Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2019, Vol. 14 Issue (2): 22601
Optomechanical properties of a degenerate nonperiodic cavity chain
Miao-Miao Zhao1, Zhuo Qian1, Bang-Pin Hou1(), Yong Liu2(), Yong-Hong Zhao1()
1. College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China
2. State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
 全文: PDF(1069 KB)  

The absorption of single-cavity and double-cavity optomechanical systems and periodic optomechanical lattices has previously been investigated extensively. In this paper, we present the absorption of a nonperiodic cavity chain, where the absorption value on the resonance point shows switchable dips or peaks, according to whether the optomechanical interaction is at an odd or even-numbered position in the chain. Meanwhile, the value of absorption due to the optomechanical interaction varies with the number of the bare cavities. The calculated results may have some novel applications, such as detecting the position of the movable mirror in a long cavity chain, which would be useful in quantum information processing based on optomechanical systems.

Key wordsoptomechanics    optomechanically induced transparency (OMIT)
收稿日期: 2019-01-31      出版日期: 2019-04-04
. [J]. Frontiers of Physics, 2019, 14(2): 22601.
Miao-Miao Zhao, Zhuo Qian, Bang-Pin Hou, Yong Liu, Yong-Hong Zhao. Optomechanical properties of a degenerate nonperiodic cavity chain. Front. Phys. , 2019, 14(2): 22601.
1 M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
2 J. Q. Liao and C. K. Law, Cooling of a mirror in cavity optomechanics with a chirped pulse, Phys. Rev. A 84(5), 053838 (2011)
3 S. Huang and G. S. Agarwal, Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes, Phys. Rev. A 83(2), 023823 (2011)
4 M. Aspelmeyer, P. Meystre, and K. Schwab, Quantum optomechanics, Phys. Today 65(7), 29 (2012)
5 J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. Whittaker, K. Lehnert, and R. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state, Nature 475(7356), 359 (2011)
6 S. Machnes, J. Cerrillo, M. Aspelmeyer, W. Wieczorek, M. B. Plenio, and A. Retzker, Pulsed laser cooling for cavity optomechanical resonators, Phys. Rev. Lett. 108(15), 153601 (2012)
7 J. Chan, T. P. M. Alegre, A. H. Safavi Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, Laser cooling of a nanomechanical oscillator into its quantum ground state, Nature 478(7367), 89 (2011)
8 M. Bhattacharya and P. Meystre, Trapping and cooling a mirror to its quantum mechanical ground state, Phys. Rev. Lett. 99(7), 073601 (2007)
9 P. Rabl, Photon blockade effect in optomechanical systems, Phys. Rev. Lett. 107(6), 063601 (2011)
10 M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Marquardt, Enhanced quantum nonlinearities in a two-mode optomechanical system, Phys. Rev. Lett. 109(6), 063601 (2012)
11 X. Y. Lü, W. M. Zhang, S. Ashhab, Y. Wu, and F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems, Sci. Rep. 3(1), 2943 (2013)
12 Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. H. Gong, Optomechanical sensing with on-chip microcavities, Front.Phys. 8(5), 475 (2013)
13 S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, Entangling macroscopic oscillators exploiting radiation pressure, Phys. Rev. Lett. 88(12), 120401 (2002)
14 M. J. Hartmann and M. B. Plenio, Steady state entanglement in the mechanical vibrations of two dielectric membranes, Phys. Rev. Lett. 101(20), 200503 (2008)
15 D. Vitali, S. Gigan, A. Ferreira, H. R. Bohm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field, Phys. Rev. Lett. 98(3), 030405 (2007)
16 J. Q. Liao and L. Tian, Macroscopic quantum superposition in cavity optomechanics, Phys. Rev. Lett. 116(16), 163602 (2016)
17 X. G. Zhan, L. G. Si, A. S. Zheng, and X. Yang, Tunable slow light in a quadratically coupled optomechanical system, J. Phys. At. Mol. Opt. Phys. 46(2), 025501 (2013)
18 A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, Electromagnetically induced transparency and slow light with optomechanics, Nature 472(7341), 69 (2011)
19 K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, Optomechanical quantum information processing with photons and phonons, Phys. Rev. Lett. 109(1), 013603 (2012)
20 A. Safavi-Naeini and O. Painter, Proposal for an optomechanical traveling wave phonon–photon translator, New J. Phys. 13(1), 013017 (2011)
21 M. Schmidt, M. Ludwig, and F. Marquardt, Optomechanical circuits for nanomechanical continuous variable quantum state processing, New J. Phys. 14(12), 125005 (2012)
22 M. Pang, W. He, X. Jiang, and P. Russell, All-optical bit storage in a fibre laser by optomechanically bound states of solitons, Nat. Photonics 10(7), 454 (2016)
23 S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, Cavity optomechanical magnetometer, Phys. Rev. Lett. 108(12), 120801 (2012)
24 M. Li, W. Pernice, and H. X. Tang, Ultrahigh-frequency nano-optomechanical resonators in slot waveguide ring cavities, Appl. Phys. Lett. 97(18), 183110 (2010)
25 C. Jiang, H. Liu, Y. Cui, X. Li, G. Chen, and B. Chen, Electromagnetically induced transparency and slow light in two-mode optomechanics, Opt. Express 21(10), 12165 (2013)
26 K. H. Qu and G. S. Agarwal, Phonon-mediated electromagnetically induced absorption in hybrid optoelectromechanical systems, Phys. Rev. A 87, 031802(R) (2013)
27 B. P. Hou, L. F. Wei, and S. J. Wang, Optomechanically induced transparency and absorption in hybridized optomechanical systems, Phys. Rev. A 92(3), 033829 (2015)
28 Z. Qian, M. M. Zhao, B. P. Hou, and Y. H. Zhao, Tunable double optomechanically induced transparency in photonically and phononically coupled optomechanical systems, Opt. Express 25(26), 33097 (2017)
29 A. B. Shkarin, N. E. Flowers-Jacobs, S. W. Hoch, A. D. Kashkanova, C. Deutsch, J. Reichel, and J. G. E. Harris, Optically mediated hybridization between two mechanical modes, Phys. Rev. Lett. 112(1), 013602 (2014)
30 C. Bai, B. P. Hou, D. G. Lai, and D. Wu, Tunable optomechanically induced transparency in double quadratically coupled optomechanical cavities within a common reservoir, Phys. Rev. A 93(4), 043804 (2016)
31 A. Tomadin, S. Diehl, M. D. Lukin, P. Rabl, and P. Zoller, Reservoir engineering and dynamical phase transitions in optomechanical arrays, Phys. Rev. A 86(3), 033821 (2012)
32 W. Chen and A. A. Clerk, Photon propagation in a onedimensional optomechanical lattice, Phys. Rev. A 89(3), 033854 (2014)
33 G. D. de Moraes Neto, F. M. Andrade, V. Montenegro, and S. Bose, Quantum state transfer in optomechanical arrays, Phys. Rev. A 93(6), 062339 (2016)
34 Z. Duan and B. Fan, Coherently slowing light with a coupled optomechanical crystal array, Europhys. Lett. 99(4), 44005 (2012)
35 OMPY is programmed by python combined with fortran, devoted to solve an optomechanical system consisted of multiple cavities by the standard linearization method. OMPY starts with an optomechanical Hamiltonian and then generates the Heisenberg–Langevin equations, which are solved by the standard linearization procedure, automatically.
Full text