Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (4): 43403   https://doi.org/10.1007/s11467-019-0907-2
  本期目录
Dephasing effects in topological insulators
Junjie Qi1,2, Haiwen Liu3, Hua Jiang4,5, X. C. Xie1,2()
1. International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871, China
2. Collaborative Innovation Center of Quantum Matter, Beijing, China
3. Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
4. School of Physical Science and Technology, Soochow University, Suzhou 215006, China
5. Institute for Advanced Study, Soochow University, Suzhou 215006, China
 全文: PDF(2297 KB)  
Abstract

Topological insulators, a class of typical topological materials in both two dimensions and three dimensions,are insulating in bulk and metallic at surface. The spin-momentum locked surface states and peculiar transport properties exhibit promising potential applications on quantum devices, which generate extensive interest in the last decade. Dephasing is the process of the loss of phase coherence, which inevitably exists in a realistic sample. In this review, we focus on recent progress in dephasing effects on the topological insulators. In general, there are two types of dephasing processes: normal dephasing and spin dephasing. In two-dimensional topological insulators, the phenomenologically numerical investigation shows that the longitudinal resistance plateaus is robust against normal dephasing but fragile with spin dephasing. Several microscopic mechanisms of spin dephasing are then discussed. In three-dimensional topological insulators, the helical surface states exhibit a helical spin texture due to the spin-momentum locking mechanism. Thus, normal dephasing has close connection to spin dephasing in this case, and gives rise to anomalous “gap-like” feature. Dephasing effects on properties of helical surface states are investigated.

Key wordsdephasing effects    topological insulators    backscattering
收稿日期: 2019-03-29      出版日期: 2019-06-27
Corresponding Author(s): X. C. Xie   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(4): 43403.
Junjie Qi, Haiwen Liu, Hua Jiang, X. C. Xie. Dephasing effects in topological insulators. Front. Phys. , 2019, 14(4): 43403.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0907-2
https://academic.hep.com.cn/fop/CN/Y2019/V14/I4/43403
1 D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
https://doi.org/10.1103/PhysRevLett.49.405
2 K. von Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
https://doi.org/10.1103/PhysRevLett.45.494
3 K. von Klitzing, 25 years of quantum Hall effects: A personal view on the discovery, physics and applications of this quantum effect, Séminaire Poincaré 2, 1 (2004)
https://doi.org/10.1007/3-7643-7393-8_1
4 D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
https://doi.org/10.1103/PhysRevLett.49.405
5 M. Kohmoto, Topological invariant and the quantization of the Hall conductance, Ann. Phys. 160(2), 343 (1985)
https://doi.org/10.1016/0003-4916(85)90148-4
6 F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)
https://doi.org/10.1103/PhysRevLett.61.2015
7 C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)
https://doi.org/10.1126/science.1234414
8 C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
https://doi.org/10.1103/PhysRevLett.95.226801
9 C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95(14), 146802 (2005)
https://doi.org/10.1103/PhysRevLett.95.146802
10 H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Intrinsic and Rashba spin– orbit interactions in graphene sheets, Phys. Rev. B 74, 165310 (2006)
https://doi.org/10.1103/PhysRevB.74.165310
11 D. Huertas-Hernando, F. Guinea, and A. Brataas, Spinorbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps, Phys. Rev. B 74(15), 155426 (2006)
https://doi.org/10.1103/PhysRevB.74.155426
12 Y. G. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, and Z. Fang, Spin-orbit gap of graphene: First-principles calculations, Phys. Rev. B 75, 041401(R) (2007)
https://doi.org/10.1103/PhysRevB.75.041401
13 J. C. Boettger and S. B. Trickey, First-principles calculation of the spin–orbit splitting in graphene, Phys. Rev. B 75, 121402(R) (2007)
https://doi.org/10.1103/PhysRevB.75.199903
14 M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian, Band-structure topologies of graphene: Spin–orbit coupling effects from first principles, Phys. Rev. B 80(23), 235431 (2009)
https://doi.org/10.1103/PhysRevB.80.235431
15 B. A. Bernevig and S. C. Zhang, Quantum spin Hall effect, Phys. Rev. Lett. 96(10), 106802 (2006)
https://doi.org/10.1103/PhysRevLett.96.106802
16 B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)
https://doi.org/10.1126/science.1133734
17 M. König, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science 318(5851), 766 (2007)
https://doi.org/10.1126/science.1148047
18 I. Knez, R. R. Du, and G. Sullivan, Evidence for helical edge modes in inverted InAs/GaSb quantum wells, Phys. Rev. Lett. 107(13), 136603 (2011)
https://doi.org/10.1103/PhysRevLett.107.136603
19 S. Murakami, Quantum spin Hall effect and enhanced magnetic response by spin–orbit coupling, Phys. Rev. Lett. 97(23), 236805 (2006)
https://doi.org/10.1103/PhysRevLett.97.236805
20 C. C. Liu, W. Feng, and Y. Yao, Quantum spin Hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett. 107(7), 076802 (2011)
https://doi.org/10.1103/PhysRevLett.107.076802
21 F. C. Chuang, L. Z. Yao, Z. Q. Huang, Y. T. Liu, C. H. Hsu, T. Das, H. Lin, and A. Bansil, Prediction of largegap two-dimensional topological insulators consisting of bilayers of group III elements with Bi, Nano Lett. 14(5), 2505 (2014)
https://doi.org/10.1021/nl500206u
22 J. J. Zhou, W. Feng, C. C. Liu, S. Guan, and Y. Yao, Large-Gap Quantum Spin Hall insulator in single layer bismuth monobromide Bi4Br4, Nano Lett. 14(8), 4767 (2014)
https://doi.org/10.1021/nl501907g
23 W. Luo and H. J. Xiang, Room temperature quantum spin Hall insulators with a buckled square lattice, Nano Lett. 15(5), 3230 (2015)
https://doi.org/10.1021/acs.nanolett.5b00418
24 Y. D. Ma, L. Kou, A. Du, and T. Heine, Group 14 element-based noncentrosymmetric quantum spin Hall insulators with large bulk gap, Nano Res. 8(10), 3412 (2015)
https://doi.org/10.1007/s12274-015-0842-7
25 C. Si, J. Liu, Y. Xu, J. Wu, B. L. Gu, and W. Duan, Functionalized germanene as a prototype of large-gap twodimensional topological insulators, Phys. Rev. B 89(11), 115429 (2014)
https://doi.org/10.1103/PhysRevB.89.115429
26 Y. Xu, B. Yan, H. J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S. C. Zhang, Large-gap quantum spin Hall insulators in tin films, Phys. Rev. Lett. 111(13), 136804 (2013)
https://doi.org/10.1103/PhysRevLett.111.136804
27 Y. D. Ma, Y. Dai, L. Kou, T. Frauenheim, and T. Heine, Robust two-dimensional topological insulators in methylfunctionalized bismuth, antimony, and lead bilayer films, Nano Lett. 15(2), 1083 (2015)
https://doi.org/10.1021/nl504037u
28 Z. G. Song, C. C. Liu, J. Yang, J. Han, M. Ye, B. Fu, Y. Yang, Q. Niu, J. Lu, and Y. Yao, Quantum spin Hall insulators and quantum valley Hall insulators of BiX/SbX(X= H, F, Cl and Br) monolayers with a record bulk band gap, NPG Asia Mater. 6(12), e147 (2014)
https://doi.org/10.1038/am.2014.113
29 H. M. Weng, X. Dai, and Z. Fang, Transition-metal pentatelluride ZrTe5 and HfTe5: A paradigm for large-gap quantum spin Hall insulators, Phys. Rev. X 4(1), 011002 (2014)
https://doi.org/10.1103/PhysRevX.4.011002
30 Y. D. Ma, L. Kou, X. Li, Y. Dai, S. C. Smith, and T. Heine, Quantum spin Hall effect and topological phase transition in two-dimensional square transitionmetal dichalcogenides, Phys. Rev. B 92(8), 085427 (2015)
https://doi.org/10.1103/PhysRevB.92.085427
31 Y. D. Ma, L. Kou, X. Li, Y. Dai, and T. Heine, Two-dimensional transition metal dichalcogenides with a hexagonal lattice: Room-temperature quantum spin Hall insulators, Phys. Rev. B 93(3), 035442 (2016)
https://doi.org/10.1103/PhysRevB.93.035442
32 S. M. Nie, Z. Song, H. Weng, and Z. Fang, Quantum spin Hall effect in two-dimensional transition-metal dichalcogenide haeckelites, Phys. Rev. B 91(23), 235434 (2015)
https://doi.org/10.1103/PhysRevB.91.235434
33 X. F. Qian, J. Liu, L. Fu, and J. Li, Quantum spin Hall effect in two-dimensional transition metal dichalcogenides, Science 346(6215), 1344 (2014)
https://doi.org/10.1126/science.1256815
34 Y. D. Ma, L. Kou, X. Li, Y. Dai, and T. Heine, Room temperature quantum spin Hall states in two-dimensional crystals composed of pentagonal rings and their quantum wells, NPG Asia Mater. 8(4), e264 (2016)
https://doi.org/10.1038/am.2016.51
35 Z. F. Wang, N. Su, and F. Liu, Prediction of a twodimensional organic topological insulator, Nano Lett. 13(6), 2842 (2013)
https://doi.org/10.1021/nl401147u
36 B. Zhao, J. Zhang, W. Feng, Y. Yao, and Z. Yang, Quantum spin Hall and Z2 metallic states in an organic material, Phys. Rev. B 90(20), 201403 (2014)
https://doi.org/10.1103/PhysRevB.90.201403
37 E. M. Spanton, K. C. Nowack, L. J. Du, G. Sullivan, R. R. Du, and K. A. Moler, Images of edge current in InAs/GaSb quantum wells, Phys. Rev. Lett. 113(2), 026804 (2014)
https://doi.org/10.1103/PhysRevLett.113.026804
38 L. J. Du, I. Knez, G. Sullivan, and R. R. Du, Robust helical edge transport in gated InAs/GaSb bilayers, Phys. Rev. Lett. 114(9), 096802 (2015)
https://doi.org/10.1103/PhysRevLett.114.096802
39 S. F. Wu, V. Fatemi, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Observation of the quantum spin Hall efft up to 100 kelvin in a monolayer crystal, Science 359(6371), 76 (2018)
https://doi.org/10.1126/science.aan6003
40 F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schafer, and R. Claessen, Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material, Science 357(6348), 287 (2017)
https://doi.org/10.1126/science.aai8142
41 Z. Y. Fei, T. Palomaki, S. Wu, W. Zhao, X. Cai, B. Sun, P. Nguyen, J. Finney, X. Xu, and D. H. Cobden, Edge conduction in monolayer WTe2, Nat. Phys. 13(7), 677 (2017)
https://doi.org/10.1038/nphys4091
42 S. J. Tang, C. Zhang, D. Wong, Z. Pedramrazi, H. Z. Tsai, C. Jia, B. Moritz, M. Claassen, H. Ryu, S. Kahn, J. Jiang, H. Yan, M. Hashimoto, D. Lu, R. G. Moore, C. C. Hwang, C. Hwang, Z. Hussain, Y. Chen, M. M. Ugeda, Z. Liu, X. Xie, T. P. Devereaux, M. F. Crommie, S. K. Mo, and Z. X. Shen, Quantum spin Hall state in monolayer 1T′-WTe2, Nat. Phys. 13(7), 683 (2017)
https://doi.org/10.1038/nphys4174
43 A. Roth, C. Brne, H. Buhmann, L. W. Molenkamp, J. Maciejko, X. L. Qi, and S. C. Zhang, Nonlocal transport in the quantum spin Hall state, Science 325(5938), 294 (2009)
https://doi.org/10.1126/science.1174736
44 I. Knez, C. T. Rettner, S. H. Yang, S. S. P. Parkin, L. J. Du, R. R. Du, and G. Sullivan, Observation of edge transport in the disordered regime of topologically insulating InAs/GaSb quantum wells, Phys. Rev. Lett. 112(2), 026602 (2014)
https://doi.org/10.1103/PhysRevLett.112.026602
45 J. J. Zhou, T. Zhou, S.-G. Cheng, H. Jiang, and Z. Q. Yang, Engineering topological quantum dot through planar magnetization in bismuthene, arxiv: 1812.11514 (2018)
46 L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76(4), 045302 (2007)
https://doi.org/10.1103/PhysRevB.76.045302
47 D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase, Nature 452(7190), 970 (2008)
https://doi.org/10.1038/nature06843
48 H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5(6), 438 (2009)
https://doi.org/10.1038/nphys1270
49 Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys. 5(6), 398 (2009)
https://doi.org/10.1038/nphys1274
50 D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of unconventional quantum spin textures in topological insulators, Science 323(5916), 919 (2009)
https://doi.org/10.1126/science.1167733
51 Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Experimental realization of a three-dimensional topological insulator Bi2Te3, Science 325(5937), 178 (2009)
https://doi.org/10.1126/science.1173034
52 J. S. Zhang, C. Z. Chang, Z. C. Zhang, J. Wen, X. Feng, K. Li, M. H. Liu, K. He, L. L. Wang, X. Chen, Q. K. Xue, X. C. Ma, and Y. Y. Wang, Band structure engineering in (Bi1–xSbx)2Te3 ternary topological insulators, Nat. Commun. 2(1), 574 (2011)
https://doi.org/10.1038/ncomms1588
53 D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, S. Adam, J. Paglione, and M. S. Fuhrer, Surface conduction of topological Dirac electrons in bulk insulating Bi Bi2Se3, Nat. Phys. 8(6), 459 (2012)
https://doi.org/10.1038/nphys2286
54 Y. Xu, I. Miotkowski, C. Liu, J. F. Tian, H. Nam, N. Alidoust, J. N. Hu, C. K. Shih, M. Z. Hasan, and Y. P. Chen, Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator, Nat. Phys. 10(12), 956 (2014)
https://doi.org/10.1038/nphys3140
55 D. A. Kozlov, Z. D. Kvon, E. B. Olshanetsky, N. N. Mikhailov, S. A. Dvoretsky, and D. Weiss, Transport properties of a 3D topological insulator based on a strained high-mobility HgTe film, Phys. Rev. Lett. 112(19), 196801 (2014)
https://doi.org/10.1103/PhysRevLett.112.196801
56 J. Liao, Y. B. Ou, X. Feng, S. Yang, C. J. Lin, W. M. Yang, K. H. Wu, K. He, X. C. Ma, Q. K. Xue, and Y. Q. Li, Observation of Anderson localization in ultrathin films of three-dimensional topological insulators, Phys. Rev. Lett. 114(21), 216601 (2015)
https://doi.org/10.1103/PhysRevLett.114.216601
57 H. C. Wang, H. W. Liu, C. Z. Chang, H. K. Zuo, Y. F. Zhao, Y. Sun, Z. C. Xia, K. He, X. C. Ma, X. C. Xie, Q. K. Xue, and J. Wang, Crossover between weak antilocalization and weak localization of bulk states in ultrathin Bi2Se3 films, Sci. Rep. 4(1), 5817 (2015)
https://doi.org/10.1038/srep05817
58 D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A tunable topological insulator in the spin helical Dirac transport regime, Nature 460(7259), 1101 (2009)
https://doi.org/10.1038/nature08234
59 L. Fu, Topological crystalline insulators, Phys. Rev. Lett. 106(10), 106802 (2011)
https://doi.org/10.1103/PhysRevLett.106.106802
60 C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)
https://doi.org/10.1103/RevModPhys.88.035005
61 S. Chakravarty and A. Schmid, Weak localization: The quasiclassical theory of electrons in a random potential, Phys. Rep. 140(4), 193 (1986)
https://doi.org/10.1016/0370-1573(86)90027-X
62 A. Stern, Y. Aharonov, and Y. Imry, Phase uncertainty and loss of interference: A general picture, Phys. Rev. A 41(7), 3436 (1990)
https://doi.org/10.1103/PhysRevA.41.3436
63 H. Jiang, S. Cheng, Q. F. Sun, and X. C. Xie, Topological insulator: A new quantized spin Hall resistance robust to dephasing, Phys. Rev. Lett. 103(3), 036803 (2009)
https://doi.org/10.1103/PhysRevLett.103.036803
64 I. Żutić, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2), 323 (2004)
https://doi.org/10.1103/RevModPhys.76.323
65 J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic, Semiconductor spintronics, Acta Phys. Slovaca 57(4–5), 565 (2007)
https://doi.org/10.2478/v10155-010-0086-8
66 T. L. Schmidt, S. Rachel, F. von Oppen, and L. I. Glazman, Inelastic electron backscattering in a generic helical edge channel, Phys. Rev. Lett. 108(15), 156402 (2012)
https://doi.org/10.1103/PhysRevLett.108.156402
67 J. I. Väyrynen, M. Goldstein, and L. I. Glazman, Helical edge resistance introduced by charge puddles, Phys. Rev. Lett. 110(21), 216402 (2013)
https://doi.org/10.1103/PhysRevLett.110.216402
68 J. C. Budich, F. Dolcini, P. Recher, and B. Trauzettel, Phonon-induced backscattering in helical edge states, Phys. Rev. Lett. 108(8), 086602 (2012)
https://doi.org/10.1103/PhysRevLett.108.086602
69 J. J. Qi, H. W. Liu, H. Jiang, and X. C. Xie, Effective spin dephasing mechanism in confined two-dimensional topological insulators, Sci. China Phys. Mech. Astron. 59(7), 677811 (2016)
https://doi.org/10.1007/s11433-016-0100-1
70 H. W. Liu, H. Jiang, Q. F. Sun, and X. C. Xie, Dephasing effect on backscattering of helical surface states in 3D topological insulators, Phys. Rev. Lett. 113(4), 046805 (2014)
https://doi.org/10.1103/PhysRevLett.113.046805
71 J. Liao, Y. B. Ou, H. W. Liu, K. He, X. C. Ma, Q. K. Xue, and Y. Q. Li, Enhanced electron dephasing in threedimensional topological insulators, Nat. Commun. 8(1), 16071 (2017)
https://doi.org/10.1038/ncomms16071
72 C. Wu, B. A. Bernevig, and S. C. Zhang, Helical liquid and the edge of quantum spin Hall systems, Phys. Rev. Lett. 96(10), 106401 (2006)
https://doi.org/10.1103/PhysRevLett.96.106802
73 Q. F. Sun, J. Wang, and H. Guo, Quantum transport theory for nanostructures with Rashba spin–orbital interaction, Phys. Rev. B 71(16), 165310 (2005)
https://doi.org/10.1103/PhysRevB.71.165310
74 Y. Meir and N. S. Wingreen, Landauer formula for the current through an interacting electron region, Phys. Rev. Lett. 68(16), 2512 (1992)
https://doi.org/10.1103/PhysRevLett.68.2512
75 A. P. Jauho, N. S. Wingreen, and Y. Meir, Timedependent transport in interacting and noninteracting resonant-tunneling systems, Phys. Rev. B 50(8), 5528 (1994)
https://doi.org/10.1103/PhysRevB.50.5528
76 S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995
https://doi.org/10.1017/CBO9780511805776
77 M. Büttiker, Role of quantum coherence in series resistors, Phys. Rev. B 33(5), 3020 (1986)
https://doi.org/10.1103/PhysRevB.33.3020
78 Y. X. Xing, Q. F. Sun, and J. Wang, Inuence of dephasing on the quantum Hall effect and the spin Hall effect, Phys. Rev. B 77(11), 115346 (2008)
https://doi.org/10.1103/PhysRevB.77.115346
79 E. J. Koop, B. J. van Wees, D. Reuter, A. D. Wieck, and C. H. van der Wal, Spin accumulation and spin relaxation in a large open quantum dot, Phys. Rev. Lett. 101(5), 056602 (2008)
https://doi.org/10.1103/PhysRevLett.101.056602
80 S. M. Frolov, A. Venkatesan, W. Yu, J. A. Folk, and W. Wegscheider, Electrical generation of pure spin currents in a two-dimensional electron gas, Phys. Rev. Lett. 102(11), 116802 (2009)
https://doi.org/10.1103/PhysRevLett.102.116802
81 Q. F. Sun, Y. X. Xing, and S. Q. Shen, Double quantum dot as detector of spin bias, Phys. Rev. B 77(19), 195313 (2008)
https://doi.org/10.1103/PhysRevB.77.195313
82 Y. X. Xing, Q. F. Sun, and J. Wang, Spin bias measurement based on a quantum point contact, Appl. Phys. Lett. 93(14), 142107 (2008)
https://doi.org/10.1063/1.2999587
83 Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Observation of the spin Hall effect in Semiconductors, Science 306(5703), 1910 (2004)
https://doi.org/10.1126/science.1105514
84 V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, and D. D. Awschalom, Generating spin currents in semiconductors with the spin Hall effect, Phys. Rev. Lett. 97(9), 096605 (2006)
https://doi.org/10.1103/PhysRevLett.97.096605
85 M. König, M. Baenninger, A. G. F. Garcia, N. Harjee, B. L. Pruitt, C. Ames, P. Leubner, C. Brüne, H. Buhmann, L. W. Molenkamp, and D. Goldhaber-Gordon, Spatially resolved study of backscattering in the quantum spin Hall state, Phys. Rev. X 3, 021003 (2013)
https://doi.org/10.1103/PhysRevX.3.021003
86 R. Jackiw and C. Rebbi, Solitons with fermion number 1/2, Phys. Rev. D 13(12), 3398 (1976)
https://doi.org/10.1103/PhysRevD.13.3398
87 F. Zhang, C. L. Kane, and E. J. Mele, Surface states of topological insulators, Phys. Rev. B 86(8), 081303 (2012)
https://doi.org/10.1103/PhysRevB.86.081303
88 W. Y. Shan, J. Lu, H. Z. Lu, and S. Q. Shen, Vacancyinduced bound states in topological insulators, Phys. Rev. B 84(3), 035307 (2011)
https://doi.org/10.1103/PhysRevB.84.035307
89 A. Ström, H. Johannesson, and G. I. Japaridze, Edge dynamics in a quantum spin Hall state: Effects from Rashba spin–orbit interaction, Phys. Rev. Lett. 104(25), 256804 (2010)
https://doi.org/10.1103/PhysRevLett.104.256804
90 J. Fabian and S. Das Sarma, Phonon-induced spin relaxation of conduction electrons in aluminum, Phys. Rev. Lett. 83(6), 1211 (1999)
https://doi.org/10.1103/PhysRevLett.83.1211
91 G. Grimvall, Electron–Phonon Interaction in Metals, North-Holland Pub, 1981
92 K. Saha and I. Garate, Phonon-induced topological insulation, Phys. Rev. B 89(20), 205103 (2014)
https://doi.org/10.1103/PhysRevB.89.205103
93 E. Lhuillier, S. Keuleyan, and P. Guyot-Sionnest, Optical properties of HgTe colloidal quantum dots, Nanotechnology 23(17), 175705 (2012)
https://doi.org/10.1088/0957-4484/23/17/175705
94 A. Fasolino, E. Molinari, and J. C. Maan, Calculated superlattice and interface phonons of InAs/GaSb superlattices, Phys. Rev. B 33(12), 8889 (1986)
https://doi.org/10.1103/PhysRevB.33.8889
95 D. Hernangómez-Pérez, J. Ulrich, S. Florens, and T. Champel, Spectral properties and local density of states of disordered quantum Hall systems with Rashba spin– orbit coupling, Phys. Rev. B 88(24), 245433 (2013)
https://doi.org/10.1103/PhysRevB.88.245433
96 S. Y. Xu, Y. Xia, L. A. Wray, S. Jia, F. Meier, J. H. Dil, J. Osterwalder, B. Slomski, A. Bansil, H. Lin, R. J. Cava, and M. Z. Hasan, Topological phase transition and texture inversion in a tunable topological insulator, Science 332(6029), 560 (2011)
https://doi.org/10.1126/science.1201607
97 T. Sato, K. Segawa, K. Kosaka, S. Souma, K. Nakayama, K. Eto, T. Minami, Y. Ando, and T. Takahashi, Unexpected mass acquisition of Dirac fermions at the quantum phase transition of a topological insulator, Nat. Phys. 7(11), 840 (2011)
https://doi.org/10.1038/nphys2058
98 S. Y. Xu, M. Neupane, C. Liu, D. M. Zhang, A. Richardella, L. A. Wray, N. Alidoust, M. Leandersson, T. Balasubramanian, J. Snchez-Barriga, O. Rader, G. Landolt, B. Slomski, J. H. Dil, J. Osterwalder, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, N. Samarth, and M. Z. Hasan, Hedgehog spin texture and Berrys phase tuning in a magnetic topological insulator, Nat. Phys. 8(8), 616 (2012)
https://doi.org/10.1038/nphys2351
99 S. Souma, M. Komatsu, M. Nomura, T. Sato, A. Takayama, T. Takahashi, K. Eto, K. Segawa, and Y. Ando, Spin polarization of gapped Dirac surface states near the topological phase transition in TlBi(S1–xSex)2, Phys. Rev. Lett. 109(18), 186804 (2012)
https://doi.org/10.1103/PhysRevLett.109.186804
100 B. L. Altshuler and A. G. Aronov, Electron–Electron Interactions in Disordered Systems, edited by A. L. Efros and M. Pollak, Elsevier, Amsterdam, 1985
https://doi.org/10.1016/B978-0-444-86916-6.50007-7
101 D. Belitz and S. Das Sarma, Inelastic phase-coherence time in thin metal films, Phys. Rev. B 36(14), 7701 (1987)
https://doi.org/10.1103/PhysRevB.36.7701
102 V. B. Berestetskii, E. M. Lifshits, and L. P. Pitaevskii, Quantum Electrodynamics, Elsevier, Oxford, 1971
103 Y. Imry, Introduction to Mesoscopic Physics, Oxford University Press, 2008
104 B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky, Effects of electron–electron collisions with small energy transfers on quantum localisation, J. Phys. C Solid State Phys. 15(36), 7367 (1982)
https://doi.org/10.1088/0022-3719/15/36/018
105 B. I. Shklovskii and A. L. Efros, Electron Properties of Doped Semiconductors, Springer Science and Business Media, 2013
106 S. Malzard, C. Poli, and H. Schomerus, Topologically protected defect states in open photonic systems with non- Hermitian charge-conjugation and parity-time symmetry, Phys. Rev. Lett. 115(20), 200402 (2015)
https://doi.org/10.1103/PhysRevLett.115.200402
107 P. San-Jose, J. Cayao, E. Prada, and R. Aguado, Majorana bound states from exceptional points in nontopological superconductors, Sci. Rep. 6(1), 21427 (2016)
https://doi.org/10.1038/srep21427
108 T. E. Lee, Anomalous edge state in a non-Hermitian lattice, Phys. Rev. Lett. 116(13), 133903 (2016)
https://doi.org/10.1103/PhysRevLett.116.133903
109 D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori, Edge modes, degeneracies, and topological numbers in non-Hermitian systems, Phys. Rev. Lett. 118(4), 040401 (2017)
https://doi.org/10.1103/PhysRevLett.118.040401
110 Y. Xu, S. T. Wang, and L. M. Duan, Weyl exceptional rings in a three-dimensional dissipative cold atomic gas, Phys. Rev. Lett. 118(4), 045701 (2017)
https://doi.org/10.1103/PhysRevLett.118.045701
111 Z. P. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, Topological phases of non- Hermitian systems, Phys. Rev. X 8(3), 031079 (2018)
https://doi.org/10.1103/PhysRevX.8.031079
112 H. Jiang, C. Yang, and S. Chen, Topological invariants and phase diagrams for one-dimensional two-band non- Hermitian systems without chiral symmetry, Phys. Rev. A 98(5), 052116 (2018)
https://doi.org/10.1103/PhysRevA.98.052116
113 S. Y. Yao and Z. Wang, Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett. 121(8), 086803 (2018)
https://doi.org/10.1103/PhysRevLett.121.086803
114 S. Y. Yao, F. Song, and Z. Wang, Non-Hermitian Chern bands, Phys. Rev. Lett. 121(13), 136802 (2018)
https://doi.org/10.1103/PhysRevLett.121.136802
115 Private communication with Y. Y. Wang.
116 F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80(4), 1355 (2008)
https://doi.org/10.1103/RevModPhys.80.1355
117 J. J. Qi, H. W. Liu, C. Z. Chen, H. Jiang, and X. C. Xie, Quantum to classical crossover under dephasing effects in a two-dimensional percolation model, arxiv: 1903.01764 (2019)
118 H. Jiang, L. Wang, Q. F. Sun, and X. C. Xie, Numerical study of the topological Anderson insulator in HgTe/CdTe quantum wells, Phys. Rev. B 80(16), 165316 (2009)
https://doi.org/10.1103/PhysRevB.80.165316
119 D. W. Xu, J. J. Qi, J. Liu, X. C. Sacksteder, X. C. Xie, and H. Jiang, Phase structure of the topological Anderson insulator, Phys. Rev. B 85(19), 195140 (2012)
https://doi.org/10.1103/PhysRevB.85.195140
120 C. Z. Chen, H. W. Liu, H. Jiang, Q. F. Sun, Z. Q. Wang, and X. C. Xie, Tunable Anderson metal-insulator transition in quantum spin-Hall insulators, Phys. Rev. B 91(21), 214202 (2015)
https://doi.org/10.1103/PhysRevB.91.214202
121 C. Z. Chen, J. T. Song, H. Jiang, Q. F. Sun, Z. Q. Wang, and X. C. Xie, Disorder and metal-insulator transitions in Weyl semimetals, Phys. Rev. Lett. 115(24), 246603 (2015)
https://doi.org/10.1103/PhysRevLett.115.246603
122 C. Z. Chen, H. Liu, and X. C. Xie, Effects of random domains on the zero Hall plateau in the quantum anomalous Hall effect, Phys. Rev. Lett. 122(2), 026601 (2019)
https://doi.org/10.1103/PhysRevLett.122.026601
123 Y. Ando and L. Fu, Topological crystalline insulators and topological superconductors: From concepts to materials, Annu. Rev. Condens. Matter Phys. 6(1), 361 (2015)
https://doi.org/10.1146/annurev-conmatphys-031214-014501
124 B. H. Yan and C. Felser, Topological materials: Weyl semimetals, Annu. Rev. Condens. Matter Phys. 8(1), 337 (2017)
https://doi.org/10.1146/annurev-conmatphys-031016-025458
125 W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized electric multipole insulators, Science 357(6346), 61 (2017)
https://doi.org/10.1126/science.aah6442
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed