Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (5): 53601   https://doi.org/10.1007/s11467-019-0895-2
  本期目录
Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature
Ai-Yuan Hu(), Lin Wen(), Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui
College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
 全文: PDF(1645 KB)  
Abstract

The frustrated spin-1/2 J1aJ1bJ2 antiferromagnet with anisotropy on the two-dimensional square lattice was investigated, where the parameters J1aand J1b represent the nearest neighbor exchanges and along the x and y directions, respectively. J2 represents the next-nearest neighbor exchange. The anisotropy includes the spatial and exchange anisotropies. Using the double-time Green’s function method, the effects of the interplay of exchanges and anisotropy on the possible phase transition of the Néel state and stripe state were discussed. Our results indicated that, in the case of anisotropic parameter 0≤η<1, the Néel and stripe states can exist and have the same critical temperature as long as J2 = J1b/2. Under such parameters, a first-order phase transformation between the Néel and stripe states can occur below the critical point. For J2J1b/2, our results indicate that the Néel and stripe states can also exist, while their critical temperatures differ. When J2>J1b/2, a first-order phase transformation between the two states may also occur. However, for J2<J1b/2, the Néel state is always more stable than the stripe state.

Key wordsfrustrated Heisenberg model    quantum phase transition    magnetic anisotropy    antiferromagnetics
收稿日期: 2018-05-09      出版日期: 2019-04-17
Corresponding Author(s): Ai-Yuan Hu,Lin Wen   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(5): 53601.
Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature. Front. Phys. , 2019, 14(5): 53601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0895-2
https://academic.hep.com.cn/fop/CN/Y2019/V14/I5/53601
1 G. Misguich and C. Lhuillier, Frustrated Spin Systems, 2nd Ed., edited by H. T. Diep, World Scientific, 2013
2 J. R. Viana and J. R. deSousa, Anisotropy effects in frustrated Heisenberg antiferromagnets on a square lattice, Phys. Rev. B75(5), 052403 (2007)
https://doi.org/10.1103/PhysRevB.75.052403
3 Y. Z. Ren, N. H. Tong, and X. C. Xie, Cluster meanfield theory study of J1–J2 Heisenberg model on a square lattice, J. Phys.: Condens. Matter26(11), 115601 (2014)
https://doi.org/10.1088/0953-8984/26/11/115601
4 S. S. Gong, W. Zhu, D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher, Plaquette ordered phase and quantum phase diagram in the spin-1/2 J1–J2 Square Heisenberg Model, Phys. Rev. Lett.113(2), 027201 (2014)
https://doi.org/10.1103/PhysRevLett.113.027201
5 H. C. Jiang, H. Yao, and L. Balents, Spin liquid ground state of the spin-1/2 square J1–J2 Heisenberg model, Phys. Rev. B86(2), 024424 (2012)
https://doi.org/10.1103/PhysRevB.86.024424
6 B. Schmidt, M. Siahatgar, and P. Thalmeier, Ordered moment in the anisotropic and frustrated square lattice Heisenberg model, Phys. Rev. B83(7), 075123 (2011)
https://doi.org/10.1103/PhysRevB.83.075123
7 R. Darradi, O. Derzhko, R. Zinke, J. Schulenburg, S. E. Krüger, and J. Richter, Ground state phases of the spin-1/2 J1–J2 Heisenberg antiferromagnet on the square lattice: A high-order coupled cluster treatment, Phys. Rev. B78(21), 214415 (2008)
https://doi.org/10.1103/PhysRevB.78.214415
8 R. L. Doretto, Plaquette valence-bond solid in the squarelattice J1–J2 antiferromagnet Heisenberg model: A bond operator approach, Phys. Rev. B89(10), 104415 (2014)
https://doi.org/10.1103/PhysRevB.89.104415
9 T. Roscilde, A. Feiguin, A. L. Chernyshev, S. Liu, and S. Haas, Anisotropy-induced ordering in the quantum J1–J2 antiferromagnet, Phys. Rev. Lett.93(1), 017203 (2004)
https://doi.org/10.1103/PhysRevLett.93.017203
10 J. F. Yu and Y. J. Kao, Spin-1/2 J1–J2 Heisenberg antiferromagnet on a square lattice: A plaquette renormalized tensor network study, Phys. Rev. B85(9), 094407 (2012)
https://doi.org/10.1103/PhysRevB.85.094407
11 R. F. Bishop, P. H. Y. Li, D. J. J. Farnell, and C. E. Campbell, Magnetic order in a spin-1/2 interpolating square-triangle Heisenberg antiferromagnet, Phys. Rev. B79(17), 174405 (2009)
https://doi.org/10.1103/PhysRevB.79.174405
12 R. F. Bishop, P. H. Y. Li, R. Darradi, J. Schulenburg, and J. Richter, Effect of anisotropy on the ground-state magnetic ordering of the spin-half quantum J1XXZ−J2XXZ model on the square lattice, Phys. Rev. B78(5), 054412 (2008)
https://doi.org/10.1103/PhysRevB.78.054412
13 L. Wang, Z. C. Gu, F. Verstraete, and X. G. Wen, Tensorproduct state approach to spin-12 square J1–J2 antiferromagnetic Heisenberg model: Evidence for deconfined quantum criticality, Phys. Rev. B94(7), 075143 (2016)
https://doi.org/10.1103/PhysRevB.94.075143
14 N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferro-magnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett.17(22), 1133 (1966)
https://doi.org/10.1103/PhysRevLett.17.1133
15 A. A. Nersesyan and A. M. Tsvelik, Spinons in more than one dimension: Resonance valence bond state stabilized by frustration, Phys. Rev. B67(2), 024422 (2003)
https://doi.org/10.1103/PhysRevB.67.024422
16 K. Majumdar, Second-order quantum corrections for the frustrated spatially anisotropic spin-1/2 Heisenberg antiferromagnet on a square lattice, Phys. Rev. B82(14), 144407 (2010)
https://doi.org/10.1103/PhysRevB.82.144407
17 K. Majumdar, Magnetic phase diagram of a spatially anisotropic, frustrated spin-1/2 Heisenberg antiferromagnet on a stacked square lattice, J. Phys.: Condens. Matter23(4), 046001 (2011)
https://doi.org/10.1088/0953-8984/23/4/046001
18 A. A. Tsirlin and H. Rosner, Extension of the spin-1/2 frustrated square lattice model: The case of layered vanadium phosphates, Phys. Rev. B79(21), 214417 (2009)
https://doi.org/10.1103/PhysRevB.79.214417
19 O. Volkova, I. Morozov, V. Shutov, E. Lapsheva, P. Sindzingre, O. Cépas, M. Yehia, V. Kataev, R. Klingeler, B. Büchner, and A. Vasiliev, Realization of the Nersesyan–Tsvelik model in (NO)(Cu(NO3)3), Phys. Rev. B82(5), 054413 (2010)
https://doi.org/10.1103/PhysRevB.82.054413
20 O. Janson, A. A. Tsirlin, and H. Rosner, Antiferromagnetic spin-1/2 chains in (NO)Cu(NO3)3: A microscopic study, Phys. Rev. B82(18), 184410 (2010)
https://doi.org/10.1103/PhysRevB.82.184410
21 H. Y. Wang, Green’s Function in Condensed Matter Physics, Alpha Science International Ltd. and Science Press, 2012
22 P. Fröbrich and P. J. Kuntz, Many-body Green’s function theory of Heisenberg films, Phys. Rep.432(5–6), 223 (2006)
https://doi.org/10.1016/j.physrep.2006.07.002
23 A. Y. Hu and Q. Wang, The magnetic properties of three-dimensional spin-1 easy-axis single-ion anisotropic antiferromagnets, Solid State Commun.150(13–14), 568 (2010)
https://doi.org/10.1016/j.ssc.2010.01.006
24 A. Y. Hu and H. Y. Wang, The exchange interaction values of perovskite-type materials EuTiO3 and EuZrO3, J. Appl. Phys.116(19), 193903 (2014)
https://doi.org/10.1063/1.4902167
25 H. Y. Wang, L. J. Zhai, and M. Qian, The internal energies of Heisenberg magnetic systems, J. Magn. Magn. Mater.354(3), 309 (2014)
https://doi.org/10.1016/j.jmmm.2013.11.024
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed