972)
https://doi.org/10.1103/PhysRevLett.29.740
17 D. M. Fradkin and R. J. Kashuba, Spatial displacement of electrons due to multiple total reflections, Phys. Rev. D 9(10), 2775 (1974)
https://doi.org/10.1103/PhysRevD.9.2775
18 D. M. Fradkin and R. J. Kashuba, Position-operator method for evaluating the shift of a totally reflected electron, Phys. Rev. D 10(4), 1137 (1974)
https://doi.org/10.1103/PhysRevD.10.1137
19 N. A. Sinitsyn, Q. Niu, J. Sinova, and K. Nomura, Disorder effects in the anomalous Hall effect induced by Berry curvature, Phys. Rev. B 72(4), 045346 (2005)
https://doi.org/10.1103/PhysRevB.72.045346
20 X. Chen, C. F. Li, and Y. Ban, Tunable lateral displacement and spin beam splitter for ballistic electrons in twodimensional magnetic-electric nanostructures, Phys. Rev. B 77(7), 073307 (2008)
https://doi.org/10.1103/PhysRevB.77.073307
21 X. Chen, X. J. Lu, Y. Wang, and C. F. Li, Controllable Goos–Hänchen shifts and spin beam splitter for ballistic electrons in a parabolic quantum well under a uniform magnetic field, Phys. Rev. B 83(19), 195409 (2011)
https://doi.org/10.1103/PhysRevB.83.195409
22 C. W. J. Beenakker, R. A. Sepkhanov, A. R. Akhmerov, and J. Tworzydło, Quantum Goos–Hänchen effect in graphene, Phys. Rev. Lett. 102(14), 146804 (2009)
https://doi.org/10.1103/PhysRevLett.102.146804
23 L. Zhao and S. F. Yelin, Proposal for graphene-based coherent buffers and memories, Phys. Rev. B 81(11), 115441 (2010)
https://doi.org/10.1103/PhysRevB.81.115441
24 M. Sharma and S. Ghosh, Electron transport and Goos–Hänchen shift in graphene with electric and magnetic barriers: optical analogy and band structure, J. Phys.: Condens. Matter 23(5), 055501 (2011)
https://doi.org/10.1088/0953-8984/23/5/055501
25 Z. Wu, F. Zhai, F. M. Peeters, H. Q. Xu, and K. Chang, Valley-dependent brewster angles and Goos–Hänchen effect in strained graphene, Phys. Rev. Lett. 106(17), 176802 (2011)
https://doi.org/10.1103/PhysRevLett.106.176802
26 X. Chen, J. W. Tao, and Y. Ban, Goos–Hänchen-like shifts for Dirac fermions in monolayer graphene barrier, Eur. Phys. J. B 79(2), 203 (2011)
https://doi.org/10.1140/epjb/e2010-10553-6
27 X. Chen , P. L. Zhao, and X. J. Lu, Giant negative and positive lateral shifts in graphene superlattices, Eur. Phys. J. B 86(5), 223 (2013)
https://doi.org/10.1140/epjb/e2013-40092-5
28 S. Chen , Z.Han, M. M.Elahi, K. M. M.Habib, L.Wang, B.Wen, Y. Gao, T.Taniguchi, K.Watanabe, J.Hone, A. W.Ghosh, and C. R.Dean, Electron optics with p-n junctions in ballistic graphene, Science 353(6307), 1522 (2016)
https://doi.org/10.1126/science.aaf5481
29 J.Spector, H. L. Stormer, K. W.Baldwin, L. N.Pfeiffer, and K. W.West, Electron focusing in two‐dimensional systems by means of an electrostatic lens, Appl. Phys. Lett. 56(13), 1290 (1990)
https://doi.org/10.1063/1.102538
30 L. W.Molenkamp, A. A. M.Staring, C. W. J.Beenakker, R.Eppenga, C. E. Timmering, J. G. Williamson, C. J. P. M. Harmans, and C. T. Foxon, Electron-beam collimation with a quantum point contact, Phys. Rev. B 41(2), 1274 (1990)
https://doi.org/10.1103/PhysRevB.41.1274
31 D.Dragoman and M.Dragoman, Optical analogue structures to mesoscopic devices,Prog. Quantum Electron. 23(4–5), 131 (1999)
https://doi.org/10.1016/S0079-6727(99)00007-5
32 Q. D.Jiang, H. Jiang, H.Liu, Q. F.Sun, and X. C.Xie, Topological Imbert–Fedorov Shift in Weyl Semimetals, Phys. Rev. Lett. 115(15), 156602 (2015)
https://doi.org/10.1103/PhysRevLett.115.156602
33 S. A. Yang , H.Pan, and F.Zhang, Chirality-Dependent Hall Effect in Weyl Semimetals, Phys. Rev. Lett. 115(15), 156603 (2015)
https://doi.org/10.1103/PhysRevLett.115.156603
34 L. Wang and S. K.Jian, Imbert–Fedorov shift in Weyl semimetals: Dependence on monopole charge and intervalley scattering, Phys. Rev. B 96(11), 115448 (2017)
https://doi.org/10.1103/PhysRevB.96.115448
35 U.Chattopadhyay, L.K.Shi, B.Zhang, J. C. W.Song, and Y. D.Chong, Fermi arc induced vortex structure in Weyl beam shifts, arXiv: 1809.03159 (2018)
36 A. F.Andreev , Thermal conductivity of the intermediate state of superconductors, Sov. Phys. JETP 19, 1228 (1964)
37 P. G.de Gennes , Superconductivity in Metals and Alloys, New York: Benjamin, 1966
38 Y.Liu, Z. M.Yu, and S. A. Yang, Transverse shift in Andreev reflection, Phys. Rev. B 96(12), 121101 (2017)
https://doi.org/10.1103/PhysRevB.96.121101
39 Y.Liu, Z. M.Yu, H. Jiang, and S. A. Yang, Goos–Hänchen-like shifts at a metal/superconductor interface, Phys. Rev. B 98(7), 075151 (2018)
https://doi.org/10.1103/PhysRevB.98.075151
40 Z. M.Yu, Y. Liu, Y.Yao, and S. A. Yang, Unconventional pairing induced anomalous transverse shift in Andreev reflection, Phys. Rev. Lett. 121(17), 176602 (2018)
https://doi.org/10.1103/PhysRevLett.121.176602
41 Y. Liu , Z. M.Yu, J.Liu, H.Jiang, and S. A.Yang, Transverse shift in crossed Andreev reflection, Phys. Rev. B 98(19), 195141 (2018)
https://doi.org/10.1103/PhysRevB.98.195141
42 J. M.Byers and M. E.Flatté, Probing spatial correlations with nanoscale two-contact tunneling, Phys. Rev. Lett. 74(2), 306 (1995)
https://doi.org/10.1103/PhysRevLett.74.306
43 G. Deutscher and D.Feinberg, Coupling superconductingferromagnetic point contacts by Andreev reflections, Appl. Phys. Lett. 76(4), 487 (2000)
https://doi.org/10.1063/1.125796
44 X.Chen , X. J.Lu, Y.Ban, and C. F. Li, Electronic analogy of the Goos–Hänchen effect: A review, J. Opt. 15(3), 033001 (2013)
https://doi.org/10.1088/2040-8978/15/3/033001
45 K. Y.Bliokh and A.Aiello, Goos–Hänchen and Imbert–Fedorov beam shifts: An overview, J. Opt. 15(1), 014001 (2013)
https://doi.org/10.1088/2040-8978/15/1/014001
46 D.Xiao, M. C.Chang, and Q.Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)
https://doi.org/10.1103/RevModPhys.82.1959
47 S. A.Yang, G. S. D.Beach, C. Knutson, D.Xiao, Z.Zhang, M.Tsoi, Q.Niu, A. H. MacDonald, and J. L.Erskine, Topological electromotive force from domain-wall dynamics in a ferromagnet, Phys. Rev. B 82(5), 054410 (2010)
https://doi.org/10.1103/PhysRevB.82.054410
48 Y.Gao , S. A.Yang, and Q.Niu, Field induced positional shift of Bloch electrons and its dynamical implications, Phys. Rev. Lett. 112(16), 166601 (2014)
https://doi.org/10.1103/PhysRevLett.112.166601
49 Y.Gao , S. A.Yang, and Q. Niu, Geometrical effects in orbital magnetic susceptibility, Phys. Rev. B 91(21), 214405 (2015)
https://doi.org/10.1103/PhysRevB.91.214405
50 Y. Gao, S. A. Yang, and Q.Niu, Intrinsic relative magnetoconductivity of nonmagnetic metals, Phys. Rev. B 95(16), 165135 (2017)
https://doi.org/10.1103/PhysRevB.95.165135
51 D.Culcer, Y.Yao, and Q. Niu, Coherent wave-packet evolution in coupled bands, Phys. Rev. B 72(8), 085110 (2005)
https://doi.org/10.1103/PhysRevB.72.085110
52 X.Wan, A. M.Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)
https://doi.org/10.1103/PhysRevB.83.205101
53 N. P.Armitage, E. J.Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90(1), 015001 (2018)
https://doi.org/10.1103/RevModPhys.90.015001
54 S. A.Yang , Dirac and Weyl materials: Fundamental aspects and some spintronics applications, SPIN 06(02), 1640003 (2016)
https://doi.org/10.1142/S2010324716400038
55 Q. D. Jiang, H.Jiang, H.Liu, Q. F.Sun, and X. C.Xie, Chiral wave-packet scattering in Weyl semimetals, Phys. Rev. B 93(19), 195165 (2016)
https://doi.org/10.1103/PhysRevB.93.195165
56 G. E.Blonder, M.Tinkham, and T. M.Klapwijk, Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion, Phys. Rev. B 25(7), 4515 (1982)
https://doi.org/10.1103/PhysRevB.25.4515
57 M. J. M.de Jong and C. W. J.Beenakker, Andreev reflection in ferromagnet-superconductor junctions, Phys. Rev. Lett. 74(9), 1657 (1995)
https://doi.org/10.1103/PhysRevLett.74.1657
58 S. Kashiwaya and Y. Tanaka, Tunnelling effects on surface bound states in unconventional superconductors, Rep. Prog. Phys. 63(10), 1641 (2000)
https://doi.org/10.1088/0034-4885/63/10/202
59 H. Plehn , U.Gunsenheimer, and R.Kümmel, Subgap peak and Tomash-McMillan-Anderson oscillations in the density of states of SNS Bridges.,J. Low Temp. Phys. 83(1–2), 71 (1991)
https://doi.org/10.1007/BF00683504
60 J.Hara, M. Ashida, and K.Nagai, Pair potential and density of states in proximity-contact superconducting–normal-metal double layers, Phys. Rev. B 47(17), 11263 (1993)
https://doi.org/10.1103/PhysRevB.47.11263
61 H.Plehn, O. J.Wacker, and R.Kümmel, Electronic structure of superconducting multilayers, Phys. Rev. B 49(17), 12140 (1994)
https://doi.org/10.1103/PhysRevB.49.12140
62 C. W. J.BeenakkerSpecular Andreev reflection in graphene, Phys. Rev. Lett. 97(6), 067007 (2006)
https://doi.org/10.1103/PhysRevLett.97.067007
63 H.Weng , Y.Liang, Q.Xu, R.Yu, Z. Fang, X.Dai, and Y.Kawazoe, Topological node-line semimetal in threedimensional graphene networks, Phys. Rev. B 92(4), 045108 (2015)
https://doi.org/10.1103/PhysRevB.92.045108
64 Y.Chen, Y.Xie, S. A.Yang, H.Pan, F. Zhang, M. L.Cohen, and S.Zhang, Nanostructured carbon allotropes with Weyl-like loops and points, Nano Lett. 15(10), 6974 (2015)
https://doi.org/10.1021/acs.nanolett.5b02978
65 M. Sigrist, A.Avella, and F.Mancini, Introduction to unconventional superconductivity, AIP Conf. Proc. 789, 165 (2005)
https://doi.org/10.1063/1.2080350
66 Y.Tanaka and S.Kashiwaya, Theory of tunneling spectroscopy of d-wave superconductors, Phys. Rev. Lett. 74(17), 3451 (1995)
https://doi.org/10.1103/PhysRevLett.74.3451
67 C. C. Tsuei and J. R.Kirtley, Pairing symmetry in cuprate superconductors, Rev. Mod. Phys. 72(4), 969 (2000)
https://doi.org/10.1103/RevModPhys.72.969
68 A. P. Mackenzie and Y. Maeno, The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing, Rev. Mod. Phys. 75(2), 657 (2003)
https://doi.org/10.1103/RevModPhys.75.657
69 C.Kallin and J.Berlinsky, Chiral superconductors, Rep. Prog. Phys. 79(5), 054502 (2016)
https://doi.org/10.1088/0034-4885/79/5/054502
70 D.Beckmann , H. B.Weber, and H. v.Löhneysen, Evidence for Crossed Andreev Reflection in Superconductor-Ferromagnet Hybrid Structures, Phys. Rev. Lett. 93(19), 197003 (2004)
https://doi.org/10.1103/PhysRevLett.93.197003
71 S.Russo, M.Kroug, T. M. Klapwijk, and A. F. Morpurgo, Experimental observation of bias-dependent nonlocal Andreev reflection, Phys. Rev. Lett. 95(2), 027002 (2005)
https://doi.org/10.1103/PhysRevLett.95.027002
72 P.Cadden-Zimansky, and V.Chandrasekhar, Nonlocal correlations in normal-metal superconducting systems, Phys. Rev. Lett. 97(23), 237003 (2006)
https://doi.org/10.1103/PhysRevLett.97.237003
73 M.Veldhorst, and A.Brinkman, Nonlocal Cooper pair splitting in a pSn junction, Phys. Rev. Lett. 105(10), 107002 (2010)
https://doi.org/10.1103/PhysRevLett.105.107002
74 S. Y.Lee , A.Goussev, O.Georgiou, G.Gligorić, and A.Lazarides, Sticky Goos–Hänchen effect at normal/superconductor interface, Europhys. Lett. (EPL) 103(2), 20004 (2013)
https://doi.org/10.1209/0295-5075/103/20004
75 K. S. Novoselov , A. K. Geim, S. V.Morozov, D.Jiang, Y.Zhang, S. V.Dubonos, I. V.Grigorieva, and A. A.Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
76 A. H.Castro Neto, F.Guinea, N. M. R.Peres, K. S.Novoselov, and A. K.Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
77 A.Ohtomo and H. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427(6973), 423 (2004)
https://doi.org/10.1038/nature02308
78 L. Liu, J. Park, D. A.Siegel, K. F.McCarty, K. W. Clark, W. Deng, L. Basile, J. C.Idrobo, A. P.Li, and G. Gu, Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges, Science 343(6167), 163 (2014)
https://doi.org/10.1126/science.1246137
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed