Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (5): 53403   https://doi.org/10.1007/s11467-019-0905-4
  本期目录
The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting
Qi-Tao Liu1, De-Yu Liu2, Jian-Ming Li3, Yong-Bo Kuang2()
1. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2. Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
3. Petroleum Geology Research and Laboratory Center, Research Institute of Petroleum Exploration & Development (RIPED), PetroChina, Beijing 100083, China
 全文: PDF(6835 KB)  
Abstract

Photoelectrochemical (PEC) water oxidation for sustainable clean energy and fuel production is a potential solution to the demands of organic pollutant removal and growing energy consumption. Development of high performance photoanodes, which is a key component in the system, is one of the central topics in the area. The crystal defect is an old concept but fruiting new understanding with promotive impact to the development of high performance photoanodes. In this review, we elucidated the typical defects involved in the photoanode with the position where they play the roles in the structure and how the properties of photoanode are influenced. In addition, we summarized the feasible protocols to maximize the pros but reduce the cons brought by having defects to the photoanode performance based on recent most prominent research advancements in the field. Finally, we briefly sketched the future perspective with the challenges of this topic when in the scenario of possible developments into practical applications.

Key wordsphotoanode    defect engineering    oxide semiconductor    water splitting    charge transfer
收稿日期: 2019-03-17      出版日期: 2019-06-27
Corresponding Author(s): Yong-Bo Kuang   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(5): 53403.
Qi-Tao Liu, De-Yu Liu, Jian-Ming Li, Yong-Bo Kuang. The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting. Front. Phys. , 2019, 14(5): 53403.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0905-4
https://academic.hep.com.cn/fop/CN/Y2019/V14/I5/53403
1 Z. Wang, Y. Inoue, T. Hisatomi, R. Ishikawa, Q. Wang, T. Takata, S. S. Chen, N. Shibata, Y. Ikuhara, and K. Domen, Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles, Nat. Catal. 1(10), 756 (2018)
https://doi.org/10.1038/s41929-018-0134-1
2 J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S. Z. Qiao, Earth-abundant cocatalysts for semiconductorbased photocatalytic water splitting, Chem. Soc. Rev. 43(22), 7787 (2014)
https://doi.org/10.1039/C3CS60425J
3 T. Hisatomi, J. Kubota, and K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43(22), 7520 (2014)
https://doi.org/10.1039/C3CS60378D
4 M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Solar water splitting cells, Chem. Rev. 110(11), 6446 (2010)
https://doi.org/10.1021/cr1002326
5 Y. Kuang, Q. Jia, G. Ma, T. Hisatomi, T. Minegishi, H. Nishiyama, M. Nakabayashi, N. Shibata, T. Yamada, A. Kudo, and K. Domen, Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration, Nat. Energy 2(1), 16191 (2017)
https://doi.org/10.1038/nenergy.2016.191
6 N. S. Lewis, Research opportunities to advance solar energy utilization, Science 351(6271), aad1920 (2016)
https://doi.org/10.1126/science.aad1920
7 S. Chen and L. W. Wang, Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution, Chem. Mater. 24(18), 3659 (2012)
https://doi.org/10.1021/cm302533s
8 J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, and J. S. Lee, Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting, Sci. Rep. 3(1), 2681 (2013)
https://doi.org/10.1038/srep02681
9 J. Seo, M. Nakabayashi, T. Hisatomi, N. Shibata, T. Minegishi, M. Katayama, and K. Domen, The effects of annealing barium niobium oxynitride in argon on photoelectrochemical water oxidation activity, J. Mater. Chem. A Mater. Energy Sustain. 7(2), 493 (2019)
https://doi.org/10.1039/C8TA09950B
10 T. W. Kim and K. S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting, Science 343(6174), 990 (2014)
https://doi.org/10.1126/science.1246913
11 Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, and K. Domen, A front-illuminated nanostructured transparent BiVO4 photoanode for>2% efficient water splitting, Adv. Energy Mater. 6(2), 1501645 (2016)
https://doi.org/10.1002/aenm.201501645
12 J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes, Nat. Mater. 16(3), 335 (2017)
https://doi.org/10.1038/nmat4794
13 X. Li, S. Liu, K. Fan, Z. Liu, B. Song, and J. Yu, MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting, Adv. Energy Mater. 8(18), 1800101 (2018)
https://doi.org/10.1002/aenm.201800101
14 K. Sivula and R. van de Krol, Semiconducting materials for photoelectrochemical energy conversion, Nat. Rev. Mater. 1(2), 15010 (2016)
https://doi.org/10.1038/natrevmats.2015.10
15 J. Nowotny, M. A. Alim, T. Bak, M. A. Idris, M. Ionescu, K. Prince, M. Z. Sahdan, K. Sopian, M. A. Mat Teridi, and W. Sigmund, Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion, Chem. Soc. Rev. 44(23), 8424 (2015)
https://doi.org/10.1039/C4CS00469H
16 S. Sato, R. Nakane, T. Hada, and M. Tanaka, Spin injection into silicon in three-terminal vertical and fourterminal lateral devices with Fe/Mg/MgO/Si tunnel junctions having an ultrathin Mg insertion layer, Phys. Rev. B 96(23), 235204 (2017)
https://doi.org/10.1103/PhysRevB.96.235204
17 N. S. J. Frougier, D. Deng, M. Jerry, A. Aziz, L. Liu, G. Lavallee, T. S. Mayer, S. Gupta, and S. Datta, Phase-transition-FET exhibiting steep switching slope of 8 mV/decade and 36% enhanced ON current, IEEE Symposium on VLSI Technology2158 (2016)
https://doi.org/10.1109/VLSIT.2016.7573445
18 W. Zhang, D. Yan, X. Tong, and M. Liu, Ultrathin lutetium oxide film as an epitaxial hole-blocking layer for crystalline bismuth vanadate water splitting photoanodes, Adv. Funct. Mater. 28(10), 1705512 (2018)
https://doi.org/10.1002/adfm.201705512
19 F. L. Souza, K. P. Lopes, E. Longo, and E. R. Leite, The influence of the film thickness of nanostructured alpha-Fe2O3 on water photooxidation, Phys. Chem. Chem. Phys. 11(8), 1215 (2009)
https://doi.org/10.1039/b811946e
20 O. Zandi, B. M. Klahr, and T. W. Hamann, Highly photoactive Ti-doped α-Fe2O3 thin film electrodes: Resurrection of the dead layer, Energy Environ. Sci. 6(2), 634 (2013)
https://doi.org/10.1039/C2EE23620F
21 F. Le Formal, S. R. Pendlebury, M. Cornuz, S. D. Tilley, M. Grätzel, and J. R. Durrant, Back electron–hole recombination in hematite photoanodes for water splitting, J. Am. Chem. Soc. 136(6), 2564 (2014)
https://doi.org/10.1021/ja412058x
22 W. Zhang, D. Yan, K. Appavoo, J. Cen, Q. Wu, A. Orlov, M. Y. Sfeir, and M. Liu, Unravelling photocarrier dynamics beyond the space charge region for photoelectrochemical water splitting, Chem. Mater. 29(9), 4036 (2017)
https://doi.org/10.1021/acs.chemmater.7b00672
23 M. Huang, C. Li, L. Zhang, Q. Chen, Z. Zhen, Z. Li, and H. Zhu, Twin structure in BiVO4 photoanodes boosting water oxidation performance through enhanced charge separation and transport, Adv. Energy Mater. 8(32), 1802198 (2018)
https://doi.org/10.1002/aenm.201802198
24 Y. Liang, T. Tsubota, L. P. A. Mooij, and R. van de Krol, Highly improved quantum efficiencies for thin film BiVO4 photoanodes, J. Phys. Chem. C 115(35), 17594 (2011)
https://doi.org/10.1021/jp203004v
25 S. Byun, B. Kim, S. Jeon, and B. Shin, Effects of a SnO2 hole blocking layer in a BiVO4-based photoanode on photoelectrocatalytic water oxidation, J. Mater. Chem. A Mater. Energy Sustain. 5(15), 6905 (2017)
https://doi.org/10.1039/C7TA00806F
26 Y. Asakura, T. Higashi, H. Nishiyama, H. Kobayashi, M. Nakabayashi, N. Shibata, T. Minegishi, T. Hisatomi, M. Katayama, T. Yamada, and K. Domen, Activation of a particulate Ta3N5 water-oxidation photoanode with a GaN hole-blocking layer, Sustainable Energy Fuels 2(1), 73 (2018)
https://doi.org/10.1039/C7SE00402H
27 E. Alarcón-Lladó, L. Chen, M. Hettick, N. Mashouf, Y. Lin, A. Javey, and J. W. Ager, BiVO4 thin film photoanodes grown by chemical vapor deposition, Phys. Chem. Chem. Phys. 2014(4), 1651 (2014)
https://doi.org/10.1039/C3CP53904K
28 A. Annamalai, P. S. Shinde, A. Subramanian, J. Y. Kim, J. H. Kim, S. H. Choi, J. S. Lee, and J. S. Jang, Bifunctional TiO2 underlayer for α-Fe2O3 nanorod based photoelectrochemical cells: Enhanced interface and Ti4+ doping, J. Mater. Chem. A Mater. Energy Sustain. 3(9), 5007 (2015)
https://doi.org/10.1039/C4TA06315E
29 T. Hisatomi, H. Dotan, M. Stefik, K. Sivula, A. Rothschild, M. Gratzel, and N. Mathews, Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer, Adv. Mater. 24(20), 2699 (2012)
https://doi.org/10.1002/adma.201104868
30 Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi, J. Uemura, M. Tosa, K. Shimamura, J. Kubota, K. Domen, and T. Kitamori, Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting, Small 10(18), 3692 (2014)
https://doi.org/10.1002/smll.201400276
31 X. Shi, I. Y. Choi, K. Zhang, J. Kwon, D. Y. Kim, J. K. Lee, S. H. Oh, J. K. Kim, and J. H. Park, Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures, Nat. Commun. 5(1), 4775 (2014)
https://doi.org/10.1038/ncomms5775
32 A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, and S. Yoshikawa, High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOxhole blocking layer, Appl. Phys. Lett. 90(16), 163517 (2007)
https://doi.org/10.1063/1.2730746
33 W. Ke, G. Fang, J. Wan, H. Tao, Q. Liu, L. Xiong, P. Qin, J. Wang, H. Lei, G. Yang, M. Qin, X. Zhao, and Y. Yan, Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells, Nat. Commun. 6(1), 6700 (2015)
https://doi.org/10.1038/ncomms7700
34 P. Chakthranont, T. R. Hellstern, J. M. McEnaney, and T. F. Jaramillo, Design and fabrication of a precious metal-free tandem core-shell p+n Si/W-doped BiVO4 photoanode for unassisted water splitting, Adv. Energy Mater. 7(22), 1701515 (2017)
https://doi.org/10.1002/aenm.201701515
35 T. Hisatomi, J. Brillet, M. Cornuz, F. Le Formal, N. Tétreault, K. Sivula, and M. Grätzel, A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting, Faraday Discuss. 155, 223 (2012)
https://doi.org/10.1039/C1FD00103E
36 P. M. Rao, L. Cai, C. Liu, I. S. Cho, C. H. Lee, J. M. Weisse, P. Yang, and X. Zheng, Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation, Nano Lett. 14(2), 1099 (2014)
https://doi.org/10.1021/nl500022z
37 B. Lamm, L. Zhou, P. Rao, and M. Stefik, Atomic layer deposition of space-efficient SnO2 underlayers for BiVO4 host-guest architectures for photoassisted water splitting, ChemSusChem 12, 1 (2018)
https://doi.org/10.1002/cssc.201802566
38 H. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)
https://doi.org/10.1038/238037a0
39 T. Ohno, T. Mitsui, and M. Matsumura, Photocatalytic activity of S-doped TiO2 photocatalyst under visible light, Chem. Lett. 32(4), 364 (2003)
https://doi.org/10.1246/cl.2003.364
40 N. Liu, V. Haublein, X. Zhou, U. Venkatesan, M. Hartmann, M. Mackovic, T. Nakajima, E. Spiecker, A. Osvet, L. Frey, and P. Schmuki, “Black” TiO2 nanotubes formed by high-energy proton implantation show noblemetal- co-catalyst free photocatalytic H2-evolution, Nano Lett. 15(10), 6815 (2015)
https://doi.org/10.1021/acs.nanolett.5b02663
41 X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science 331(6018), 746 (2011)
https://doi.org/10.1126/science.1200448
42 J. Cai, M. Wu, Y. Wang, H. Zhang, M. Meng, Y. Tian, X. Li, J. Zhang, L. Zheng, and J. Gong, Synergetic enhancement of light harvesting and charge separation over surface-disorder-engineered TiO2 photonic crystals, Chem 2(6), 877 (2017)
https://doi.org/10.1016/j.chempr.2017.05.006
43 Y. Yang, L. C. Yin, Y. Gong, P. Niu, J. Q. Wang, L. Gu, X. Chen, G. Liu, L. Wang, and H. M. Cheng, An unusual strong visible-light absorption band in red anatase TiO2 photocatalyst induced by atomic hydrogen-occupied oxygen vacancies, Adv. Mater. 30(6), 1704479 (2018)
https://doi.org/10.1002/adma.201704479
44 R. Asahi, T. Morikawa, and K. A. Ohwaki, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293(5528), 269 (2001)
https://doi.org/10.1126/science.1061051
45 S. Sakthivel, M. Janczarek, and H. Kisch, Visible light activity and photoelectrochemical properties of nitrogendoped TiO2, J. Phys. Chem. B 108(50), 19384 (2004)
https://doi.org/10.1021/jp046857q
46 X. Wang, R. Long, D. Liu, D. Yang, C. Wang, and Y. Xiong, Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO2 bowl nanoarrays, Nano Energy 24, 87 (2016)
https://doi.org/10.1016/j.nanoen.2016.04.013
47 T. M. R. Asahi, T. Ohwaki, and K. Aoki, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293(5528), 269 (2001)
https://doi.org/10.1126/science.1061051
48 G. Wang, X. Xiao, W. Li, Z. Lin, Z. Zhao, C. Chen, C. Wang, Y. Li, X. Huang, L. Miao, C. Jiang, Y. Huang, and X. Duan, Significantly enhanced visible light photoelectrochemical activity in TiO2 nanowire arrays by nitrogen implantation, Nano Lett. 15(7), 4692 (2015)
https://doi.org/10.1021/acs.nanolett.5b01547
49 T. Lin, C. Yang, Z. Wang, H. Yin, X. Lü, F. Huang, J. Lin, X. Xie, and M. Jiang, Effective nonmetal incorporation in black titania with enhanced solar energy utilization, Energy Environ. Sci. 7(3), 967 (2014)
https://doi.org/10.1039/c3ee42708k
50 S. Hejazi, N. T. Nguyen, A. Mazare, and P. Schmuki, Aminated TiO2 nanotubes as a photoelectrochemical water splitting photoanode, Catal. Today 281, 189 (2017)
https://doi.org/10.1016/j.cattod.2016.07.009
51 S. A. Ansari and M. H. Cho, Highly visible light responsive, narrow band gap TiO2 nanoparticles modified by elemental red phosphorus for photocatalysis and photoelectrochemical applications, Sci. Rep. 6(1), 25405 (2016)
https://doi.org/10.1038/srep25405
52 S. Komatsuda, Y. Asakura, J. J. M. Vequizo, A. Yamakata, and S. Yin, Enhanced photocatalytic NO decomposition of visible-light responsive F-TiO2/(N; C)-TiO2 by charge transfer between F-TiO2 and (N; C)-TiO2 through their doping levels, Appl. Catal. B 238, 358 (2018)
https://doi.org/10.1016/j.apcatb.2018.07.038
53 X. Kang, X. Z. Song, Y. Han, J. Cao, and Z. Tan, Defect-engineered TiO2 hollow spiny nanocubes for phenol degradation under visible light irradiation, Sci. Rep. 8(1), 5904 (2018)
https://doi.org/10.1038/s41598-018-24353-8
54 J. Premkumar, Development of super-hydrophilicity on nitrogen-doped TiO2thin film surface by photoelectrochemical method under visible light, Chem. Mater. 16(21), 3980 (2004)
https://doi.org/10.1021/cm049055g
55 S. A. Ansari, M. M. Khan, M. O. Ansari, and M. H. Cho, Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis, New J. Chem. 40(4), 3000 (2016)
https://doi.org/10.1039/C5NJ03478G
56 X. Pan, M. Q. Yang, X. Fu, N. Zhang, and Y. J. Xu, Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications, Nanoscale 5(9), 3601 (2013)
https://doi.org/10.1039/c3nr00476g
57 H. Choi, D. Shin, B. C. Yeo, T. Song, S. S. Han, N. Park, and S. Kim, Simultaneously controllable doping sites and the activity of a W–N codoped TiO2 photocatalyst, ACS Catal. 6(5), 2745 (2016)
https://doi.org/10.1021/acscatal.6b00104
58 Q. Sun, D. Cortie, S. Zhang, T. J. Frankcombe, G. She, J. Gao, L. R. Sheppard, W. Hu, H. Chen, S. Zhuo, D. Chen, R. L. Withers, G. McIntyre, D. Yu, W. Shi, and Y. Liu, The formation of defect-pairs for highly efficient visiblelight catalysts, Adv. Mater. 29(11), 1605123 (2017)
https://doi.org/10.1002/adma.201605123
59 H. Cui, W. Zhao, C. Yang, H. Yin, T. Lin, Y. Shan, Y. Xie, H. Gu, and F. Huang, Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting, J. Mater. Chem. A Mater. Energy Sustain. 2(23), 8612 (2014)
https://doi.org/10.1039/C4TA00176A
60 J. Liang, N. Wang, Q. Zhang, B. Liu, X. Kong, C. Wei, D. Zhang, B. Yan, Y. Zhao, and X. Zhang, Exploring the mechanism of a pure and amorphous black-blue TiO2:H thin film as a photoanode in water splitting, Nano Energy 42, 151 (2017)
https://doi.org/10.1016/j.nanoen.2017.10.062
61 M. Krzywiecki, L. Grzadziel, A. Sarfraz, D. Iqbal, A. Szwajca, and A. Erbe, Zinc oxide as a defect-dominated material in thin films for photovoltaic applications – Experimental determination of defect levels, quantification of composition, and construction of band diagram, Phys. Chem. Chem. Phys. 17(15), 10004 (2015)
https://doi.org/10.1039/C5CP00112A
62 R. A. Wahyuono, F. Hermann-Westendorf, A. Dellith, C. Schmidt, J. Dellith, J. Plentz, M. Schulz, M. Presselt, M. Seyring, M. Rettenmeyer, and B. Dietzek, Effect of annealing on the sub-bandgap, defects and trapping states of ZnO nanostructures, Chem. Phys.483–484, 112 (2017)
https://doi.org/10.1016/j.chemphys.2016.12.002
63 Y. Zhang, H. Zhao, X. Zhao, J. Lin, N. Li, Z. Huo, Z. Yan, M. Zhang, and S. Hu, Narrow-bandgap Nb2O5 nanowires with enclosed pores as high-performance photocatalyst, Sci. China Mater. 62(2), 203 (2019)
https://doi.org/10.1007/s40843-018-9308-7
64 W. L. M. Lamers, M. Favaro, D. E. Starr, D. Friedrich, S. Lardhi, L. Cavallo, M. Harb, R. van de Krol, L. H. Wong, and F. F. Abdi, Enhanced carrier transport and bandgap reduction in sulfur modified BiVO4 photoanodes, Chem. Mater. 30, 8630 (2018)
https://doi.org/10.1021/acs.chemmater.8b03859
65 V. Pasumarthi, T. Liu, M. Dupuis, and C. Li, Charge carrier transport dynamics in W/Mo-doped BiVO4: First principles-based mesoscale characterization, J. Mater. Chem. A Mater. Energy Sustain. 7(7), 3054 (2019)
https://doi.org/10.1039/C8TA09899A
66 T. Li, J. He, B. Pena, and C. P. Berlinguette, Curing BiVO4 photoanodes with ultraviolet light enhances photoelectrocatalysis, Angew. Chem. Int. Ed. 55(5), 1769 (2016)
https://doi.org/10.1002/anie.201509567
67 R. Niishiro, Y. Takano, Q. Jia, M. Yamaguchi, A. Iwase, Y. Kuang, T. Minegishi, T. Yamada, K. Domen, and A. Kudo, A CoOx-modified SnNb2O6 photoelectrode for highly efficient oxygen evolution from water, Chem. Commun. (Camb.) 53(3), 629 (2017)
https://doi.org/10.1039/C6CC08262A
68 Y. Hosogi, Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, Role of Sn2+ in the band structure of SnM2O6 and Sn2M2O7 (M= Nb and Ta) and their photocatalytic properties, Chem. Mater. 20(4), 1299 (2008)
https://doi.org/10.1021/cm071588c
69 Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, Investigations of electronic structures and photocatalytic activities under visible light irradiation of lead molybdate replaced with chromium (VI), Bull. Chem. Soc. Jpn. 80(5), 885 (2007)
https://doi.org/10.1246/bcsj.80.885
70 D. Noureldine and K. Takanabe, State-of-the-art Sn2+-based ternary oxides as photocatalysts for water splitting: Electronic structures and optoelectronic properties, Catal. Sci. Technol. 6(21), 7656 (2016)
https://doi.org/10.1039/C6CY01666A
71 H. Seo, Y. Ping, and G. Galli, Role of point defects in enhancing the conductivity of BiVO4, Chem. Mater. 30(21), 7793 (2018)
https://doi.org/10.1021/acs.chemmater.8b03201
72 F. F. Abdi, T. J. Savenije, M. M. May, B. Dam, and R. van de Krol, The origin of slow carrier transport in BiVO4 thin film photoanodes: A time-resolved microwave conductivity study, J. Phys. Chem. Lett. 4(16), 2752 (2013)
https://doi.org/10.1021/jz4013257
73 Z. Zhu, P. Sarker, C. Zhao, L. Zhou, R. L. Grimm, M. N. Huda, and P. M. Rao, Photoelectrochemical properties and behavior of alpha-SnWO4 photoanodes synthesized by hydrothermal conversion of WO3 films, ACS Appl. Mater. Interfaces 9(2), 1459 (2017)
https://doi.org/10.1021/acsami.6b12640
74 A. Ziani, M. Harb, D. Noureldine, and K. Takanabe, UVVis optoelectronic properties of a-SnWO4: A comparative experimental and density functional theory based study, APL Mater. 3(9), 096101 (2015)
https://doi.org/10.1063/1.4930005
75 D. Bohra and W. A. Smith, Improved charge separation via Fe-doping of copper tungstate photoanodes, Phys. Chem. Chem. Phys. 17(15), 9857 (2015)
https://doi.org/10.1039/C4CP05565A
76 Y. Gao and T. W. Hamann, Quantitative hole collection for photoelectrochemical water oxidation with CuWO4, Chem. Commun. 53(7), 1285 (2017)
https://doi.org/10.1039/C6CC09029J
77 S. Byun, G. Jung, Y. Shi, M. Lanza, and B. Shin, Aging of a vanadium precursor solution: Influencing material properties and photoelectrochemical water oxidation performance of solution-processed BiVO4 photoanodes, Adv. Funct. Mater.1806662 (2019)
https://doi.org/10.1002/adfm.201806662
78 M. Ziwritsch, S. Müller, H. Hempel, T. Unold, F. F. Abdi, R. van de Krol, D. Friedrich, and R. Eichberger, Direct time-resolved observation of carrier trapping and polaron conductivity in BiVO4, ACS Energy Lett. 1(5), 888 (2016)
https://doi.org/10.1021/acsenergylett.6b00423
79 B. J. Trześniewski, I. A. Digdaya, T. Nagaki, S. Ravishankar, I. Herraiz-Cardona, D. A. Vermaas, A. Longo, S. Gimenez, and W. A. Smith, Near-complete suppression of surface losses and total internal quantum efficiency in BiVO4 photoanodes, Energy Environ. Sci. 10(6), 1517 (2017)
https://doi.org/10.1039/C6EE03677E
80 J. K. Cooper, S. B. Scott, Y. Ling, J. Yang, S. Hao, Y. Li, F. M. Toma, M. Stutzmann, K. V. Lakshmi, and I. D. Sharp, Role of hydrogen in defining the n-type character of BiVO4 photoanodes, Chem. Mater. 28(16), 5761 (2016)
https://doi.org/10.1021/acs.chemmater.6b01994
81 F. F. Abdi, N. Firet, and R. van de Krol, Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping, ChemCatChem 5(2), 490 (2013)
https://doi.org/10.1002/cctc.201200472
82 Y. Bu, J. Tian, Z. Chen, Q. Zhang, W. Li, F. Tian, and J. P. Ao, Optimization of the photo-electrochemical performance of Mo-Doped BiVO4 photoanode by controlling the metal-oxygen bond state on (020) facet, Adv. Mater. Interfaces 4(10), 1601235 (2017)
https://doi.org/10.1002/admi.201601235
83 S. K. Cho, H. S. Park, H. C. Lee, K. M. Nam, and A. J. Bard, Metal doping of BiVO4 by composite electrodeposition with improved photoelectrochemical water oxidation, J. Phys. Chem. C 117(44), 23048 (2013)
https://doi.org/10.1021/jp408619u
84 J. H. Xin Zhao, X. Yao, S. Chen, and Z. Chen, Clarifying the roles of oxygen vacancy in W-doped BiVO4 for solar water splitting, ACS Appl. Energy Mater. 1(7), 3410 (2018)
https://doi.org/10.1021/acsaem.8b00559
85 V. Nair, C. L. Perkins, Q. Lin, and M. Law, Textured nanoporous Mo:BiVO4 photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution, Energy Environ. Sci. 9(4), 1412 (2016)
https://doi.org/10.1039/C6EE00129G
86 G. V. Govindaraju, J. M. Morbec, G. A. Galli, and K. S. Choi, Experimental and computational investigation of lanthanide ion doping on BiVO4 photoanodes for solar water splitting, J. Phys. Chem. C 122(34), 19416 (2018)
https://doi.org/10.1021/acs.jpcc.8b05503
87 K. P. Parmar, H. J. Kang, A. Bist, P. Dua, J. S. Jang, and J. S. Lee, Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO4 photoanodes, ChemSusChem 5(10), 1926 (2012)
https://doi.org/10.1002/cssc.201200254
88 K. Ding, B. Chen, Z. Fang, Y. Zhang, and Z. Chen, Why the photocatalytic activity of Mo-doped BiVO4 is enhanced: a comprehensive density functional study, Phys. Chem. Chem. Phys. 16(26), 13465 (2014)
https://doi.org/10.1039/c4cp01350f
89 H. W. Jeong, T. H. Jeon, J. S. Jang, W. Choi, and H. Park, Strategic modification of BiVO4 for improving photoelectrochemical water oxidation performance, J. Phys. Chem. C 117(18), 9104 (2013)
https://doi.org/10.1021/jp400415m
90 J. A. Seabold, K. Zhu, and N. R. Neale, Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport, Phys. Chem. Chem. Phys. 16(3), 1121 (2014)
https://doi.org/10.1039/C3CP54356K
91 H. S. Park, K. E. Kweon, H. Ye, E. Paek, G. S. Hwang, and A. J. Bard, Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation, J. Phys. Chem. C 115(36), 17870 (2011)
https://doi.org/10.1021/jp204492r
92 I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. Grätzel, Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting, J. Phys. Chem. C 113(2), 772 (2009)
https://doi.org/10.1021/jp809060p
93 F. F. Abdi, L. Han, A. H. Smets, M. Zeman, B. Dam, and R. van de Krol, Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode, Nat. Commun. 4(1), 2195 (2013)
https://doi.org/10.1038/ncomms3195
94 A. J. Rettie, H. C. Lee, L. G. Marshall, J. F. Lin, C. Capan, J. Lindemuth, J. S. McCloy, J. Zhou, A. J. Bard, and C. B. Mullins, Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: Intrinsic behavior of a complex metal oxide, J. Am. Chem. Soc. 135(30), 11389 (2013)
https://doi.org/10.1021/ja405550k
95 W. Zhang, F. Wu, J. Li, D. Yan, J. Tao, Y. Ping, and M. Liu, Unconventional relation between charge transport and photocurrent via boosting small polaron hopping for photoelectrochemical water splitting, ACS Energy Lett. 3(9), 2232 (2018)
https://doi.org/10.1021/acsenergylett.8b01445
96 L. Zhang, X. Ye, M. Boloor, A. Poletayev, N. A. Melosh, and W. C. Chueh, Significantly enhanced photocurrent for water oxidation in monolithic Mo:BiVO4/SnO2/Si by thermally increasing the minority carrier diffusion length, Energy Environ. Sci. 9(6), 2044 (2016)
https://doi.org/10.1039/C6EE00036C
97 J. W. Jang, D. Friedrich, S. Müller, M. Lamers, H. Hempel, S. Lardhi, Z. Cao, M. Harb, L. Cavallo, R. Heller, R. Eichberger, R. van de Krol, and F. F. Abdi, Enhancing charge carrier lifetime in metal oxide photoelectrodes through mild hydrogen treatment, Adv. Energy Mater. 7(22), 1701536 (2017)
https://doi.org/10.1002/aenm.201701536
98 D. K. Lee, D. Lee, M. A. Lumley, and K. S. Choi, Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting, Chem. Soc. Rev. 48(7), 2126 (2019)
https://doi.org/10.1039/C8CS00761F
99 G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, Hydrogentreated TiO2 nanowire arrays for photoelectrochemical water splitting, Nano Lett. 11(7), 3026 (2011)
https://doi.org/10.1021/nl201766h
100 N. Guijarro, P. Bornoz, M. Prévot, X. Yu, X. Zhu, M. Johnson, X. Jeanbourquin, F. Le Formal, and K. Sivula, Evaluating spinel ferrites MFe2O4 (M= Cu, Mg, Zn) as photoanodes for solar water oxidation: Prospects and limitations, Sustainable Energy Fuels 2(1), 103 (2018)
https://doi.org/10.1039/C7SE00448F
101 Y. Tang, N. Rong, F. Liu, M. Chu, H. Dong, Y. Zhang, and P. Xiao, Enhancement of the photoelectrochemical performance of CuWO4 films for water splitting by hydrogen treatment, Appl. Surf. Sci. 361, 133 (2016)
https://doi.org/10.1016/j.apsusc.2015.11.129
102 Y. Ling, G. Wang, J. Reddy, C. Wang, J. Z. Zhang, and Y. Li, The influence of oxygen content on the thermal activation of hematite nanowires, Angew. Chem. Int. Ed. 51(17), 4074 (2012)
https://doi.org/10.1002/anie.201107467
103 A. Milbrat, W. J. C. Vijselaar, Y. Guo, B. Mei, J. Huskens, and G. Mul, Integration of molybdenum-doped, hydrogen-annealed BiVO4 with silicon microwires for photoelectrochemical applications, ACS Sustain. Chem. & Eng. 7(5), 5034 (2019)
https://doi.org/10.1021/acssuschemeng.8b05756
104 Y. Zhang, X. Zhang, D. Wang, F. Wan, and Y. Liu, Protecting hydrogenation-generated oxygen vacancies in BiVO4 photoanode for enhanced water oxidation with conformal ultrathin amorphous TiO2 layer, Appl. Surf. Sci. 403, 389 (2017)
https://doi.org/10.1016/j.apsusc.2017.01.195
105 G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J. Z. Zhang, and Y. Li, Hydrogen-treated WO3 nanoflakes show enhanced photostability, Energy Environ. Sci. 5(3), 6180 (2012)
https://doi.org/10.1039/c2ee03158b
106 W. Li, P. Da, Y. Zhang, Y. Wang, X. Lin, X. Gong, and G. Zheng, WO3 nanoflakes for enhanced photoelectrochemical conversion, ACS Nano 8(11), 11770 (2014)
https://doi.org/10.1021/nn5053684
107 D. Ma, J. Xie, J. Li, S. Liu, F. Wang, H. Zhang, W. Wang, A. Wang, and H. Sun, Synthesis and hydrogen reduction of nano-sized copper tungstate powders produced by a hydrothermal method, Int. J. Refract. Met. Hard Mater. 46, 152 (2014)
https://doi.org/10.1016/j.ijrmhm.2014.06.006
108 D. Hu, P. Diao, D. Xu, M. Xia, Y. Gu, Q. Wu, C. Li, and S. Yang, Copper(II) tungstate nanoflake array films: Sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting, Nanoscale 8(11), 5892 (2016)
https://doi.org/10.1039/C5NR09210H
109 J. H. Kim, Y. J. Jang, J. H. Kim, J. W. Jang, S. H. Choi, and J. S. Lee, Defective ZnFe2O4 nanorods with oxygen vacancy for photoelectrochemical water splitting, Nanoscale 7(45), 19144 (2015)
https://doi.org/10.1039/C5NR05812K
110 S. Wang, P. Chen, J. H. Yun, Y. Hu, and L. Wang, An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting, Angew. Chem. Int. Ed. 56(29), 8500 (2017)
https://doi.org/10.1002/anie.201703491
111 S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner, and A. M. Herring, Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation, Energy Environ. Sci. 4(12), 5028 (2011)
https://doi.org/10.1039/c1ee02444b
112 Q. Shi, S. Murcia-López, P. Tang, C. Flox, J. R. Morante, Z. Bian, H. Wang, and T. Andreu, Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: Tuning the electron trapping process, ACS Catal. 8(4), 3331 (2018)
https://doi.org/10.1021/acscatal.7b04277
113 W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu, and Z. Zou, Solar hydrogen generation from seawater with a modified BiVO4 photoanode, Energy Environ. Sci. 4(10), 4046 (2011)
https://doi.org/10.1039/c1ee01812d
114 L. Gao, Y. Li, J. Ren, S. Wang, R. Wang, G. Fu, and Y. Hu, Passivation of defect states in anatase TiO2 hollow spheres with Mg doping: Realizing efficient photocatalytic overall water splitting, Appl. Catal. B 202, 127 (2017)
https://doi.org/10.1016/j.apcatb.2016.09.018
115 C. Chen, Y. Wei, G. Yuan, Q. Liu, R. Lu, X. Huang, Y. Cao, and P. Zhu, Synergistic effect of Si doping and heat treatments enhances the photoelectrochemical water oxidation performance of TiO2 nanorod arrays, Adv. Funct. Mater. 27(31), 1701575 (2017)
https://doi.org/10.1002/adfm.201701575
116 A. G. Hufnagel, H. Hajiyani, S. Zhang, T. Li, O. Kasian, B. Gault, B. Breitbach, T. Bein, D. Fattakhova-Rohlfing, C. Scheu, and R. Pentcheva, Why tin-doping enhances the efficiency of hematite photoanodes for water splittingthe full picture, Adv. Funct. Mater. 28(52), 1804472 (2018)
https://doi.org/10.1002/adfm.201804472
117 Y. Guo, N. Zhang, X. Wang, Q. Qian, S. Zhang, Z. Li, and Z. Zou, A facile spray pyrolysis method to prepare Ti-doped ZnFe2O4 for boosting photoelectrochemical water splitting, J. Mater. Chem. A Mater. Energy Sustain. 5(16), 7571 (2017)
https://doi.org/10.1039/C6TA11134C
118 J. H. Kim, J. H. Kim, J. W. Jang, J. Y. Kim, S. H. Choi, G. Magesh, J. Lee, and J. S. Lee, Awakening solar water-splitting activity of ZnFe2O4 nanorods by hybrid microwave annealing, Adv. Energy Mater. 5(6), 1401933 (2015)
https://doi.org/10.1002/aenm.201401933
119 C. D. Morton, I. J. Slipper, M. J. K. Thomas, and B. D. Alexander, Synthesis and characterisation of Fe–V–O thin film photoanodes, J. Photochem. Photobiol. Chem. 216(2–3), 209 (2010)
https://doi.org/10.1016/j.jphotochem.2010.08.010
120 G. Peng, J. Albero, H. Garcia, and M. Shalom, A watersplitting carbon nitride photoelectrochemical cell with efficient charge separation and remarkably low onset potential, Angew. Chem. Int. Ed. 57(48), 15807 (2018)
https://doi.org/10.1002/anie.201810225
121 X. Shi, K. Zhang, K. Shin, J. H. Moon, T. W. Lee, and J. H. Park, Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting, Phys. Chem. Chem. Phys. 15(28), 11717 (2013)
https://doi.org/10.1039/c3cp50459j
122 L. Pei, B. Lv, S. Wang, Z. Yu, S. Yan, R. Abe, and Z. Zou, Oriented growth of Sc-doped Ta3N5 nanorod photoanode achieving low-onset-potential for photoelectrochemical water oxidation, ACS Appl. Energy Mater. 1(8), 4150 (2018)
https://doi.org/10.1021/acsaem.8b00809
123 J. Seo, H. Nishiyama, T. Yamada, and K. Domen, Visiblelight- responsive photoanodes for highly active, stable water oxidation, Angew. Chem. Int. Ed. 57(28), 8396 (2018)
https://doi.org/10.1002/anie.201710873
124 M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase, Q. Jia, H. Nishiyama, T. Minegishi, M. Nakabayashi, N. Shibata, R. Niishiro, C. Katayama, H. Shibano, M. Katayama, A. Kudo, T. Yamada, and K. Domen, Surface modification of CoOxloaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation, J. Am. Chem. Soc. 137(15), 5053 (2015)
https://doi.org/10.1021/jacs.5b00256
125 Z. Zhu, H. Tian, M. Zhang, B. Liang, and W. Li, Preparation of a-SnWO4 hierarchical spheres by Bi3+-doping and their enhanced photocatalytic activity under visible light, Ceram. Int. 42(13), 14743 (2016)
https://doi.org/10.1016/j.ceramint.2016.06.101
126 S. Yao, M. Zhang, J. Di, Z. Wang, Y. Long, and W. Li, Preparation of a-SnWO4/SnO2 heterostructure with enhanced visible-light-driven photocatalytic activity, Appl. Surf. Sci. 357, 1528 (2015)
https://doi.org/10.1016/j.apsusc.2015.10.012
127 I. S. Cho, C. H. Kwak, D. W. Kim, S. Lee, and K. S. Hong, Photophysical, photoelectrochemical, and photocatalytic properties of novel SnWO4 oxide semiconductors with narrow band gaps, J. Phys. Chem. C 113(24), 10647 (2009)
https://doi.org/10.1021/jp901557z
128 Y. Wang, H. Sun, S. Tan, H. Feng, Z. Cheng, J. Zhao, A. Zhao, B. Wang, Y. Luo, J. Yang, and J. G. Hou, Role of point defects on the reactivity of reconstructed anatase titanium dioxide (001) surface, Nat. Commun. 4(1), 2214 (2013)
https://doi.org/10.1038/ncomms3214
129 G. Liu, H. G. Yang, X. Wang, L. Cheng, H. Lu, L. Wang, G. Q. M. Lu, and H. M. Cheng, Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant {001} facets, J. Phys. Chem. C 113(52), 21784 (2009)
https://doi.org/10.1021/jp907749r
130 G. Liu, J. Pan, L. Yin, J. T. S. Irvine, F. Li, J. Tan, P. Wormald, and H. M. Cheng, Heteroatom-modulated switching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres, Adv. Funct. Mater. 22(15), 3233 (2012)
https://doi.org/10.1002/adfm.201200414
131 J. Hu, X. Zhao, W. Chen, and Z. Chen, Enhanced charge transport and increased active sites on-Fe2O3 (110) nanorod surface containing oxygen vacancies for improved solar water oxidation performance, ACS Omega 3(11), 14973 (2018)
https://doi.org/10.1021/acsomega.8b01195
132 C. Fàbrega, D. Monllor-Satoca, S. Ampudia, A. Parra, T. Andreu, and J. R. Morante, Tuning the Fermi level and the kinetics of surface states of TiO2 nanorods by means of ammonia treatments, J. Phys. Chem. C 117(40), 20517 (2013)
https://doi.org/10.1021/jp407167z
133 A. L. Linsebigler, G. Lu, and J. T. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chem. Rev. 95(3), 735 (1995)
https://doi.org/10.1021/cr00035a013
134 A. Yamakata, T. Ishibashi, and H. Onishi, Kinetics of the photocatalytic water-splitting reaction on TiO2 and Pt/TiO2 studied by time-resolved infrared absorption spectroscopy, J. Mol. Catal. Chem. 199(1–2), 85 (2003)
https://doi.org/10.1016/S1381-1169(03)00021-9
135 T. Zhang, Y. Liu, J. Liang, and D. Wang, Enhancement of photoelectrochemical and photocathodic protection properties of TiO2 nanotube arrays by simple surface UV treatment, Appl. Surf. Sci. 394, 440 (2017)
https://doi.org/10.1016/j.apsusc.2016.10.120
136 T. Zhang, S. Cui, B. Yu, Z. Liu, and D. Wang, Surface engineering for an enhanced photoelectrochemical response of TiO2 nanotube arrays by simple surface air plasma treatment, Chem. Commun. 51(95), 16940 (2015)
https://doi.org/10.1039/C5CC06454F
137 T. L. Villarreal, R. Go’mez, M. Neumann-Spallart, N. Alonso-Vante, and P. Salvador, Semiconductor photooxidation of pollutants dissolved in water: A kinetic model for distinguishing between direct and indirect interfacial hole transfer (I): Photoelectrochemical experiments with polycrystalline anatase electrodes under current doubling and absence of recombination, J. Phys. Chem. B 108(39), 15172 (2004)
https://doi.org/10.1021/jp049447a
138 A. Kafizas, Y. Ma, E. Pastor, S. R. Pendlebury, C. Mesa, L. Francàs, F. Le Formal, N. Noor, M. Ling, C. Sotelo-Vazquez, C. J. Carmalt, I. P. Parkin, and J. R. Durrant, Water oxidation kinetics of accumulated holes on the surface of a TiO2 photoanode: A rate law analysis, ACS Catal. 7(7), 4896 (2017)
https://doi.org/10.1021/acscatal.7b01150
139 S. H. Szczepankiewicz, A. J. Colussi, and M. R. Hoffmann, Infrared spectra of photoinduced species on hydroxylated titania surfaces, J. Phys. Chem. B 104(42), 9842 (2000)
https://doi.org/10.1021/jp0007890
140 M. A. Grela, M. E. J. Coronel, and A. J. Colussi, Quantitative spin-trapping studies of weakly illuminated titanium dioxide sols: Implications for the mechanism of photocatalysis, J. Phys. Chem. 100(42), 16940 (1996)
https://doi.org/10.1021/jp953562r
141 X. Cheng, Q. Cheng, X. Deng, P. Wang, and H. Liu, A facile and novel strategy to synthesize reduced TiO2 nanotubes photoelectrode for photoelectrocatalytic degradation of diclofenac, Chemosphere 144, 888 (2016)
https://doi.org/10.1016/j.chemosphere.2015.09.070
142 J. Cheng, J. VandeVondele, and M. Sprik, Identifying trapped electronic holes at the aqueous TiO2 interface, J. Phys. Chem. C 118(10), 5437 (2014)
https://doi.org/10.1021/jp500769q
143 Y. Ji, B. Wang, and Y. Luo, GGA+Ustudy on the mechanism of photodecomposition of water adsorbed on rutile TiO2 (110) surface: Free vs. trapped hole, J. Phys. Chem. C 118(2), 1027 (2014)
https://doi.org/10.1021/jp409605y
144 T. Hisatomi, F. Le Formal, M. Cornuz, J. Brillet, N. Tétreault, K. Sivula, and M. Grätzel, Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers, Energy Environ. Sci. 4(7), 2512 (2011)
https://doi.org/10.1039/c1ee01194d
145 Z. Hu, Z. Shen, and J. C. Yu, Covalent fixation of surface oxygen atoms on hematite photoanode for enhanced water oxidation, Chem. Mater. 28(2), 564 (2016)
https://doi.org/10.1021/acs.chemmater.5b04058
146 C. Li, Z. Luo, T. Wang, and J. Gong, Surface, bulk, and interface: Rational design of hematite architecture toward efficient photo-electrochemical water splitting, Adv. Mater. 30(30), 1707502 (2018)
https://doi.org/10.1002/adma.201707502
147 Y. He, J. E. Thorne, C. H. Wu, P. Ma, C. Du, Q. Dong, J. Guo, and D. Wang, What limits the performance of Ta3N5 for solar water splitting? Chem 1(4), 640 (2016)
https://doi.org/10.1016/j.chempr.2016.09.006
148 Y. He, P. Ma, S. Zhu, M. Liu, Q. Dong, J. Espano, X. Yao, and D. Wang, Photo-induced performance enhancement of tantalum nitride for solar water oxidation, Joule 1(4), 831 (2017)
https://doi.org/10.1016/j.joule.2017.09.005
149 E. Nurlaela, Y. Sasaki, M. Nakabayashi, N. Shibata, T. Yamada, and K. Domen, Towards zero bias photoelectrochemical water splitting: onset potential improvement on a Mg:GaN modified-Ta3N5 photoanode, J. Mater. Chem. A Mater. Energy Sustain. 6(31), 15265 (2018)
https://doi.org/10.1039/C8TA05300F
150 Y. Kuang, T. Yamada, and K. Domen, Surface and interface engineering for photoelectrochemical water oxidation, Joule 1(2), 290 (2017)
https://doi.org/10.1016/j.joule.2017.08.004
151 P. Y. Tang, H. B. Xie, C. Ros, L. J. Han, M. Biset-Peiró, Y. M. He, W. Kramer, A. P. Rodríguez, E. Saucedo, J. R. Galán-Mascarós, T. Andreu, J. R. Morante, and J. Arbiol, Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering, Energy Environ. Sci. 10(10), 2124 (2017)
https://doi.org/10.1039/C7EE01475A
152 R. d. Krol and M. Grätzel, Photoelectrochemical Hydrogen Production, Springer, New York, 2011, p 321
153 K. J. McDonald and K. S. Choi, Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation, Chem. Mater. 23(21), 4863 (2011)
https://doi.org/10.1021/cm202399g
154 B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, and T. W. Hamann, Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes, Energy Environ. Sci. 5(6), 7626 (2012)
https://doi.org/10.1039/c2ee21414h
155 X. Yang, C. Du, R. Liu, J. Xie, and D. Wang, Balancing photovoltage generation and charge-transfer enhancement for catalyst-decorated photoelectrochemical water splitting: A case study of the hematite/MnOx combination, J. Catal. 304, 86 (2013)
https://doi.org/10.1016/j.jcat.2013.04.014
156 G. Liu, S. Ye, P. Yan, F. Xiong, P. Fu, Z. Wang, Z. Chen, J. Shi, and C. Li, Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting, Energy Environ. Sci. 9(4), 1327 (2016)
https://doi.org/10.1039/C5EE03802B
157 F. F. Abdi and R. van de Krol, Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes, J. Phys. Chem. C 116(17), 9398 (2012)
https://doi.org/10.1021/jp3007552
158 B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, and T. W. Hamann, Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co-Pi”-coated hematite electrodes, J. Am. Chem. Soc. 134(40), 16693 (2012)
https://doi.org/10.1021/ja306427f
159 D. K. Zhong, M. Cornuz, K. Sivula, M. Grätzel, and D. R. Gamelin, Photo-assisted electrodeposition of cobalt– phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation, Energy Environ. Sci. 4(5), 1759 (2011)
https://doi.org/10.1039/c1ee01034d
160 S. D. Tilley, M. Cornuz, K. Sivula, and M. Grätzel, Lightinduced water splitting with hematite: Improved nanostructure and iridium oxide catalysis, Angew. Chem. Int. Ed. 49(36), 6405 (2010)
https://doi.org/10.1002/anie.201003110
161 W. Y. Sohn, J. E. Thorne, Y. Zhang, S. Kuwahara, Q. Shen, D. Wang, and K. Katayama, Charge carrier kinetics in hematite with NiFeOx coating in aqueous solutions: Dependence on bias voltage, J. Photochem. Photobiol. Chem. 353, 344 (2018)
https://doi.org/10.1016/j.jphotochem.2017.11.029
162 X. Yang, R. Liu, C. Du, P. Dai, Z. Zheng, and D. Wang, Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition, ACS Appl. Mater. Interfaces 6(15), 12005 (2014)
https://doi.org/10.1021/am500948t
163 R. Liu, Z. Zheng, J. Spurgeon, and X. Yang, Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers, Energy Environ. Sci. 7(8), 2504 (2014)
https://doi.org/10.1039/C4EE00450G
164 M. Zhong, T. Hisatomi, Y. Sasaki, S. Suzuki, K. Teshima, M. Nakabayashi, N. Shibata, H. Nishiyama, M. Katayama, T. Yamada, and K. Domen, Highly active GaN-stabilized Ta3N5 thin-film photoanode for solar water oxidation, Angew. Chem. Int. Ed. 56(17), 4739 (2017)
https://doi.org/10.1002/anie.201700117
165 S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation, Science 344(6187), 1005 (2014)
https://doi.org/10.1126/science.1251428
166 D. Eisenberg, H. S. Ahn, and A. J. Bard, Enhanced photoelectrochemical water oxidation on bismuth vanadate by electrodeposition of amorphous titanium dioxide, J. Am. Chem. Soc. 136(40), 14011 (2014)
https://doi.org/10.1021/ja5082475
167 A. G. Scheuermann, J. P. Lawrence, K. W. Kemp, T. Ito, A. Walsh, C. E. Chidsey, P. K. Hurley, and P. C. McIntyre, Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes, Nat. Mater. 15(1), 99 (2016)
https://doi.org/10.1038/nmat4451
168 S. Hu, M. H. Richter, M. F. Lichterman, J. Beardslee, T. Mayer, B. S. Brunschwig, and N. S. Lewis, Electrical, photoelectrochemical, and photoelectron spectroscopic investigation of the interfacial transport and energetics of amorphous TiO2/Si heterojunctions, J. Phys. Chem. C 120(6), 3117 (2016)
https://doi.org/10.1021/acs.jpcc.5b09121
169 T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, and C. Li, Manipulating the interfacial energetics of n-type silicon photoanode for efficient water oxidation, J. Am. Chem. Soc. 138(41), 13664 (2016)
https://doi.org/10.1021/jacs.6b07188
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed