Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (3): 33404   https://doi.org/10.1007/s11467-019-0887-2
  本期目录
Semiclassical dynamics and nonlinear charge current
Yang Gao()
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
 全文: PDF(1755 KB)  
Abstract

Electron conductivity is an important material property that can provide a wealth of information about the underlying system. Especially, the response of the conductivity with respect to electromagnetic fields corresponds to various nonlinear charge currents, which have distinct symmetry requirements and hence can be used as efficient probes of different systems. To help the band-structure engineering of such nonlinear currents, a universal treatment of electron dynamics up to second order expressed in the basis of the unperturbed states are highly useful. In this work, we review the general semiclassical framework of the nonlinear charge currents.

Key wordsnonlinear charge current    nonlinear electron dynamics    nonlinear anomalous Hall effect    linear magnetoresistance    negative longitudinal magnetoresistance    Berry curvature    quantum metric    positional shift
收稿日期: 2018-12-01      出版日期: 2019-04-30
Corresponding Author(s): Yang Gao   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(3): 33404.
Yang Gao. Semiclassical dynamics and nonlinear charge current. Front. Phys. , 2019, 14(3): 33404.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0887-2
https://academic.hep.com.cn/fop/CN/Y2019/V14/I3/33404
1 N. W. Ashcroft and M. Mermin, Solid State Physics, Harcourt, Orlando, New York, 1976
2 N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys.82(2), 1539 (2010)
https://doi.org/10.1103/RevModPhys.82.1539
3 D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys.82(3), 1959 (2010)
https://doi.org/10.1103/RevModPhys.82.1959
4 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys.83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
5 T. Morimoto and N. Nagaosa, Topological nature of nonlinear optical effects in solids, Sci. Adv.2(5), e1501524 (2016)
https://doi.org/10.1126/sciadv.1501524
6 S. Zhong, J. E. Moore, and I. Souza, Gyrotropic magnetic effect and the magnetic moment on the Fermi surface, Phys. Rev. Lett.116(7), 077201 (2016)
https://doi.org/10.1103/PhysRevLett.116.077201
7 J. Ma and D. A. Pesin, Chiral magnetic effect and natural optical activity in metals with or without Weyl points, Phys. Rev. B92(23), 235205 (2015)
https://doi.org/10.1103/PhysRevB.92.235205
8 D. T. Son and B. Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B88(10), 104412 (2013)
https://doi.org/10.1103/PhysRevB.88.104412
9 N. Armitage, E. Mele, and A. Vishwanath, Macroscopic polarization in crystalline dielectrics: The geometric phase approach, Rev. Mod. Phys.66, 899 (2018)
https://doi.org/10.1103/RevModPhys.66.899
10 The highest order of τ is the same as the highest order of the field, which is the property of the asymptotic solution to the Boltzmann equation, as implied in Eq. (64).
11 J. Zak ,Magnetic translation group, Phys. Rev.134(6A), A1602 (1964)
https://doi.org/10.1103/PhysRev.134.A1602
12 J. Zak ,Magnetic translation group (II): Irreducible representations, Phys. Rev.134(6A), A1607 (1964)
https://doi.org/10.1103/PhysRev.134.A1607
13 D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B14(6), 2239 (1976)
https://doi.org/10.1103/PhysRevB.14.2239
14 M. C. Chang and Q. Niu, Berry phase, hyperorbits, and the Hofstadter spectrum, Phys. Rev. Lett.75(7), 1348 (1995)
https://doi.org/10.1103/PhysRevLett.75.1348
15 G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev. B59(23), 14915 (1999)
https://doi.org/10.1103/PhysRevB.59.14915
16 D. Culcer, Y. Yao, and Q. Niu, Coherent wave-packet evolution in coupled bands, Phys. Rev. B72(8), 085110 (2005)
https://doi.org/10.1103/PhysRevB.72.085110
17 R. Shindou and K. I. Imura, Noncommutative geometry and non-Abelian Berry phase in the wave-packet dynamics of Bloch electrons, Nucl. Phys. B720(3), 399 (2005)
https://doi.org/10.1016/j.nuclphysb.2005.05.019
18 M.-C. Chang and Q. Niu, Berry curvature, orbital moment, and effective quantum theory of electrons in electromagnetic fields, J. Phys.: Condens. Matter20, 193202 (2008)
https://doi.org/10.1088/0953-8984/20/19/193202
19 M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A Math. Phys. Sci.392, 45 (1984)
https://doi.org/10.1098/rspa.1984.0023
20 D. Xiao, J. Shi, and Q. Niu, Berry phase correction to electron density of states in solids, Phys. Rev. Lett.95(13), 137204 (2005)
https://doi.org/10.1103/PhysRevLett.95.137204
21 J. E. Moore and J. Orenstein, Confinement-Induced Berry phase and helicity-dependent photocurrents, Phys. Rev. Lett.105(2), 026805 (2010)
https://doi.org/10.1103/PhysRevLett.105.026805
22 S. Zhong, J. Orenstein, and J. E. Moore, Optical gyrotropy from axion electrodynamics in momentum space, Phys. Rev. Lett.115(11), 117403 (2015)
https://doi.org/10.1103/PhysRevLett.115.117403
23 T. Morimoto, S. Zhong, J. Orenstein, and J. E. Moore, Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals, Phys. Rev. B94(24), 245121 (2016)
https://doi.org/10.1103/PhysRevB.94.245121
24 E. Deyo, L. E. Golub, E. L. Ivchenko, and B. Spivak, Semiclassical theory of the photogalvanic effect in noncentrosymmetric systems, arXiv: 0904.1917 (2019)
25 R. Resta, Manifestations of Berry’s phase in molecules and condensed matter, J. Phys.: Condens. Matter12(9), R107 (2000)
https://doi.org/10.1088/0953-8984/12/9/201
26 R. D. King-Smith and D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev. B47, 1651(R) (1993)
https://doi.org/10.1103/PhysRevB.47.1651
27 R. Resta, Macroscopic polarization in crystalline dielectrics: The geometric phase approach, Rev. Mod. Phys.66(3), 899 (1994)
https://doi.org/10.1103/RevModPhys.66.899
28 M. C. Chang, and Q. Niu, Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands, Phys. Rev. B53(11), 7010 (1996)
https://doi.org/10.1103/PhysRevB.53.7010
29 I. Souza and D. Vanderbilt, Dichroic f-sum rule and the orbital magnetization of crystals, Phys. Rev. B77(5), 054438 (2008)
https://doi.org/10.1103/PhysRevB.77.054438
30 W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics from inversion symmetry breaking, Phys. Rev. B77(23), 235406 (2008)
https://doi.org/10.1103/PhysRevB.77.235406
31 L. L. Foldy and S. A. Wouthuysen, On the Dirac theory of spin 1/2 particles and its non-relativistic limit, Phys. Rev.78(1), 29 (1950)
https://doi.org/10.1103/PhysRev.78.29
32 E. Blount, Extension of the Foldy–Wouthuysen transformation, Phys. Rev.128(5), 2454 (1962)
https://doi.org/10.1103/PhysRev.128.2454
33 D. Xiao, Y. Yao, Z. Fang, and Q. Niu, Berry-phase effect in anomalous thermoelectric transport, Phys. Rev. Lett.97(2), 026603 (2006)
https://doi.org/10.1103/PhysRevLett.97.026603
34 T. Thonhauser, D. Ceresoli, D. Vanderbilt, and R. Resta, Orbital magnetization in periodic insulators, Phys. Rev. Lett.95(13), 137205 (2005)
https://doi.org/10.1103/PhysRevLett.95.137205
35 D. Ceresoli, T. Thonhauser, D. Vanderbilt, and R. Resta, Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals, Phys. Rev. B74(2), 024408 (2006)
https://doi.org/10.1103/PhysRevB.74.024408
36 O. Gat and J. E. Avron, Magnetic fingerprints of fractal spectra and the duality of Hofstadter models, New J. Phys.5, 44 (2003)
https://doi.org/10.1088/1367-2630/5/1/344
37 O. Gat, and J. E. Avron, Semiclassical analysis and the magnetization of the Hofstadter model, Phys. Rev. Lett.91(18), 186801 (2003)
https://doi.org/10.1103/PhysRevLett.91.186801
38 J. Shi, G. Vignale, D. Xiao, and Q. Niu, Quantum theory of orbital magnetization and its generalization to interacting systems, Phys. Rev. Lett.99(19), 197202 (2007)
https://doi.org/10.1103/PhysRevLett.99.197202
39 T. Qin, Q. Niu, and J. Shi, Energy magnetization and the thermal Hall effect, Phys. Rev. Lett.107(23), 236601 (2011)
https://doi.org/10.1103/PhysRevLett.107.236601
40 Y. Gao, S. A. Yang, and Q. Niu, Field Induced Positional Shift of Bloch electrons and its dynamical implications, Phys. Rev. Lett.112(16), 166601 (2014)
https://doi.org/10.1103/PhysRevLett.112.166601
41 Y. Gao, S. A. Yang, and Q. Niu, Geometrical effects in orbital magnetic susceptibility, Phys. Rev. B91(21), 214405 (2015)
https://doi.org/10.1103/PhysRevB.91.214405
42 E. Blount, Bloch electrons in a magnetic field, Phys. Rev.126(5), 1636 (1962)
https://doi.org/10.1103/PhysRev.126.1636
43 J. P. Provost, and G. Vallee, Riemannian structure on manifolds of quantum states, Commun. Math. Phys.76(3), 289 (1980)
https://doi.org/10.1007/BF02193559
44 T. Neupert, C. Chamon, and C. Mudry, Measuring the quantum geometry of Bloch bands with current noise, Phys. Rev. B87(24), 245103 (2013)
https://doi.org/10.1103/PhysRevB.87.245103
45 J. Anandan and Y. Aharonov, Geometry of quantum evolution, Phys. Rev. Lett.65(14), 1697 (1990)
https://doi.org/10.1103/PhysRevLett.65.1697
46 R. Resta, The insulating state of matter: A geometrical theory, Eur. Phys. J. B79(2), 121 (2011)
https://doi.org/10.1140/epjb/e2010-10874-4
47 M. V. Berry, Quantum phase corrections from adiabatic iteration, Proc. R. Soc. Lond. A414(1846), 31 (1987)
https://doi.org/10.1098/rspa.1987.0131
48 A. M. Essin, A. M. Turner, J. E. Moore, and D. Vanderbilt, Orbital magnetoelectric coupling in band insulators, Phys. Rev. B81(20), 205104 (2010)
https://doi.org/10.1103/PhysRevB.81.205104
49 L. Onsager, Interpretation of the de Haas–van Alphen effect, Philos. Mag.43(344), 1006 (1952)
https://doi.org/10.1080/14786440908521019
50 K. Reijnders, T. Tudorovskiy, and M. Katsnelson, Semiclassical theory of potential scattering for massless Dirac fermions, Ann. Phys.333, 155 (2013)
https://doi.org/10.1016/j.aop.2013.03.001
51 M. C. Gutzwiller, Periodic orbits and classical quantization conditions, J. Math. Phys.12(3), 343 (1971)
https://doi.org/10.1063/1.1665596
52 M. Wilkinson, An example of phase holonomy in WKB theory, J. Phys. A17(18), 3459 (1984)
https://doi.org/10.1088/0305-4470/17/18/016
53 R. Rammal, Landau level spectrum of Bloch electrons in a honeycomb lattice, J. Phys. France46(8), 1345 (1985)
https://doi.org/10.1051/jphys:019850046080134500
54 G. P. Mikitik and Y. Sharlai, Manifestation of Berry’s phase in metal physics, Phys. Rev. Lett.82(10), 2147 (1999)
https://doi.org/10.1103/PhysRevLett.82.2147
55 P. Carmier and D. Ullmo, Berry phase in graphene: Semiclassical perspective, Phys. Rev. B77(24), 245413 (2008)
https://doi.org/10.1103/PhysRevB.77.245413
56 J. N. Fuchs, F. Piéchon, M. O. Goerbig, and G. Montambaux, Topological Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models., Eur. Phys. J. B77(3), 351 (2010)
https://doi.org/10.1140/epjb/e2010-00259-2
57 Y. Gao and Q. Niu, Zero-field magnetic response functions in Landau levels, Proc. Natl. Acad. Sci. USA114(28), 7295 (2017)
https://doi.org/10.1073/pnas.1702595114
58 A. A. Taskin, K. Segawa, and Y. Ando, Oscillatory angular dependence of the magnetoresistance in a topological insulator Bi1-xSbx, Phys. Rev. B82(12), 121302 (2010)
https://doi.org/10.1103/PhysRevB.82.121302
59 J. G. Analytis, R. D. McDonald, S. C. Riggs, J. H. Chu, G. S. Boebinger, and I. R. Fisher, Two-dimensional surface state in the quantum limit of a topological insulator, Nat. Phys.6(12), 960 (2010)
https://doi.org/10.1038/nphys1861
60 Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se, Phys. Rev. B82(24), 241306 (2010)
https://doi.org/10.1103/PhysRevB.82.241306
61 B. Sacépé, J. B. Oostinga, J. Li, A. Ubaldini, N. J. Couto, E. Giannini, and A. F. Morpurgo, Gate-tuned normal and superconducting transport at the surface of a topological insulator, Nat. Commun.2, 575 (2011)
https://doi.org/10.1038/ncomms1586
62 C. Brüne, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann, Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp, Quantum Hall effect from the topological surface states of strained bulk HgTe, Phys. Rev. Lett.106(12), 126803 (2011)
https://doi.org/10.1103/PhysRevLett.106.126803
63 F. Xiu, L. He, Y. Wang, L. Cheng, L. T. Chang, M. Lang, G. Huang, X. Kou, Y. Zhou, X. Jiang, Z. Chen, J. Zou, A. Shailos, and K. L. Wang, Manipulating surface states in topological insulator nanoribbons, Nat. Nanotechnol.6(4), 216 (2011)
https://doi.org/10.1038/nnano.2011.19
64 F. X. Xiang, X. L. Wang, M. Veldhorst, S. X. Dou, and M. S. Fuhrer, Observation of topological transition of Fermi surface from a spindle torus to a torus in bulk Rashba spin-split BiTeCl, Phys. Rev. B92(3), 035123 (2015)
https://doi.org/10.1103/PhysRevB.92.035123
65 G. Gómez-Santos, and T. Stauber, Measurable lattice effects on the charge and magnetic response in graphene, Phys. Rev. Lett.106(4), 045504 (2011)
https://doi.org/10.1103/PhysRevLett.106.045504
66 A. Raoux, M. Morigi, J. N. Fuchs, F. Piéchon, and G. Montambaux, From dia- to paramagnetic orbital susceptibility of massless fermions, Phys. Rev. Lett.112(2), 026402 (2014)
https://doi.org/10.1103/PhysRevLett.112.026402
67 M. Ogata and H. Fukuyama, Orbital magnetism of Bloch electrons (I): General formula, J. Phys. Soc. Jpn.84(12), 124708 (2015)
https://doi.org/10.7566/JPSJ.84.124708
68 In Ref. [67], it is found that except the energy polarization contribution, all the other terms are consistent. For the energy polarization contribution, Ref. [41] contains a typo. When inserting the second order energy in Eq. (42), the energy polarization in Ref. [41] has an additional 1/4 factor by mistake. After removing such factor as given in Eq. (43), the energy polarization has the same expression with Eq. (2.31) in Ref. [67].
69 N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B56(20), 12847 (1997)
https://doi.org/10.1103/PhysRevB.56.12847
70 I. Souza, N. Marzari, and D. Vanderbilt, Maximally localized Wannier functions for entangled energy bands, Phys. Rev. B65(3), 035109 (2001)
https://doi.org/10.1103/PhysRevB.65.035109
71 J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Spectral and Fermi surface properties from Wannier interpolation, Phys. Rev. B75(19), 195121 (2007)
https://doi.org/10.1103/PhysRevB.75.195121
72 N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Maximally localized Wannier functions: Theory and applications, Rev. Mod. Phys.84(4), 1419 (2012)
https://doi.org/10.1103/RevModPhys.84.1419
73 M. M. Vazifeh and M. Franz, Electromagnetic response of Weyl semimetals, Phys. Rev. Lett.111(2), 027201 (2013)
https://doi.org/10.1103/PhysRevLett.111.027201
74 L. Fu, and E. Berg, Odd-parity topological superconductors: Theory and application to CuxBi2Se3, Phys. Rev. Lett.105(9), 097001 (2010)
https://doi.org/10.1103/PhysRevLett.105.097001
75 H. K. Pal and D. L. Maslov, Necessary and sufficient condition for longitudinal magnetoresistance, Phys. Rev. B81(21), 214438 (2010)
https://doi.org/10.1103/PhysRevB.81.214438
76 K. Ohgushi, S. Murakami, and N. Nagaosa, Spin anisotropy and quantum Hall effect in the kagomé lattice: Chiral spin state based on a ferromagnet, Phys. Rev. B62(10), R6065 (2000)
https://doi.org/10.1103/PhysRevB.62.R6065
77 R. Shindou and N. Nagaosa, Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on the distorted fcc Lattice, Phys. Rev. Lett.87(11), 116801 (2001)
https://doi.org/10.1103/PhysRevLett.87.116801
78 M. Taillefumier, B. Canals, C. Lacroix, V. K. Dugaev, and P. Bruno, Anomalous Hall effect due to spin chirality in the Kagomé lattice, Phys. Rev. B74(8), 085105 (2006)
https://doi.org/10.1103/PhysRevB.74.085105
79 A. Kalitsov, B. Canals, and C. Lacroix, Anomalous Hall effect due to magnetic chirality in the pyrochlore lattice, J. Phys. Conf. Ser.145, 012020 (2009)
https://doi.org/10.1088/1742-6596/145/1/012020
80 H. Takatsu, S. Yonezawa, S. Fujimoto, and Y. Maeno, Unconventional anomalous Hall effect in the metallic triangular-lattice magnet PdCrO2, Phys. Rev. Lett.105(13), 137201 (2010)
https://doi.org/10.1103/PhysRevLett.105.137201
81 M. Udagawa and R. Moessner, Anomalous Hall effect from frustration-tuned scalar chirality distribution in Pr2Ir2O7, Phys. Rev. Lett.111(3), 036602 (2013)
https://doi.org/10.1103/PhysRevLett.111.036602
82 H. Chen, Q. Niu, and A. MacDonald, Anomalous Hall effect arising from noncollinear antiferromagnetism, Phys. Rev. Lett.112(1), 017205 (2014)
https://doi.org/10.1103/PhysRevLett.112.017205
83 M. T. Suzuki, T. Koretsune, M. Ochi, and R. Arita, Cluster multipole theory for anomalous Hall effect in antiferromagnets, Phys. Rev. B95(9), 094406 (2017)
https://doi.org/10.1103/PhysRevB.95.094406
84 G. Y. Guo and T. C. Wang, Large anomalous Nernst and spin Nernst effects in the noncollinear antiferromagnets Mn3X (X= Sn, Ge, Ga), Phys. Rev. B96(22), 224415 (2017)
https://doi.org/10.1103/PhysRevB.96.224415
85 L. Landau, E. Lifshitz, and L. Pitaevskii, Electrodynamics of Continuous Media, New York: Pergamon Press, 1984
https://doi.org/10.1016/B978-0-08-030275-1.50007-2
86 I. Sodemann and L. Fu, Quantum nonlinear Hall effect induced by berry curvature dipole in time-reversal invariant materials, Phys. Rev. Lett.115(21), 216806 (2015)
https://doi.org/10.1103/PhysRevLett.115.216806
87 S. Y. Xu, Q. Ma, H. Shen, V. Fatemi, S. Wu, T. R. Chang, G. Chang, A. M. M. Valdivia, C. K. Chan, Q. D. Gibson, J. Zhou, Z. Liu, K. Watanabe, T. Taniguchi, H. Lin, R. J. Cava, L. Fu, N. Gedik, and P. Jarillo-Herrero, Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2, Nat. Phys.14(9), 900 (2018)
https://doi.org/10.1038/s41567-018-0189-6
88 K. Kang, T. Li, E. Sohn, J. Shan, and K. F. Mak, Observation of the nonlinear anomalous Hall effect in 2D WTe2, arXiv: 1809.08744 (2018)
89 Q. Ma, S.Y. Xu, H. Shen, D. Macneill, V. Fatemi, T.-R. Chang, A. M. M. Valdivia, S. Wu, Z. Du, C.-H. Hsu, S. Fang, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, E. Kaxiras, H.-Z. Lu, H. Lin, L. Fu, N. Gedik, and P. Jarillo-Herrero, Observation of the nonlinear Hall effect under time reversal symmetric conditions, Nature565, 337 (2019)
https://doi.org/10.1038/s41586-018-0807-6
90 A. Malashevich and I. Souza, Band theory of spatial dispersion in magnetoelectrics, Phys. Rev. B82(24), 245118 (2010)
https://doi.org/10.1103/PhysRevB.82.245118
91 J. Orenstein and J. E. Moore, Berry phase mechanism for optical gyro ropy in stripe-ordered cuprates, Phys. Rev. B87(16), 165110 (2013)
https://doi.org/10.1103/PhysRevB.87.165110
92 S. Nandy and I. Sodemann, Symmetry and quantum kinetics of the non-linear Hall effect, arXiv: 1901.04467 (2019)
93 J. R. Reitz, and A. W. Overhauser, Magnetoresistance of potassium, Phys. Rev.171(3), 749 (1968)
https://doi.org/10.1103/PhysRev.171.749
94 P. A. Penz and R. Bowers, Strain-dependent magnetoresistance of potassium, Phys. Rev.172(3), 991 (1968)
https://doi.org/10.1103/PhysRev.172.991
95 B. K. Jones, Strain-dependent magnetoresistance of sodium and potassium, Phys. Rev.179(3), 637 (1969)
https://doi.org/10.1103/PhysRev.179.637
96 A. L. Friedman, J. L. Tedesco, P. M. Campbell, J. C. Culbertson, E. Aifer, F. K. Perkins, R. L. Myers-Ward, J. K. Hite, C. R. Jr Eddy, G. G. Jernigan, and D. K. Gaskill, Quantum linear magnetoresistance in multilayer epitaxial graphene, Nano Lett.10(10), 3962 (2010)
https://doi.org/10.1021/nl101797d
97 D. X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3, Science329(5993), 821 (2010)
https://doi.org/10.1126/science.1189792
98 H. Tang, D. Liang, R. L. J. Qiu, and X. P. A. Gao, Twodimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons, ACS Nano5(9), 7510 (2011)
https://doi.org/10.1021/nn2024607
99 X. Wang, Y. Du, S. Dou, and C. Zhang, Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets, Phys. Rev. Lett.108(26), 266806 (2012)
https://doi.org/10.1103/PhysRevLett.108.266806
100 J. Tian, C. Chang, H. Cao, K. He, X. Ma, Q. Xue, and Y. P. Chen, Quantum and classical magnetoresistance in ambipolar topological insulator transistors with gatetunable bulk and surface conduction, Sci. Rep.4(1), 4859 (2015)
https://doi.org/10.1038/srep04859
101 L. He, X. Hong, J. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Li, Quantum transport evidence for the threedimensional Dirac semimetal phase in Cd3As2, Phys. Rev. Lett.113(24), 246402 (2014)
https://doi.org/10.1103/PhysRevLett.113.246402
102 T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater.14(3), 280 (2015)
https://doi.org/10.1038/nmat4143
103 J. Feng, Y. Pang, D. Wu, Z. Wang, H. Weng, J. Li, X. Dai, Z. Fang, Y. Shi, and L. Lu, Large linear magnetoresistance in Dirac semimetal Cd3As2with Fermi surfaces close to the Dirac points, Phys. Rev. B92(8), 081306 (2015)
https://doi.org/10.1103/PhysRevB.92.081306
104 M. Novak, S. Sasaki, K. Segawa, and Y. Ando, Large linear magnetoresistance in the Dirac semimetal TlBiSSe, Phys. Rev. B91(4), 041203 (2015)
https://doi.org/10.1103/PhysRevB.91.041203
105 A. Narayanan, M. Watson, S. Blake, N. Bruyant, L. Drigo, Y. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P. Canfield, and A. Coldea, Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2, Phys. Rev. Lett.114(11), 117201 (2015)
https://doi.org/10.1103/PhysRevLett.114.117201
106 X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs, Phys. Rev. X5(3), 031023 (2015)
https://doi.org/10.1103/PhysRevX.5.031023
107 A. A. Abrikosov, Quantum magnetoresistance, Phys. Rev. B58(5), 2788 (1998)
https://doi.org/10.1103/PhysRevB.58.2788
108 A. A. Abrikosov, Quantum linear magnetoresistance, Europhys. Lett.49(6), 789 (2000)
https://doi.org/10.1209/epl/i2000-00220-2
109 C. M. Wang and X. L. Lei, Linear magnetoresistance on the topological surface, Phys. Rev. B86(3), 035442 (2012)
https://doi.org/10.1103/PhysRevB.86.035442
110 C. Herring, Effect of random inhomogeneities on electrical and galvanomagnetic measurements, J. Appl. Phys.31(11), 1939 (1960)
https://doi.org/10.1063/1.1735477
111 M. M. Parish and P. B. Littlewood, Non-saturating magnetoresistance in heavily disordered semiconductors, Nature426(6963), 162 (2003)
https://doi.org/10.1038/nature02073
112 N. A. Porter and C. H. Marrows, Linear magnetoresistance in n-type silicon due to doping density fluctuations, Sci. Rep.2(1), 565 (2012)
https://doi.org/10.1038/srep00565
113 N. Kozlova, N. Mori, O. Makarovsky, L. Eaves, Q. Zhuang, A. Krier, and A. Patanè, Linear magnetoresistance due to multiple-electron scattering by low-mobility islands in an inhomogeneous conductor, Nat. Commun.3(1), 1097 (2012)
https://doi.org/10.1038/ncomms2106
114 H. Chen, Y. Gao, D. Xiao, A. H. MacDonald, and Q. Niu, Semiclassical theory of linear magnetoresistance in crystalline conductors with broken time-reversal symmetry, arXiv: 1511.02557 (2015)
115 A. B. Pippard, Magnetoresistance in Metals, Cambridge University Press, Cambridge, England, New York, 1989
116 H. B. Nielsen and M. Ninomiya, The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal, Phys. Lett. B130(6), 389 (1983)
https://doi.org/10.1016/0370-2693(83)91529-0
117 V. Aji, Adler–Bell–Jackiw anomaly in Weyl semimetals: Application to pyrochlore iridates, Phys. Rev. B85(24), 241101 (2012)
https://doi.org/10.1103/PhysRevB.85.241101
118 A. A. Burkov, Chiral anomaly and transport in Weyl metals, J. Phys.: Condens. Matter27(11), 113201 (2015)
https://doi.org/10.1088/0953-8984/27/11/113201
119 M. A. Stephanov, and Y. Yin, Chiral kinetic theory, Phys. Rev. Lett.109(16), 162001 (2012)
https://doi.org/10.1103/PhysRevLett.109.162001
120 D. T. Son and N. Yamamoto, Kinetic theory with Berry curvature from quantum field theories, Phys. Rev. D87(8), 085016 (2013)
https://doi.org/10.1103/PhysRevD.87.085016
121 B. Z. Spivak and A. V. Andreev, Magnetotransport phenomena related to the chiral anomaly in Weyl semimetals, Phys. Rev. B93(8), 085107 (2016)
https://doi.org/10.1103/PhysRevB.93.085107
122 Y. Hidaka, S. Pu, and D. L. Yang, Relativistic chiral kinetic theory from quantum field theories, Phys. Rev. D95(9), 091901 (2017)
https://doi.org/10.1103/PhysRevD.95.091901
123 A. Sekine, D. Culcer, and A. H. MacDonald, Quantum kinetic theory of the chiral anomaly, Phys. Rev. B96(23), 235134 (2017)
https://doi.org/10.1103/PhysRevB.96.235134
124 A. A. Burkov, Chiral anomaly and diffusive magnetotransport in Weyl metals, Phys. Rev. Lett.113(24), 247203 (2014)
https://doi.org/10.1103/PhysRevLett.113.247203
125 A. A. Burkov, Negative longitudinal magnetoresistance in Dirac and Weyl metals, Phys. Rev. B91(24), 245157 (2015)
https://doi.org/10.1103/PhysRevB.91.245157
126 A. Andreev and B. Spivak, Longitudinal negative magnetoresistance and magnetotransport phenomena in conventional and topological conductors, Phys. Rev. Lett.120(2), 026601 (2018)
https://doi.org/10.1103/PhysRevLett.120.026601
127 C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, and B. Yan, Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP, Nat. Phys.11(8), 645 (2015)
https://doi.org/10.1038/nphys3372
128 X. Yang, Y. Li, Z. Wang, Y. Zheng, and Z. A. Xu, Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs, arXiv: 1506.03190 (2015)
129 Z. Wang, Y. Zheng, Z. Shen, Y. Lu, H. Fang, F. Sheng, Y. Zhou, X. Yang, Y. Li, C. Feng, and Z. A. Xu, Helicityprotected ultrahigh mobility Weyl fermions in NbP, Phys. Rev. B93(12), 121112 (2016)
https://doi.org/10.1103/PhysRevB.93.121112
130 C. L. Zhang, S. Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust, C. C. Lee, S. M. Huang, T. R. Chang, G. Chang, C. H. Hsu, H. T. Jeng, M. Neupane, D. S. Sanchez, H. Zheng, J. Wang, H. Lin, C. Zhang, H. Z. Lu, S. Q. Shen, T. Neupert, M. Z. Hasan, and S. Jia, Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal, Nat. Commun.7(1), 10735 (2016)
https://doi.org/10.1038/ncomms10735
131 H. J. Kim, K. S. Kim, J. F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang, and L. Li, Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena, Phys. Rev. Lett.111(24), 246603 (2013)
https://doi.org/10.1103/PhysRevLett.111.246603
132 J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. Cava, and N. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science350(6259), 413 (2015)
https://doi.org/10.1126/science.aac6089
133 J. Feng, Y. Pang, D. Wu, Z. Wang, H. Weng, J. Li, X. Dai, Z. Fang, Y. Shi, and L. Lu, Large linear magnetoresistance in Dirac semimetal Cd3As2 with Fermi surfaces close to the Dirac points, Phys. Rev. B92(8), 081306 (2015)
https://doi.org/10.1103/PhysRevB.92.081306
134 C. Z. Li, L. X. Wang, H. Liu, J. Wang, Z. M. Liao, and D. P. Yu, Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires, Nat. Commun.6(1), 10137 (2015)
https://doi.org/10.1038/ncomms10137
135 H. Li, H. He, H. Z. Lu, H. Zhang, H. Liu, R. Ma, Z. Fan, S. Q. Shen, and J. Wang, Negative magnetoresistance in Dirac semimetal Cd3As2, Nat. Commun.7(1), 10301 (2016)
https://doi.org/10.1038/ncomms10301
136 C. Zhang, E. Zhang, W. Wang, Y. Liu, Z. G. Chen, S. Lu, S. Liang, J. Cao, X. Yuan, L. Tang, Q. Li, C. Zhou, T. Gu, Y. Wu, J. Zou, and F. Xiu, Room-temperature chiral charge pumping in Dirac semimetals, Nat. Commun.8, 13741 (2017)
https://doi.org/10.1038/ncomms13741
137 Y. Gao, S. A. Yang, and Q. Niu, Intrinsic relative magnetoconductivity of nonmagnetic metals, Phys. Rev. B95(16), 165135 (2017)
https://doi.org/10.1103/PhysRevB.95.165135
138 X. Dai, Z. Du, and H. Z. Lu, Negative magnetoresistance without chiral anomaly in topological insulators, Phys. Rev. Lett.119(16), 166601 (2017)
https://doi.org/10.1103/PhysRevLett.119.166601
139 H. W. Wang, B. Fu, and S. Q. Shen, Intrinsic magnetoresistance in three-dimensional Dirac materials with low carrier density, Phys. Rev. B98(8), 081202 (2018)
https://doi.org/10.1103/PhysRevB.98.081202
140 K. Yoshida, Transport of spatially inhomogeneous current in a compensated metal under magnetic fields (III): A case of bismuth in longitudinal and transverse magnetic fields, J. Appl. Phys.51(8), 4226 (1980)
https://doi.org/10.1063/1.328236
141 R. D. Reis, M. O. Ajeesh, N. Kumar, F. Arnold, C. Shekhar, M. Naumann, M. Schmidt, M. Nicklas, and E. Hassinger, On the search for the chiral anomaly in Weyl semimetals: The negative longitudinal magnetoresistance., New J. Phys.18(8), 085006 (2016)
https://doi.org/10.1088/1367-2630/18/8/085006
142 Z. Yuan, H. Lu, Y. Liu, J. Wang, and S. Jia, Large magnetoresistance in compensated semimetals TaAs2 and NbAs2, Phys. Rev. B93(18), 184405 (2016)
https://doi.org/10.1103/PhysRevB.93.184405
143 R. Shindou and L. Balents, Artificial electric field in Fermi liquids, Phys. Rev. Lett.97(21), 216601 (2006)
https://doi.org/10.1103/PhysRevLett.97.216601
144 R. Shindou and L. Balents, Gradient expansion approach to multiple-band Fermi liquids, Phys. Rev. B77(3), 035110 (2008)
https://doi.org/10.1103/PhysRevB.77.035110
145 D. Culcer, A. Sekine, and A. H. MacDonald, Interband coherence response to electric fields in crystals: Berryphase contributions and disorder effects, Phys. Rev. B96(3), 035106 (2017)
https://doi.org/10.1103/PhysRevB.96.035106
146 Y. Tian, L. Ye, and X. Jin, Proper scaling of the anomalous Hall effect, Phys. Rev. Lett.103(8), 087206 (2009)
https://doi.org/10.1103/PhysRevLett.103.087206
147 S. H. Chun, Y. S. Kim, H. K. Choi, I. T. Jeong, W. O. Lee, K. S. Suh, Y. S. Oh, K. H. Kim, Z. G. Khim, J. C. Woo, and Y. D. Park, Interplay between carrier and impurity concentrations in annealed Ga1-xMnxAs: Intrinsic anomalous Hall effect, Phys. Rev. Lett.98(2), 026601 (2007)
https://doi.org/10.1103/PhysRevLett.98.026601
148 W. L. Lee, S. Watauchi, V. L. Miller, R. J. Cava, and N. P. Ong, Dissipationless Anomalous Hall Current in the Ferromagnetic Spinel CuCr2Se4-xBrx, Science303(5664), 1647 (2004)
https://doi.org/10.1126/science.1094383
149 R. Mathieu, A. Asamitsu, H. Yamada, K. S. Takahashi, M. Kawasaki, Z. Fang, N. Nagaosa, and Y. Tokura, Scaling of the anomalous Hall effect in Sr1-xCaxRuO3, Phys. Rev. Lett.93(1), 016602 (2004)
https://doi.org/10.1103/PhysRevLett.93.016602
150 B. C. Sales, R. Jin, D. Mandrus, and P. Khalifah, Anomalous Hall effect in three ferromagnetic compounds: EuFe4Sb12, Yb14MnSb11, and Eu8Ga16Ge30, Phys. Rev. B73(22), 224435 (2006)
https://doi.org/10.1103/PhysRevB.73.224435
151 C. Zeng, Y. Yao, Q. Niu, and H. H. Weitering, Linear magnetization dependence of the intrinsic anomalous Hall effect, Phys. Rev. Lett.96(3), 037204 (2006)
https://doi.org/10.1103/PhysRevLett.96.037204
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed