Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (4): 43601   https://doi.org/10.1007/s11467-019-0894-3
  本期目录
Ab initio studies of copper hydrides under high pressure
Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu(), Tian Cui()
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
 全文: PDF(5391 KB)  
Abstract

The crystal structure, electronic structure, and superconductivity of copper hydrides at high pressure have been studied by ab initio calculation. Consistent with experimental report, results show that the predicted stoichiometry Cu2H with the P-3m1 space group is stable above 16.8 GPa. The stoichiometry of CuH with the Fm-3m space group is predicted to be synthesized above 30 GPa, but it is metastable and dynamical instable up to 120 GPa. The electronic band calculations reveal that Cu2H is a good metal at a stable pressure range, whereas CuH is an insulator. Moreover, the other hydrogenrich compounds CuH2 and CuH3 are thermodynamically and dynamically unstable, respectively. The calculated superconducting transition temperature (T c) of Cu2H at 40 GPa is 0.028 K by using the Allen-Dynes modified McMillan equation.

Key wordscopper hydrides    superconductivity    density functional theory
收稿日期: 2019-01-19      出版日期: 2019-04-17
Corresponding Author(s): Hong-Yu Yu,Tian Cui   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(4): 43601.
Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure. Front. Phys. , 2019, 14(4): 43601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0894-3
https://academic.hep.com.cn/fop/CN/Y2019/V14/I4/43601
1 L. Gao, Y. Xue, F. Chen, Q. Xiong, R. Meng, D. Ramirez, C. Chu, J. H. Eggert, and H. K. Mao, Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+d (m= 1, 2, and 3) under quasihydrostatic pressures, Phys. Rev. B 50(6), 4260 (1994)
https://doi.org/10.1103/PhysRevB.50.4260
2 X. Jin, X. Meng, Z. He, Y. Ma, B. Liu, T. Cui, G. Zou, and H. K. Mao, Superconducting high-pressure phases of disilane, Proc. Natl. Acad. Sci. USA 107(22), 9969 (2010)
https://doi.org/10.1073/pnas.1005242107
3 S. M. Souliou, A. Subedi, T. Song, T. Lin, K. Syassen, B. Keimer, and M. Le Tacon, Pressure-induced phase transition and superconductivity in YBa2Cu4O8, Phys. Rev. B 90(14), 140501 (2014)
https://doi.org/10.1103/PhysRevB.90.140501
4 R. Szcze¸śniak and A. P. Durajski, Superconductivity well above room temperature in compressed MgH6, Front. Phys. 11(6), 117406 (2016)
https://doi.org/10.1007/s11467-016-0578-1
5 D. Li, Y. Liu, F. Tian, S. Wei, Z. Liu, D. Duan, B. Liu, and T. Cui, Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation, Front. Phys. 13(5), 137107 (2018)
https://doi.org/10.1007/s11467-018-0818-7
6 J. Lv, X. Yang, D. Xu, Y. Huang, H.B. Wang, and H. Wang, High-pressure polymorphs of LiPN2: A firstprinciples study, Front. Phys. 13(5), 136104 (2018)
https://doi.org/10.1007/s11467-018-0774-2
7 T. Scheler, O. Degtyareva, M. Marqués, C. L. Guillaume, J. E. Proctor, S. Evans, and E. Gregoryanz, Synthesis and properties of platinum hydride, Phys. Rev. B 83(21), 214106 (2011)
https://doi.org/10.1103/PhysRevB.83.214106
8 P. Zaleski-Ejgierd, V. Labet, T. A. Strobel, R. Hoffmann, and N. W. Ashcroft, WHn under pressure, J. Phys.: Condens. Matter 24(15), 155701 (2012)
https://doi.org/10.1088/0953-8984/24/15/155701
9 B. Li, Y. Ding, D. Y. Kim, R. Ahuja, G. Zou, and H. K. Mao, Rhodium dihydride (RhH2) with high volumetric hydrogen density, Proc. Natl. Acad. Sci. USA 108(46), 18618 (2011)
https://doi.org/10.1073/pnas.1114680108
10 M. Wang, J. Binns, M. E. Donnelly, M. Peña-Alvarez, P. Dalladay-Simpson, and R. T. Howie, High pressure synthesis and stability of cobalt hydrides, J. Chem. Phys. 148(14), 144310 (2018)
https://doi.org/10.1063/1.5026535
11 L. Wang, D. Duan, H. Yu, H. Xie, X. Huang, Y. Ma, F. Tian, D. Li, B. Liu, and T. Cui, High-pressure formation of cobalt polyhydrides: A first-principle study, Inorg. Chem. 57(1), 181 (2018)
https://doi.org/10.1021/acs.inorgchem.7b02371
12 T. Scheler, M. Marqués, Z. Konôpková, C. L. Guillaume, R. T. Howie, and E. Gregoryanz, High-pressure synthesis and characterization of iridium trihydride, Phys. Rev. Lett. 111(21), 215503 (2013)
https://doi.org/10.1103/PhysRevLett.111.215503
13 C. M. Pépin, A. Dewaele, G. Geneste, P. Loubeyre, and M. Mezouar, New iron hydrides under high pressure, Phys. Rev. Lett. 113(26), 265504 (2014)
https://doi.org/10.1103/PhysRevLett.113.265504
14 C. M. Pépin, G. Geneste, A. Dewaele, M. Mezouar, and P. Loubeyre, Synthesis of FeH5: A layered structure with atomic hydrogen slabs, Science 357(6349), 382 (2017)
https://doi.org/10.1126/science.aan0961
15 A. Wurtz and C. R. Hebd, Sur l’hydrure de cuivre, Seances Acad. Sci. 18, 702 (1844)
16 C. Donnerer, T. Scheler, and E. Gregoryanz, Highpressure synthesis of noble metal hydrides, J. Chem. Phys. 138(13), 134507 (2013)
https://doi.org/10.1063/1.4798640
17 P. Hasin and Y. Wu, Sonochemical synthesis of copper hydride (CuH), Chem. Commun. 48(9), 1302 (2012)
https://doi.org/10.1039/C2CC15741A
18 M. Tkacz and R. Burtovyy, Decomposition of the hexagonal copper hydride at high pressure, Solid State Commun. 132(1), 37 (2004)
https://doi.org/10.1016/j.ssc.2004.07.017
19 N. Fitzsimons, W. Jones, and P. Herley, Aspects of the synthesis of copper hydride and supported copper hydride, Catal. Lett. 15(1–2), 83 (1992)
https://doi.org/10.1007/BF00770901
20 N. W. Ashcroft, Hydrogen dominant metallic alloys: High temperature superconductors? Phys. Rev. Lett. 92(18), 187002 (2004)
https://doi.org/10.1103/PhysRevLett.92.187002
21 D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity, Sci. Rep. 4(1), 6968 (2015)
https://doi.org/10.1038/srep06968
22 D. Duan, X. Huang, F. Tian, D. Li, H. Yu, Y. Liu, Y. Ma, B. Liu, and T. Cui, Pressure-induced decomposition of solid hydrogen sulfide, Phys. Rev. B 91(18), 180502 (2015)
https://doi.org/10.1103/PhysRevB.91.180502
23 A. P. Drozdov, M. I. Eremets, and I. A. Troyan, Conventional superconductivity at 190 K at high pressures, arXiv: 1412.0460 (2014)
24 Y. Li, J. Hao, H. Liu, J. S. Tse, Y. Wang, and Y. Ma, Pressure-stabilized superconductive yttrium hydrides, Sci. Rep. 5(1), 09948 (2015)
https://doi.org/10.1038/srep09948
25 F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to roomtemperature superconductivity, Phys. Rev. Lett. 119(10), 107001 (2017)
https://doi.org/10.1103/PhysRevLett.119.107001
26 H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure, Proc. Natl. Acad. Sci. USA 114(27), 6990 (2017)
https://doi.org/10.1073/pnas.1704505114
27 M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures, Phys. Rev. Lett. 122(2), 027001 (2019)
https://doi.org/10.1103/PhysRevLett.122.027001
28 A. R. Oganov and C. W. Glass, Crystal structure prediction using ab initio evolutionary techniques: Principles and applications, J. Chem. Phys. 124(24), 244704 (2006)
https://doi.org/10.1063/1.2210932
29 A. R. Oganov, A. O. Lyakhov, and M. Valle, How evolutionary crystal structure prediction works — and why, Acc. Chem. Res. 44(3), 227 (2011)
https://doi.org/10.1021/ar1001318
30 A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, New developments in evolutionary structure prediction algorithm USPEX, Comput. Phys. Commun. 184(4), 1172 (2013)
https://doi.org/10.1016/j.cpc.2012.12.009
31 C. J. Pickard and R. J. Needs, High-pressure phases of silane, Phys. Rev. Lett. 97(4), 045504 (2006)
https://doi.org/10.1103/PhysRevLett.97.045504
32 C. J. Pickard and R. J. Needs, Ab initio random structure searching, J. Phys.: Condens. Matter 23(5), 053201 (2011)
https://doi.org/10.1088/0953-8984/23/5/053201
33 C. Hu, A. R. Oganov, Q. Zhu, G. R. Qian, G. Frapper, A. O. Lyakhov, and H. Y. Zhou, Pressure-induced stabilization and insulator-superconductor transition of BH, Phys. Rev. Lett. 110(16), 165504 (2013)
https://doi.org/10.1103/PhysRevLett.110.165504
34 P. Zaleski-Ejgierd, R. Hoffmann, and N. W. Ashcroft, High pressure stabilization and emergent forms of PbH4, Phys. Rev. Lett. 107(3), 037002 (2011)
https://doi.org/10.1103/PhysRevLett.107.037002
35 Y. Liu, D. Duan, F. Tian, X. Huang, D. Li, Z. Zhao, X. Sha, B. Chu, H. Zhang, B. Liu, and T. Cui, Crystal structures and properties of the CH4H2 compound under high pressure, RSC Adv. 4(71), 37569 (2014)
https://doi.org/10.1039/C4RA05263C
36 C. J. Pickard and R. J. Needs, Structure of phase III of solid hydrogen, Nat. Phys. 3(7), 473 (2007)
37 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
38 P. E. Blöhl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
39 G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
40 S. Baroni, S. de Gironcoli, A. P. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73(2), 515 (2001)
https://doi.org/10.1103/RevModPhys.73.515
41 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, et al., QUANTUM ESPRESSO: A modular and opensource software project for quantum simulations of materials, J. Phys.: Condens. Matter 21(39), 395502 (2009)
https://doi.org/10.1088/0953-8984/21/39/395502
42 H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
https://doi.org/10.1103/PhysRevB.13.5188
43 K. Parlinski, Computer code PHONON, http://wolf.ifj.edu.pl/phonon/
44 P. B. Allen and R. C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed, Phys. Rev. B 12(3), 905 (1975)
https://doi.org/10.1103/PhysRevB.12.905
45 G. Gao, H. Wang, L. Zhu, and Y. Ma, Pressure-induced formation of noble metal hydrides, J. Phys. Chem. C 116(2), 1995 (2012)
https://doi.org/10.1021/jp210780m
46 J. P. Perdew and M. Levy, Physical content of the exact kohn-sham orbital energies: Band gaps and derivative discontinuities, Phys. Rev. Lett. 51(20), 1884 (1983)
https://doi.org/10.1103/PhysRevLett.51.1884
47 L. J. Sham and M. Schlüter, Density-functional theory of the energy gap, Phys. Rev. Lett. 51(20), 1888 (1983)
https://doi.org/10.1103/PhysRevLett.51.1888
48 P. Mori-Sánchez, A. J. Cohen, and W. Yang, Localization and delocalization errors in density functional theory and implications for band-gap prediction, Phys. Rev. Lett. 100(14), 146401 (2008)
https://doi.org/10.1103/PhysRevLett.100.146401
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed