Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (5): 53604   https://doi.org/10.1007/s11467-019-0900-9
  本期目录
β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations
Quan Chen (陈泉)1,2, Wei Li (李伟)1, Yong Yang (杨勇)1,3()
1. Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
2. Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
3. Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
 全文: PDF(2744 KB)  
Abstract

β-PtO2 is a useful transition metal dioxide, but its fundamental thermodynamic and elastic properties remain unexplored. Using first-principles calculations, we systematically studied the structure, phonon, thermodynamic and elastic properties of β-PtO2. The lattice dynamics and structural stability of β-PtO2 under pressure were studied using the phonon spectra and vibrational density of states. The vibrational frequencies of the optical modes of β-PtO2 increase with elevating pressure; this result is comparable with the available experimental data. Then, the heat capacities and their pressure responses were determined based on the phonon calculations. The pressure dependence of the Debye temperature was studied, and the results were compared in two distinct aspects. The elastic moduli of β-PtO2 were estimated through the Voigt–Reuss–Hill approximation. The bulk modulus of β-PtO2 increases linearly with pressure, but the shear modulus is nearly independent of pressure. Our study revealed that the elastic stiffness coefficients C44, C55 and C66 play a primary role in the slow variation of the shear modulus.

Key wordsphonons    thermodynamic and elastic properties    β-PtO2    first-principles calculations
收稿日期: 2019-02-01      出版日期: 2019-05-24
Corresponding Author(s): Yong Yang (杨勇)   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(5): 53604.
Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇). β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations. Front. Phys. , 2019, 14(5): 53604.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0900-9
https://academic.hep.com.cn/fop/CN/Y2019/V14/I5/53604
1 C. Z. Yuan, H. B. Wu, Y. Xie, and X. W. Lou, Mixed transition-metal oxides: Design, synthesis, and energyrelated applications, Angew. Chem. Int. Ed. 53(6), 1488 (2014)
https://doi.org/10.1002/anie.201303971
2 Z. Chen, R. J. Xiao, C. Ma, Y. B. Qin, H. L. Shi, Z. W. Wang, Y. J. Song, Z. Wang, H. F. Tian, H. X. Yang, and J. Q. Li, Electronic structure of YMn2O5 studied by EELS and first-principles calculations, Front. Phys. 7(4), 429 (2012)
https://doi.org/10.1007/s11467-011-0201-4
3 Y. Y. Qi, Z. W. Niu, C. Cheng, and Y. Cheng, Structural and elastic properties of Ce2O3 under pressure from LDA+Umethod, Front. Phys. 8(4), 405 (2013)
https://doi.org/10.1007/s11467-013-0331-y
4 N. Sabourault, G. Mignani, A. Wagner, and C. Mioskowski, Platinum oxide (PtO2): A potent hydrosilylation catalyst, Org. Lett. 4(13), 2117 (2002)
https://doi.org/10.1021/ol025658r
5 L. Maya, L. Riester, T. Thundat, and C. S. Yust, Characterization of sputtered amorphous platinum dioxide films, J. Appl. Phys. 84(11), 6382 (1998)
https://doi.org/10.1063/1.368883
6 L. B. Hunt, The Story of Adams’ Catalyst, Platin. Met. Rev. 6, 150 (1962)
7 M. M. Najafpour and S. M. Hosseini, Highly dispersed PtO2 on layered Mn oxide as water-oxidizing catalysts, Int. J. Hydrogen Energy 41(16), 6798 (2016)
https://doi.org/10.1016/j.ijhydene.2016.03.054
8 S. Putzien, E. Louis, O. Nuyken, and F. E. Kühn, PtO2 as a “self-dosing” hydrosilylation catalyst,Catal. Sci. Technol. 2(4), 725 (2012)
https://doi.org/10.1039/C2CY00367H
9 R. Wu, and W. H. Weber, The mechanism of the rutileto- CaCl2 phase transition: RuO2 and β-PtO2, J. Phys.: Condens. Matter 12(30), 6725 (2000)
https://doi.org/10.1088/0953-8984/12/30/305
10 Y. Yang, O. Sugino, and T. Ohno, Band gap of β-PtO2 from first-principles, AIP Adv. 2(2), 022172 (2012)
https://doi.org/10.1063/1.4733348
11 R. K. Nomiyama, M. J. Piotrowski, and J. L. F. Da Silva, Bulk structures of PtO and PtO2 from density functional calculations, Phys. Rev. B 84(10), 100101 (2011)
https://doi.org/10.1103/PhysRevB.84.100101
12 H. R. Hoekstra, S. Siegel, and F. X. Gallagher, Reaction of platinum dioxide with some metal oxides, Adv. Chem. Ser. 98, 39 (1971)
https://doi.org/10.1021/ba-1971-0098.ch004
13 S. Siegel, H. R. Hoekstra, and B. S. Tani, The crystal structure of beta-platinum dioxide, J. Inorg. Nucl. Chem. 31(12), 3803 (1969)
https://doi.org/10.1016/0022-1902(69)80300-3
14 M. P. H. Fernandez and B. L. Chamberland, A new high pressure form of PtO2, J. Less Common Met. 99(1), 99 (1984)
https://doi.org/10.1016/0022-5088(84)90338-2
15 K. J. Range, F. Rau, U. Klement, and A. M. Heyns, β-PtO2: High pressure synthesis of single crystals and structure refinement, Mater. Res. Bull. 22(11), 1541 (1987)
https://doi.org/10.1016/0025-5408(87)90220-0
16 G. Kresse and J. Hafner, Ab initiomolecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
https://doi.org/10.1103/PhysRevB.47.558
17 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
18 D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45(7), 566 (1980)
https://doi.org/10.1103/PhysRevLett.45.566
19 J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23(10), 5048 (1981)
https://doi.org/10.1103/PhysRevB.23.5048
20 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
21 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
22 H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
https://doi.org/10.1103/PhysRevB.13.5188
23 A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
https://doi.org/10.1103/PhysRevB.78.134106
24 S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+Ustudy, Phys. Rev. B 57(3), 1505 (1998)
https://doi.org/10.1103/PhysRevB.57.1505
25 Y. Yang, O. Sugino, and T. Ohno, Possible magnetic behavior in oxygen-deficient β-PtO2, Phys. Rev. B 85(3), 035204 (2012)
https://doi.org/10.1103/PhysRevB.85.035204
26 F. D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30(9), 244 (1944)
https://doi.org/10.1073/pnas.30.9.244
27 S. Zhuo and K. Sohlberg, Platinum dioxide phases: Relative thermodynamic stability and kinetics of interconversion from first-principles,Physica B 381(1–2), 12 (2006)
https://doi.org/10.1016/j.physb.2005.11.170
28 W. H. Weber, G. W. Graham, and J. R. McBride, Raman spectrum of β-PtO2: Evidence for the D2h12-to-D4h14 phase transition, Phys. Rev. B 42(17), 10969 (1990)
https://doi.org/10.1103/PhysRevB.42.10969
29 G. Grimvall, Thermophysical Properties of Materials, Elsevier, 1999
30 P. Debye, Zur Theorie der spezifischen Wärmen, Ann. Phys. 344(14), 789 (1912)
https://doi.org/10.1002/andp.19123441404
31 P. L. Dulong and A.T. Petit, Recherches sur quelques points importans de la theorie de la Chaleur, 1819
32 J. P. Watt, Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry, J. Appl. Phys. 50(10), 6290 (1979)
https://doi.org/10.1063/1.325768
33 A. Reuss, Account of the liquid limit of mixed crystals on the basis of the plasticity condition for single crystal, Z. Angew, Math. Mech. 9, 49 (1929)
https://doi.org/10.1002/zamm.19290090104
34 R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Lond. 65, 349 (1952)
https://doi.org/10.1088/0370-1298/65/5/307
35 W. Voigt, Lehrbuch der Kristallphysik, Teubner, Leipzig, 1928
36 E. Schreiber, O. L. Anderson, and M. Saga, Elastic Constants and Their Measurement, McGraw-Hill, New York, 1973
37 O. L. Anderson, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids 24(7), 909 (1963)
https://doi.org/10.1016/0022-3697(63)90067-2
38 H. J. Reichmann and S. D. Jacobsen, Sound velocities and elastic constants of ZnAl2O4 spinel and implications for spinel-elasticity systematics, Am. Mineral. 91(7), 1049 (2006)
https://doi.org/10.2138/am.2006.2122
39 H. J. Reichmann and S. D. Jacobsen, High-pressure elasticity of a natural magnetite crystal, Am. Mineral. 89(7), 1061 (2004)
https://doi.org/10.2138/am-2004-0718
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed