Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (4): 43605   https://doi.org/10.1007/s11467-019-0906-3
  本期目录
Chimera dynamics in nonlocally coupled moving phase oscillators
Wen-Hao Wang, Qiong-Lin Dai, Hong-Yan Cheng, Hai-Hong Li(), Jun-Zhong Yang()
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
 全文: PDF(2899 KB)  
Abstract

Chimera states, a symmetry-breaking spatiotemporal pattern in nonlocally coupled dynamical units, prevail in a variety of systems. However, the interaction structures among oscillators are static in most of studies on chimera state. In this work, we consider a population of agents. Each agent carries a phase oscillator. We assume that agents perform Brownian motions on a ring and interact with each other with a kernel function dependent on the distance between them. When agents are motionless, the model allows for several dynamical states including two different chimera states (the type-I and the type-II chimeras). The movement of agents changes the relative positions among them and produces perpetual noise to impact on the model dynamics. We find that the response of the coupled phase oscillators to the movement of agents depends on both the phase lag α, determining the stabilities of chimera states, and the agent mobility D. For low mobility, the synchronous state transits to the type-I chimera state for α close to π/2 and attracts other initial states otherwise. For intermediate mobility, the coupled oscillators randomly jump among different dynamical states and the jump dynamics depends on α. We investigate the statistical properties in these different dynamical regimes and present the scaling laws between the transient time and the mobility for low mobility and relations between the mean lifetimes of different dynamical states and the mobility for intermediate mobility.

Key wordschimera states    Brownian motion    nonlocal coupling    phase oscillators
收稿日期: 2018-12-20      出版日期: 2019-06-27
Corresponding Author(s): Hai-Hong Li,Jun-Zhong Yang   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(4): 43605.
Wen-Hao Wang, Qiong-Lin Dai, Hong-Yan Cheng, Hai-Hong Li, Jun-Zhong Yang. Chimera dynamics in nonlocally coupled moving phase oscillators. Front. Phys. , 2019, 14(4): 43605.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0906-3
https://academic.hep.com.cn/fop/CN/Y2019/V14/I4/43605
1 Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst. 5, 380 (2002)
2 D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)
https://doi.org/10.1103/PhysRevLett.93.174102
3 C. R. Laing, The dynamics of chimera states in heterogeneous Kuramoto networks, Physica D 238(16), 1569 (2009)
https://doi.org/10.1016/j.physd.2009.04.012
4 A. E. Motter, Spontaneous synchrony breaking, Nat. Phys. 6(3), 164 (2010)
https://doi.org/10.1038/nphys1609
5 Y. Zhu, Y. Li, M. Zhang, and J. Yang, The oscillating two-cluster chimera state in non-locally coupled phase oscillators, EPL 97(1), 10009 (2012)
https://doi.org/10.1209/0295-5075/97/10009
6 Z. Wu, H. Cheng, Y. Feng, H. Li, Q. Dai, and J. Yang, Chimera states in bipartite networks of FitzHugh– Nagumo oscillators, Front. Phys. 13(2), 130503 (2018)
https://doi.org/10.1007/s11467-017-0737-z
7 E. A. Martens, S. Thutupalli, A. Fourri’ere, and O. Hallatschek, Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci. USA 110(26), 10563 (2013)
https://doi.org/10.1073/pnas.1302880110
8 M. R. Tinsley, S. Nkomo, and K. Showalter, Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat. Phys. 8(9), 662 (2012)
https://doi.org/10.1038/nphys2371
9 A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll, Experimental observation of chimeras in coupled-map lattices, Nat. Phys. 8(9), 658 (2012)
https://doi.org/10.1038/nphys2372
10 H. Cheng, Q. Dai, N. Wu, H. Li, and J. Yang, Chimera states in nonlocally coupled phase oscillators with biharmonic interaction, Commun. Nonlinear Sci. Numer. Simul. 56, 1 (2018)
https://doi.org/10.1016/j.cnsns.2017.07.015
11 X. Li, R. Bi, Y. Sun, S. Zhang, and Q. Song, chimera states in Gaussian coupled map lattices, Front. Phys. 13(2), 130502 (2018)
https://doi.org/10.1007/s11467-017-0729-z
12 H. Xu, G. Wang, L. Huang, and Y. Lai, Chaos in Dirac electron optics: Emergence of a relativistic quantum chimera, Phys. Rev. Lett. 120(12), 124101 (2018)
https://doi.org/10.1103/PhysRevLett.120.124101
13 I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll, Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett. 106(23), 234102 (2011)
https://doi.org/10.1103/PhysRevLett.106.234102
14 I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, and E. Schöll, Nonlinearity of local dynamics promotes multichimeras, Chaos 25(8), 083104 (2015)
https://doi.org/10.1063/1.4927829
15 I. Omelchenko, O. E. Omelchenko, P. Hövel, and E. Schöll, When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett. 110(22), 224101 (2013)
https://doi.org/10.1103/PhysRevLett.110.224101
16 J. Hizanidis, V. Kanas, A. Bezerianos, and T. Bountis, Chimera states in networks of nonlocally coupled Hindmarsh–Rose neuron models, Int. J. Bifurcat. Chaos 24(03), 1450030 (2014)
https://doi.org/10.1142/S0218127414500308
17 H. Sakaguchi, Instability of synchronized motion in nonlocally coupled neural oscillators, Phys. Rev. E 73(3), 031907 (2006)
https://doi.org/10.1103/PhysRevE.73.031907
18 S. Olmi, E. A. Martens, S. Thutupalli, and A. Torcini, Intermittent chaotic chimeras for coupled rotators, Phys. Rev. E 92, 030901(R) (2015)
https://doi.org/10.1103/PhysRevE.92.030901
19 A. Yeldesbay, A. Pikovsky, and M. Rosenblum, Chimeralike states in an ensemble of globally coupled oscillators, Phys. Rev. Lett. 112(14), 144103 (2014)
https://doi.org/10.1103/PhysRevLett.112.144103
20 G. C. Sethia and A. Sen, Chimera states: The existence criteria revisited, Phys. Rev. Lett. 112(14), 144101 (2014)
https://doi.org/10.1103/PhysRevLett.112.144101
21 V. K. Chandrasekar, R. Gopal, A. Venkatesan, and M. Lakshmanan, Mechanism for intensity-induced chimera states in globally coupled oscillators, Phys. Rev. E 90(6), 062913 (2014)
https://doi.org/10.1103/PhysRevE.90.062913
22 K. Premalatha, V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan, Impact of symmetry breaking in networks of globally coupled oscillators, Phys. Rev. E 91(5), 052915 (2015)
https://doi.org/10.1103/PhysRevE.91.052915
23 C. R. Laing, Chimeras in networks with purely local coupling, Phys. Rev. E 92, 050904(R) (2015)
https://doi.org/10.1103/PhysRevE.92.050904
24 B. K. Bera, D. Ghosh, and M. Lakshmanan, Chimera states in bursting neurons, Phys. Rev. E 93(1), 012205 (2016)
https://doi.org/10.1103/PhysRevE.93.012205
25 E. A. Martens, C. R. Laing, and S. H. Strogatz, Solvable model of spiral wave chimeras, Phys. Rev. Lett. 104(4), 044101 (2010)
https://doi.org/10.1103/PhysRevLett.104.044101
26 C. Gu, G. St-Yves, and J. Davidsen, Spiral wave chimeras in complex oscillatory and chaotic systems, Phys. Rev. Lett. 111(13), 134101 (2013)
https://doi.org/10.1103/PhysRevLett.111.134101
27 M. J. Panaggio and D. M. Abrams, Chimera states on a flat torus, Phys. Rev. Lett. 110(9), 094102 (2013)
https://doi.org/10.1103/PhysRevLett.110.094102
28 M. J. Panaggio and D. M. Abrams, Chimera states on the surface of a sphere, Phys. Rev. E 91(2), 022909 (2015)
https://doi.org/10.1103/PhysRevE.91.022909
29 Y. Zhu, Z. Zheng, and J. Yang, Chimera states on complex networks, Phys. Rev. E 89(2), 022914 (2014)
https://doi.org/10.1103/PhysRevE.89.022914
30 X. Jiang and D. M. Abrams, Symmetry-broken states on networks of coupled oscillators, Phys. Rev. E 93(5), 052202 (2016)
https://doi.org/10.1103/PhysRevE.93.052202
31 N. Semenova, A. Zakharova, V. Anishchenko, and E. Schöll, Coherence-resonance chimeras in a network of excitable elements, Phys. Rev. Lett. 117(1), 014102 (2016)
https://doi.org/10.1103/PhysRevLett.117.014102
32 Q. Dai, M. Zhang, H. Cheng, H. Li, F. Xie, and J. Yang, From collective oscillation to chimera state in a nonlocally coupled excitable system, Nonlinear Dyn. 91(3), 1723 (2018)
https://doi.org/10.1007/s11071-017-3977-0
33 Y. S. Cho, T. Nishikawa, and A. E. Motter, Stable chimeras and independently synchronizable clusters, Phys. Rev. Lett. 119(8), 084101 (2017)
https://doi.org/10.1103/PhysRevLett.119.084101
34 Q. Dai, K. Yang, H. Cheng, H. Li, F. Xie, and J. Yang, Chimera states in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras, arXiv: 1808.03220v1 (2018)
35 M. L. Sachtjen, B. A. Carreras, and V. E. Lynch, Disturbances in a power transmission system, Phys. Rev. E 61(5), 4877 (2000)
https://doi.org/10.1103/PhysRevE.61.4877
36 R. Olfati-Saber, J. A. Fax, and R. M. Murray, Consensus and cooperation in networked multi-agent systems, Proc. IEEE 95(1), 215 (2007)
https://doi.org/10.1109/JPROC.2006.887293
37 J. P. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K. Kaski, J. Kertesz, and A. L. Barabasi, Structure and tie strengths in mobile communication networks, Proc. Natl. Acad. Sci. USA 104(18), 7332 (2007)
https://doi.org/10.1073/pnas.0610245104
38 S. Majhi and D. Ghosh, Amplitude death and resurgence of oscillation in networks of mobile oscillators, EPL 118(4), 40002 (2017)
https://doi.org/10.1209/0295-5075/118/40002
39 C. Shen, H. Chen, and Z. Hou, Mobility-enhanced signal response in metapopulation networks of coupled oscillators, EPL 102(3), 38004 (2013)
https://doi.org/10.1209/0295-5075/102/38004
40 M. Frasca, A. Buscarino, A. Rizzo, L. Fortuna, and S. Boccaletti, Synchronization of moving chaotic agents, Phys. Rev. Lett. 100(4), 044102 (2018)
https://doi.org/10.1103/PhysRevLett.100.044102
41 J. Gómez-Gardeñes, V. Nicosia, R. Sinatra, and V. Latora, Motion-induced synchronization in metapopulations of mobile agents, Phys. Rev. E 87(3), 032814 (2013)
https://doi.org/10.1103/PhysRevE.87.032814
42 Y. Eom, S. Boccaletti, and G. Caldarelli, Concurrent enhancement of percolation and synchronization in adaptive networks, Sci. Rep. 6(1), 27111 (2016)
https://doi.org/10.1038/srep27111
43 N. Fujiwara, J. Kurths, and A. Díaz-Guilera, Synchronization in networks of mobile oscillators, Phys. Rev. E 83, 025101(R) (2011)
https://doi.org/10.1103/PhysRevE.83.025101
44 L. Prignano, O. Sagarra, and A. Díaz-Guilera, Tuning Synchronization of Integrate-and-Fire Oscillators through Mobility, Phys. Rev. Lett. 110(11), 114101 (2013)
https://doi.org/10.1103/PhysRevLett.110.114101
45 A. Beardo, L. Prignano, O. Sagarra, and A. Díaz-Guilera, Influence of topology in the mobility enhancement of pulse-coupled oscillator synchronization, Phys. Rev. E 96(6), 062306 (2017)
https://doi.org/10.1103/PhysRevE.96.062306
46 G. Petrungaro, K. Uriu, and L. G. Morelli, Mobilityinduced persistent chimera states, Phys. Rev. E 96(6), 062210 (2017)
https://doi.org/10.1103/PhysRevE.96.062210
47 M. Wolfrum and O. E. Omelchenko, Chimera states are chaotic transients. Phys. Rev. E 84, 015201(R) (2011)
https://doi.org/10.1103/PhysRevE.84.015201
48 P. J. Menck, J. Heitzig, N. Marwan, and J. Kurths, How basin stability complements the linear-stability paradigm, Nat. Phys. 9(2), 89 (2013)
https://doi.org/10.1038/nphys2516
49 K. Uriu, S. Ares, A. C. Oates, and L. G. Morelli, Dynamics of mobile coupled phase oscillators, Phys. Rev. E 87(3), 032911 (2013)
https://doi.org/10.1103/PhysRevE.87.032911
50 F. Peruani, E. M. Nicola, and L. G. Morelli, Mobility induces global synchronization of oscillators in periodic extended systems, New J. Phys. 12(9), 093029 (2010)
https://doi.org/10.1088/1367-2630/12/9/093029
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed