Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (5): 53602   https://doi.org/10.1007/s11467-019-0897-0
  本期目录
Skyrmion Hall effect with spatially modulated Dzyaloshinskii–Moriya interaction
Liping Zhou, Ren Qin, Ya-Qing Zheng, Yong Wang()
School of Physics, Nankai University, Tianjin 300071, China
 全文: PDF(1469 KB)  
Abstract

The skyrmion Hall effect is theoretically studied in the chiral ferromagnetic film with spatially modulated Dzyaloshinskii–Moriya interaction. Three cases including linear, sinusoidal, and periodic rectangular modulations have been considered, where the increase, decrease, and the periodic modification of the size and velocity of the skyrmion have been observed in the microscopic simulations. These phenomena are well explained by the Thiele equation, where an effective force on the skyrmion is induced by the inhomogeneous Dzyaloshinskii–Moriya interaction. The results here suggest that the skyrmion Hall effect can be manipulated by artificially tuning the Dzyaloshinskii–Moriya interaction in chiral ferromagnetic film with material engineering methods, which will be useful to design skyrmion-based spintronics devices.

Key wordsmagnetic skyrmion    skyrmion Hall effect    Thiele equation
收稿日期: 2019-02-28      出版日期: 2019-04-17
Corresponding Author(s): Yong Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(5): 53602.
Liping Zhou, Ren Qin, Ya-Qing Zheng, Yong Wang. Skyrmion Hall effect with spatially modulated Dzyaloshinskii–Moriya interaction. Front. Phys. , 2019, 14(5): 53602.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0897-0
https://academic.hep.com.cn/fop/CN/Y2019/V14/I5/53602
1 A. N. Bogdanov and A. Hubert, Thermodynamically stable magnetic vortex states in magnetic crystals,J. Magn. Magn. Mater. 138(3), 255 (1994)
https://doi.org/10.1016/0304-8853(94)90046-9
2 A. N. Bogdanov and A. Hubert, The stability of vortexlike structures in uniaxial ferromagnets, J. Magn. Magn. Mater. 195(1), 182 (1999)
https://doi.org/10.1016/S0304-8853(98)01038-5
3 A. N. Bogdanov and U. K. Rößler, Chiral symmetry breaking in magnetic thin films and multilayers, Phys. Rev. Lett. 87(3), 037203 (2001)
https://doi.org/10.1103/PhysRevLett.87.037203
4 U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Spontaneous skyrmion ground states in magnetic metals, Nature 442(7104), 797 (2006)
https://doi.org/10.1038/nature05056
5 S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Skyrmion lattice in a chiral magnet, Science 323(5916), 915 (2009)
https://doi.org/10.1126/science.1166767
6 X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Real-space observation of a two-dimensional skyrmion crystal, Nature 465(7300), 901 (2010)
https://doi.org/10.1038/nature09124
7 X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe, Nat. Mater. 10(2), 106 (2011)
https://doi.org/10.1038/nmat2916
8 S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel, Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nat. Phys. 7(9), 713 (2011)
9 T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor, M. Garst, and A. Rosch, Emergent electrodynamics of skyrmions in a chiral magnet, Nat. Phys. 8(4), 301 (2012)
10 A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Boni, Topological Hall effect in the A phase of MnSi, Phys. Rev. Lett. 102(18), 186602 (2009)
https://doi.org/10.1103/PhysRevLett.102.186602
11 N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, and Y. Tokura, Large topological Hall effect in a short-period helimagnet MnGe, Phys. Rev. Lett. 106(15), 156603 (2011)
https://doi.org/10.1103/PhysRevLett.106.156603
12 J. D. Zang, M. Mostovoy, J. H. Han, and N. Nagaosa, Dynamics of skyrmion crystals in metallic thin films, Phys. Rev. Lett. 107(13), 136804 (2011)
https://doi.org/10.1103/PhysRevLett.107.136804
13 N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Writing and deleting single magnetic skyrmions, Science 341(6146), 636 (2013)
https://doi.org/10.1126/science.1240573
14 J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures, Nat. Nanotechnol. 8(11), 839 (2013)
https://doi.org/10.1038/nnano.2013.210
15 J. Iwasaki, M. Mochizuki, and N. Nagaosa, Currentinduced skyrmion dynamics in constricted geometries, Nat. Nanotechnol. 8(10), 742 (2013)
https://doi.org/10.1038/nnano.2013.176
16 Y. F. Li, N. Kanazawa, X. Z. Yu, A. Tsukazaki, M. Kawasaki, M. Ichikawa, X. F. Jin, F. Kagawa, and Y. Tokura, Robust formation of skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi, Phys. Rev. Lett. 110(11), 117202 (2013)
https://doi.org/10.1103/PhysRevLett.110.117202
17 Y. Zhou and M. Ezawa, A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry, Nat. Commun. 5(1), 4652 (2014)
https://doi.org/10.1038/ncomms5652
18 W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, F. Y. Fradin, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O. Heinonen, S. G. E. te Velthuis, and A. Hoffmann, Blowing magnetic skyrmion bubbles, Science 349(6245), 283 (2015)
https://doi.org/10.1126/science.aaa1442
19 A. O. Leonov, T. L. Monchesky, N. Romming, A. Kubetzka, A. N. Bogdanov, and R. Wiesendanger, The properties of isolated chiral skyrmions in thin magnetic films, New J. Phys. 18(6), 065003 (2016)
https://doi.org/10.1088/1367-2630/18/6/065003
20 W. J. Jiang, X. C. Zhang, G. Q. Yu, W. Zhang, X. Wang, M. B. Jungfleisch, J. E. Pearson, X. M. Cheng, O. Heinonen, K. L. Wang, Y. Zhou, A. Hoffmann, and S. G. E. te Velthuis, Direct observation of the skyrmion Hall effect, Nat. Phys. 13(2), 162 (2017)
21 K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O. A. Tretiakov, J. Forster, R. M. Reeve, M. Weigand, L. Bykova, H. Stoll, G. Schutz, G. S. D. Beach, and M. Klaui, Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy, Nat. Phys. 13(2), 170 (2017)
22 P. J. Hsu, A. Kubetzka, A. Finco, N. Romming, K. von Bergmann, and R. Wiesendanger, Electric-field-driven switching of individual magnetic skyrmions, Nat. Nanotechnol. 12(2), 123 (2016)
https://doi.org/10.1038/nnano.2016.234
23 N. Nagaosa and Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nat. Nanotechnol. 8(12), 899 (2013)
https://doi.org/10.1038/nnano.2013.243
24 R. Wiesendanger, Nanoscale magnetic skyrmions in metallic films and multilayers: A new twist for spintronics, Nat. Rev. Mater. 1(7), 16044 (2016)
https://doi.org/10.1038/natrevmats.2016.44
25 A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: Advances in physics and potential applications, Nat. Rev. Mater. 2(7), 17031 (2017)
https://doi.org/10.1038/natrevmats.2017.31
26 W. Kang, Y. Huang, X. C. Zhang, Y. Zhou, and W. Zhao, Skyrmion-electronics: An overview and outlook, Proc. IEEE 104(10), 2040 (2016)
https://doi.org/10.1109/JPROC.2016.2591578
27 S. Woo, K. M. Song, X. Zhang, M. Ezawa, Y. Zhou, X. Liu, M. Weigand, S. Finizio, J. Raabe, M. C. Park, K. Y. Lee, J. W. Choi, B. C. Min, H. C. Koo, and J. Chang, Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved Xray microscopy, Nat. Electron. 1(5), 288 (2018)
https://doi.org/10.1038/s41928-018-0070-8
28 I. Dzyaloshinsky, A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids 4(4), 241 (1958)
https://doi.org/10.1016/0022-3697(58)90076-3
29 T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev. 120(1), 91 (1960)
https://doi.org/10.1103/PhysRev.120.91
30 S. A. Siegfried, E. V. Altynbaev, N. M. Chubova, V. Dyadkin, D. Chernyshov, E. V. Moskvin, D. Menzel, A. Heinemann, A. Schreyer, and S. V. Grigoriev, Controlling the Dzyaloshinskii–Moriya interaction to alter the chiral link between structure and magnetism for Fe1−xCoxSi, Phys. Rev. B 91(18), 184406 (2015)
https://doi.org/10.1103/PhysRevB.91.184406
31 T. Koretsune, N. Nagaosa, and R. Arita, Control of Dzyaloshinskii–Moriya interaction in Mn1−xFexGe: A first-principles study, Sci. Rep. 5(1), 13302 (2015)
https://doi.org/10.1038/srep13302
32 X. Ma, G. Yu, X. Li, T. Wang, D. Wu, K. S. Olsson, Z. Chu, K. An, J. Q. Xiao, K. L. Wang, and X. Li, Interfacial control of Dzyaloshinskii–Moriya interaction in heavy metal/ferromagnetic metal thin film heterostructures, Phys. Rev. B 94, 180408(R) (2016)
33 A. Belabbes, G. Bihlmayer, S. Blügel, and A. Manchon, Oxygen-enabled control of Dzyaloshinskii–Moriya Interaction in ultra-thin magnetic films,Sci. Rep. 6(1), 24634 (2016)
https://doi.org/10.1038/srep24634
34 A. L. Balk, K.-W. Kim, D. T. Pierce, M. D. Stiles, J. Unguris, and S. M. Stavis, Simultaneous control of the Dzyaloshinskii–Moriya interaction and magnetic anisotropy in nanomagnetic trilayers, Phys. Rev. Lett. 119, 077205 (2017)
https://doi.org/10.1103/PhysRevLett.119.077205
35 G. Beutier, S. P. Collins, O. V. Dimitrova, V. E. Dmitrienko, M. I. Katsnelson, Y. O. Kvashnin, A. I. Lichtenstein, V. V. Mazurenko, A. G. A. Nisbet, E. N. Ovchinnikova, and D. Pincini, Band filling control of the Dzyaloshinskii–Moriya interaction in weakly ferromagnetic insulators, Phys. Rev. Lett. 119(16), 167201 (2017)
https://doi.org/10.1103/PhysRevLett.119.167201
36 T. Srivastava, M. Schott, R. Juge, V. Křižaková, M. Belmeguenai, Y. Roussigné, A. Bernand-Mantel, L. Ranno, S. Pizzini, S. M. Cheríf, A. Stashkevich, S. Auffret, O. Boulle, G. Gaudin, M. Chshiev, C. Baraduc, and H. Béa, Large-voltage tuning of Dzyaloshinskii–Moriya interactions: A route toward dynamic control of skyrmion chirality, Nano Lett. 18(8), 4871 (2018)
https://doi.org/10.1021/acs.nanolett.8b01502
37 I. A. Ado, A. Qaiumzadeh, R. A. Duine, A. Brataas, and M. Titov, Asymmetric and symmetric exchange in a generalized 2D Rashba ferromagnet, Phys. Rev. Lett. 121(8), 086802 (2018)
https://doi.org/10.1103/PhysRevLett.121.086802
38 J. Suwardy, K. Nawaoka, J. Cho, M. Goto, Y. Suzuki, and S. Miwa, Voltage-controlled magnetic anisotropy and voltage-induced Dzyaloshinskii–Moriya interaction change at the epitaxial Fe(001)/MgO(001) interface engineered by Co and Pd atomic-layer insertion, Phys. Rev. B 98(14), 144432 (2018)
https://doi.org/10.1103/PhysRevB.98.144432
39 A. Cao, X. Zhang, B. Koopmans, S. Peng, Y. Zhang, Z. Wang, S. Yan, H. Yang, and W. Zhao, Tuning the Dzyaloshinskii–Moriya interaction in Pt/Co/MgO heterostructures through the MgO thickness, Nanoscale 10(25), 12062 (2018)
https://doi.org/10.1039/C7NR08085A
40 H. Yang, O. Boulle, V. Cros, A. Fert, and M. Chshiev, Controlling Dzyaloshinskii–Moriya interaction via chirality dependent atomic-layer stacking, insulator capping and electric field,Sci. Rep. 8(1), 12356 (2018)
https://doi.org/10.1038/s41598-018-30063-y
41 S. A. Díaz and R. E. Troncoso, Controlling skyrmion helicity via engineered Dzyaloshinskii–Moriya interactions, J. Phys.: Condens. Matter 28, 426005 (2016)
https://doi.org/10.1088/0953-8984/28/42/426005
42 R. Menezes, J. Mulkers, C. C. de Souza Silva, and M. V. Miloević, Deflection of ferromagnetic and antiferromagnetic skyrmions at heterochiral interfaces, Phys. Rev. B 99, 104409 (2019)
https://doi.org/10.1103/PhysRevB.99.104409
43 A. O. Leonov and I. Kézsmárki, Skyrmion robustness in noncentrosymmetric magnets with axial symmetry: The role of anisotropy and tilted magnetic fields, Phys. Rev. B 96(21), 214413 (2017)
https://doi.org/10.1103/PhysRevB.96.214413
44 S. Seki and M. Mochizuki, Skyrmions in Magnetic Materials, Springer, Switzerland,2016
https://doi.org/10.1007/978-3-319-24651-2
45 X. S. Wang, H. Y. Yuan, and X. R. Wang, A theory on skyrmion size, Commun. Phys. 1(1), 31 (2018)
https://doi.org/10.1038/s42005-018-0029-0
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed