Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (4): 43603   https://doi.org/10.1007/s11467-019-0902-7
  本期目录
Effective models for nearly ideal Dirac semimetals
Feng Tang1,2, Xiangang Wan1,2()
1. National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
2. Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
 全文: PDF(3214 KB)  
Abstract

Topological materials (TMs) have gained intensive attention due to their novel behaviors compared with topologically trivial materials. Among various TMs, Dirac semimetal (DSM) has been studied extensively. Although several DSMs have been proposed and verified experimentally, the suitable DSM for realistic applications is still lacking. Thus finding ideal DSMs and providing detailed analyses to them are of both fundamental and technological importance. Here, we sort out 8 (nearly) ideal DSMs from thousands of topological semimetals in Nature 566(7745), 486 (2019). We show the concrete positions of the Dirac points in the Brillouin zone for these materials and clarify the symmetryprotection mechanism for these Dirac points as well as their low-energy effective models. Our results provide a useful starting point for future study such as topological phase transition under strain and transport study based on these effective models. These DSMs with high mobilities are expected to be applied in fabrication of functional electronic devices.

Key wordsDirac semimetal    symmetry    effective model
收稿日期: 2019-04-23      出版日期: 2019-05-17
Corresponding Author(s): Xiangang Wan   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(4): 43603.
Feng Tang, Xiangang Wan. Effective models for nearly ideal Dirac semimetals. Front. Phys. , 2019, 14(4): 43603.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0902-7
https://academic.hep.com.cn/fop/CN/Y2019/V14/I4/43603
1 K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
https://doi.org/10.1103/PhysRevLett.45.494
2 D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
https://doi.org/10.1103/PhysRevLett.49.405
3 M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
4 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
5 Y. Ando and L. Fu, Topological crystalline insulators and topological superconductors: From concepts to materials, Annu. Rev. Condens. Matter Phys. 6(1), 361 (2015)
https://doi.org/10.1146/annurev-conmatphys-031214-014501
6 N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90(1), 015001 (2018)
https://doi.org/10.1103/RevModPhys.90.015001
7 T. O. Wehling, A. M. Black-Schaffer, and A. V. Balatsky, Dirac materials, Adv. Phys. 63(1), 1 (2014)
https://doi.org/10.1080/00018732.2014.927109
8 S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac semimetal in three dimensions, Phys. Rev. Lett. 108(14), 140405 (2012)
https://doi.org/10.1103/PhysRevLett.108.140405
9 Z. Wang, Y. Sun, X.Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb), Phys. Rev. B 85(19), 195320 (2012)
https://doi.org/10.1103/PhysRevB.85.195320
10 Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Threedimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)
https://doi.org/10.1103/PhysRevB.88.125427
11 Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a threedimensional topological Dirac semimetal, Na3Bi, Science 343(6173), 864 (2014)
https://doi.org/10.1126/science.1245085
12 Z. K. Liu, J. Jiang, B. Zhou , Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin6 , T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, A stable three-dimensional topological Dirac semimetal Cd3As2, Nat. Mater. 13, 677C681 (2014)
https://doi.org/10.1038/nmat3990
13 B. J. Yang and N. Nagaosa, Classification of stable threedimensional Dirac semimetals with nontrivial topology, Nat. Commun. 5(1), 4898 (2014)
https://doi.org/10.1038/ncomms5898
14 M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2(9), 620 (2006)
https://doi.org/10.1038/nphys384
15 M. Yan, H. Huang, K. Zhang, E. Wang, W. Yao, K. Deng, G. Wan, H. Zhang, M. Arita, H. Yang, Z. Sun, H. Yao, Y. Wu, S. Fan, W. Duan, and S. Zhou, Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2, Nat. Commun. 8(1), 257 (2017)
https://doi.org/10.1038/s41467-017-00280-6
16 H. J. Noh, J. Jeong, E. J. Cho, K. Kim, B. I. Min, and B. G. Park, Experimental realization of type-II Dirac fermions in a PdTe2 superconductor, Phys. Rev. Lett. 119(1), 016401 (2017)
https://doi.org/10.1103/PhysRevLett.119.016401
17 F. Fei, X. Bo, R. Wang, B. Wu, J. Jiang, D. Fu, M. Gao, H. Zheng, Y. Chen, X. Wang, H. Bu, F. Song, X. Wan, B. Wang, and G. Wang, Nontrivial Berry phase and type- II Dirac transport in the layered material PdTe2, Phys. Rev. B 96(4), 041201 (2017)
https://doi.org/10.1103/PhysRevB.96.041201
18 Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, Threedimensional Dirac semimetals: Design principles and predictions of new materials, Phys. Rev. B 91(20), 205128 (2015)
https://doi.org/10.1103/PhysRevB.91.205128
19 Q. S. Wu, C. Piveteau, Z. Song, and O. V. Yazyev, MgTa2N3: A reference Dirac semimetal, Phys. Rev. B 98, 081115(R) (2018)
https://doi.org/10.1103/PhysRevB.98.081115
20 W. D. Cao, P. Z. Tang, S.-C. Zhang, W. H. Duan, and A. Rubio, Stable Dirac semimetal in the allotropes of group-IV elements, Phys. Rev. B 93, 241117(R) (2016)
https://doi.org/10.1103/PhysRevB.93.241117
21 X. Zhang, Q. Liu, Q. Xu, X. Dai, and A. Zunger, Topological insulators versus topological Dirac semimetals in honeycomb compounds, J. Am. Chem. Soc. 140(42), 13687 (2018)
https://doi.org/10.1021/jacs.8b06652
22 X. L. Sheng, Z. Wang, R. Yu, H. Weng, Z. Fang, and X. Dai, Topological insulator to Dirac semimetal transition driven by sign change of spin–orbit coupling in thallium nitride, Phys. Rev. B 90(24), 245308 (2014)
https://doi.org/10.1103/PhysRevB.90.245308
23 Y. Du, B. Wan, D. Wang, L. Sheng, C.G. Duan, and X. Wan, Dirac and Weyl semimetal in XY Bi (X= Ba, Eu; Y= Cu, Ag and Au), Sci. Rep. 5(1), 14423 (2015)
https://doi.org/10.1038/srep14423
24 Y. P. Du, F. Tang, D. Wang, L. Sheng, E. J. Kan, C.- G. Duan, S. Y. Savrasov, and X. G. Wan, CaTe: A new topological node-line and Dirac semimetal, npj Quant. Mater. 2, 3 (2017)
https://doi.org/10.1038/s41535-016-0005-4
25 R. Chen, H. C. Po, J. B. Neaton, and A. Vishwanath, Topological materials discovery using electron filling constraints, Nat. Phys. 14(1), 55 (2018)
https://doi.org/10.1038/nphys4277
26 T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng, and C. Fang, Catalogue of topological electronic materials, Nature 566(7745), 475 (2019)
https://doi.org/10.1038/s41586-019-0944-6
27 M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, A complete catalogue of high-quality topological materials, Nature 566(7745), 480 (2019)
https://doi.org/10.1038/s41586-019-0954-4
28 F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Comprehensive search for topological materials using symmetry indicators, Nature 566(7745), 486 (2019)
https://doi.org/10.1038/s41586-019-0937-5
29 J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science 350(6259), 413 (2015)
https://doi.org/10.1126/science.aac6089
30 M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2, Nat. Commun. 5(1), 3786 (2014)
https://doi.org/10.1038/ncomms4786
31 H. C. Po, A. Vishwanath, and H. Watanabe, Symmetrybased indicators of band topology in the 230 space groups, Nat. Commun. 8(1), 50 (2017)
https://doi.org/10.1038/s41467-017-00133-2
32 F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Efficient topological materials discovery using symmetry indicators, Nat. Phys. 15, 470 (2019)
https://doi.org/10.1038/s41567-019-0418-7
33 O. Muller and R. Roy, Synthesis and crystal chemistry of some new complex palladium oxides, Adv. Chem. Ser. 98, 28 (1971)
https://doi.org/10.1021/ba-1971-0098.ch003
34 P. Norby, R. E. Dinnebier, and A. N. Fitch, Decomposition of silver carbonate: the crystal structure of two high-temperature modifications of Ag2CO3, Inorg. Chem. 41(14), 3628 (2002)
https://doi.org/10.1021/ic0111177
35 C. J. Bradley and A. P. Cracknell, The Mathematical Theory of Symmetry in Solids, Oxford: Claredon Press, 1972
36 O. Graudejus and B. G. Mueller, Ag2+ in trigonalbipyramidaler Umgebung: Neue Fluoride mit zweiwertigem Silber: Ag M(II)3 M(IV)3 F20 (M(II) = Cd, Ca, Hg; M(IV) = Zr, Hf), Zeitschrift fuer Anorganische und Allgemeine Chemie (1950) (DE) 622, 1549–1556 (1996)
https://doi.org/10.1002/zaac.19966220918
37 T. Yamada, V. L. Deringer, R. Dronskowski, and H. Yamane, Synthesis, crystal structure, chemical bonding, and physical properties of the ternary Na/Mg stannide, Na2MgSn, Inorg. Chem. 51(8), 4810 (2012)
https://doi.org/10.1021/ic300184d
38 B. Peng, C. M. Yue, H. Zhang, Z. Fang, and H. M. Weng, Predicting Dirac semimetals based on sodium ternary compounds, npj Comput. Mater. 4, 68 (2018)
https://doi.org/10.1038/s41524-018-0124-5
39 H. Zentgraf, K. Claes, and R. Hoppe, Oxide eines neuen Formeltyps: Zur Kenntnis von K3Ni2O4 und K3Pt2O4, Zeitschrift fuer Anorganische und Allgemeine Chemie (1950) (DE) 462, 92–105 (1980)
https://doi.org/10.1002/zaac.19804620111
40 Z. Nong, J. Zhu, X. Yang, Y. Cao, Z. Lai, and Y. Liu, The mechanical, thermodynamic and electronic properties of Al3Nb with DO22 structure: A first-principles study, Physica B 407(17), 3555 (2012)
https://doi.org/10.1016/j.physb.2012.05.023
41 H. He, C. Tyson, and S. Bobev, Eight-coordinated arsenic in the Zintl phases RbCd4As3 and RbZn4As3: Synthesis and structural characterization, Inorg. Chem. 50(17), 8375 (2011)
https://doi.org/10.1021/ic2009418
42 R. W. Henning and J. D. Corbett, Cs8Ga11, a new isolated cluster in a binary gallium compound: A family of valence analogues A8Tr11X: A= Cs, Rb; Tr= Ga, In, Tl; X= Cl, Br, I, Inorg. Chem. 36(26), 6045 (1997)
https://doi.org/10.1021/ic970904u
43 P. Blaha, K. Schwarz, G. Madsen, D. Kvasicka, and J. Luitz, WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, 2001
44 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865(1996)
https://doi.org/10.1103/PhysRevLett.77.3865
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed