Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (6): 61601   https://doi.org/10.1007/s11467-019-0914-3
  本期目录
Probing intensity-field correlations of single-molecule surface-enhanced Raman-scattered light
O. de los Santos-Sánchez()
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apdo. Postal 48-3, Cuernavaca, Morelos 62251, México
 全文: PDF(1757 KB)  
Abstract

In the context of the quantum-mechanical description of single-molecule surface-enhanced Raman scattering, intensity-field correlation measurements of photons emitted from a plasmonic cavity are explored, theoretically, using the technique of conditional homodyne detection. The inelastic interplay between plasmons and vibrations of a diatomic molecule placed inside the cavity can be manifested in phase-dependent third-order fluctuations of the light recorded by the aforesaid technique, allowing us to reveal signatures of non-classicality (indicatives of squeezing) of the outgoing Raman photons.

Key wordsRaman scattering    SERS    phase-dependent fluctuations    squeezing    plasmonics
收稿日期: 2019-04-09      出版日期: 2019-07-09
Corresponding Author(s): O. de los Santos-Sánchez   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(6): 61601.
O. de los Santos-Sánchez. Probing intensity-field correlations of single-molecule surface-enhanced Raman-scattered light. Front. Phys. , 2019, 14(6): 61601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0914-3
https://academic.hep.com.cn/fop/CN/Y2019/V14/I6/61601
1 L. E. C. Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects, Elsevier, 2009
2 F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, Single-molecule opto-mechanics in “picocavities”, Science 354(6313), 726 (2016)
https://doi.org/10.1126/science.aah5243
3 A. Lombardi, M. K. Schmidt, L. Weller, W. M. Deacon, F. Benz, B. de Nijs, J. Aizpurua, and J. J. Baumberg, Pulsed molecular opto-mechanics in plasmonic nanocavities: From nonlinear vibrational instabilities to bondbreaking, Phys. Rev. X 8(1), 011016 (2018)
https://doi.org/10.1103/PhysRevX.8.011016
4 A. M. Kern, D. Zhang, M. Brecht, A. I. Chizhik, A. V. Failla, F. Wackenhut, and A. J. Meixner, Enhanced single-molecule spectroscopy in highly confined optical fields: From l/2-Fabry–Pérot resonators to plasmonic nano-antenas, Chem. Soc. Rev. 43(4), 1263 (2014)
https://doi.org/10.1039/C3CS60357A
5 H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, Toward plasmon-induced photo-exitation of molecules, J. Phys. Chem. Lett. 1(16), 2470 (2010)
https://doi.org/10.1021/jz100914r
6 R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature 498(7452), 82 (2013)
https://doi.org/10.1038/nature12151
7 P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. Hueso, J. Aizpurua, and R. Hillenbrand, Resolving the electromagnetic mechanism of surfaceenhanced light scattering at single hot spots, Nat. Commun. 3(1), 684 (2012)
https://doi.org/10.1038/ncomms1674
8 S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, Seeing a single molecule vibrate through rime-resolved coherent anti-Stokes Raman scattering, Nat. Photonics 8(8), 650 (2014)
https://doi.org/10.1038/nphoton.2014.143
9 R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, Single-molecule strong coupling at room temperature in plasmonic nanocavities, Nature 535(7610), 127 (2016)
https://doi.org/10.1038/nature17974
10 Y. Huang, Y. Fang, Z. Zhang, L. Zhu, and M. Sun, Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering, Light Sci. Appl. 3(8), e199 (2014)
https://doi.org/10.1038/lsa.2014.80
11 S. J. P. Kress, F. V. Antolinez, P. Richner, S. V. Jayanti, D. K. Kim, F. Prins, A. Riedinger, M. P. C. Fischer, S. Meyer, K. M. McPeak, D. Poulikakos, and D. J. Norris, Wedge waveguides and resonators for quantum plasmonics, Nano Lett. 15(9), 6267 (2015)
https://doi.org/10.1021/acs.nanolett.5b03051
12 C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. Tame, Quantum plasmonic sensing: Beyond the shot noise and diffraction limit, ACS Photonics 3(6), 992 (2016)
https://doi.org/10.1021/acsphotonics.6b00082
13 F. Peyskens, A. Dhakal, P. van Dorpe, N. Le Thomas, and R. Baets, Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform, ACS Photonics 3(1), 102 (2016)
https://doi.org/10.1021/acsphotonics.5b00487
14 M. D. Baaske and F. Vollmer, Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution, Nat. Photonics 10(11), 733 (2016)
https://doi.org/10.1038/nphoton.2016.177
15 M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling, Nano Lett. 10(3), 891 (2010)
https://doi.org/10.1021/nl903555u
16 H. Xu, E. J. Bjerneld, M. Köll, and L. Börjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett. 83(21), 4357 (1999)
https://doi.org/10.1103/PhysRevLett.83.4357
17 C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates, Nano Lett. 5(8), 1569 (2005)
https://doi.org/10.1021/nl050928v
18 W. Zhu and K. B. Crozier, Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering, Nat. Commun. 5(1), 5228 (2014)
https://doi.org/10.1038/ncomms6228
19 M. Takase, S. Yasuda, and K. Murakoshi, Single-site surface-enhanced Raman scattering beyond spectroscopy, Front. Phys. 11(2), 117803 (2016)
https://doi.org/10.1007/s11467-015-0490-0
20 R. Hanbury-Brown and R. Q. Twiss, Correlations between photons in two coherent beams of light, Nature 177(4497), 27 (1956)
https://doi.org/10.1038/177027a0
21 D. F. Walls and P. Zoller, Reduced quantum fluctuations in resonance fluorescence, Phys. Rev. Lett. 47(10), 709 (1981)
https://doi.org/10.1103/PhysRevLett.47.709
22 R. Loudon and P. L. Knight, Squeezed light, J. Mod. Opt. 34(6–7), 709 (1987)
https://doi.org/10.1080/09500348714550721
23 H. J. Carmichael, H. M. Castro-Beltrán, G. T. Foster, and L. A. Orozco, Giant violations of classical inequalities through conditional homodyne detection of the quadrature amplitudes of light, Phys. Rev. Lett. 85(9), 1855 (2000)
https://doi.org/10.1103/PhysRevLett.85.1855
24 G. T. Foster, L. A. Orozco, H. M. Castro-Beltrán, and H. J. Carmichael, Quantum state reduction and conditional time evolution of wave-particle correlations in cavity QED, Phys. Rev. Lett. 85(15), 3149 (2000)
https://doi.org/10.1103/PhysRevLett.85.3149
25 G. T. Foster, W. P. Smith, J. E. Reiner, and L. A. Orozco, Third-order correlations in cavity quantum electrodynamics, J. Opt. B Quantum Semiclassical Opt. 4(4), 306 (2002)
https://doi.org/10.1088/1464-4266/4/4/306
26 A. Denisov, H. M. Castro-Beltrán, and H. J. Carmichael, Time-asymmetric fluctuations of light and the breakdown of detailed balance, Phys. Rev. Lett. 88(24), 243601 (2002)
https://doi.org/10.1103/PhysRevLett.88.243601
27 H. J. Carmichael, G. T. Foster, L. A. Orozco, J. E. Reiner, and P. R. Rice, Intensity-field correlations of nonclassical light, Progress in Optics, E. Wolf (), Elsevier, 2004, p. 46
https://doi.org/10.1016/S0079-6638(03)46005-8
28 A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, Coherent coupling of molecular resonators with a microcavity mode, Nat. Commun. 6(1), 5981 (2015)
https://doi.org/10.1038/ncomms6981
29 T. J. Kippenberg and K. J. Vahala, Cavity optomechanics, Opt. Express 15(25), 17172 (2007)
https://doi.org/10.1364/OE.15.017172
30 M. K. Schmidt, R. Esteban, A. González-Tudela, G. Giedke, and J. Aizpurua, Quantum mechanical description of raman scattering from molecules in plasmonic cavities, ACS Nano 10(6), 6291 (2016)
https://doi.org/10.1021/acsnano.6b02484
31 M. K. Schmidt, R. Esteban, F. Benz, J. J. Baumberg, and J. Aizpurua, Linking classical and molecular optomechanics descriptions of SERS, Faraday Discuss. 205, 31 (2017)
https://doi.org/10.1039/C7FD00145B
32 P. Roelli, C. Galland, N. Piro, and T. J. Kippenberg, Molecular cavity opto-mechanics as a theory of plasmonenhanced Raman scattering, Nat. Nanotechnol. 11(2), 164 (2016)
https://doi.org/10.1038/nnano.2015.264
33 M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
https://doi.org/10.1103/RevModPhys.86.1391
34 M. K. Dezfouli and S. Hughes, Quantum optics model of surface-enhanced Raman spectroscopy for arbitrarily shaped plasmonic resonators, ACS Photonics 4(5), 1245 (2017)
https://doi.org/10.1021/acsphotonics.7b00157
35 H. J. Carmichael, An Open Systems Approach to Quantum Optics, Springer-Verlag, 1993
https://doi.org/10.1007/978-3-540-47620-7
36 C. A. Parra-Murillo, M. F. Santos, C. H. Monken, and A. Jorio, Stokes–anti-Stokes correlation in the inelastic scattering of light by matter and generalization of the Bose–Einstein population function, Phys. Rev. B 93(12), 125141 (2016)
https://doi.org/10.1103/PhysRevB.93.125141
37 E. R. Marquina-Cruz and H. M. Castro-Beltrán, Nonclassicality of resonance fluorescence via amplitude-intensity field correlations, Laser Phys. 18(2), 157 (2008)
https://doi.org/10.1134/S1054660X08020102
38 H. M. Castro-Beltrán, Phase-dependent fluctuations of resonance fluorescence beyond the squeezing regime, Opt. Commun. 283(23), 4680 (2010)
https://doi.org/10.1016/j.optcom.2010.07.008
39 H. M. Castro-Beltrán, L. Gutiérrez, and L. Horvath, Squeezed versus non-Gaussian fluctuations in resonance fluorescence, Appl. Math. Inf. Sci. 9, 2849 (2015)
40 H. M. Castro-Beltrán, R. Román-Ancheyta, and L. Gutiérrez, Phase-dependent fluctuations of intermittent resonance fluorescence, Phys. Rev. A 93(3), 033801 (2016)
https://doi.org/10.1103/PhysRevA.93.033801
41 L. Gutiérrez, H. M. Castro-Beltrán, R. Román-Ancheyta, and L. Horvath, Large time-asymmetric quantum fluctuations in amplitude-intensity correlation measurements of V-type three-level atom resonance fluorescence, J. Opt. Soc. Am. B 34(11), 2301 (2017)
https://doi.org/10.1364/JOSAB.34.002301
42 J. E. Reiner, W. P. Smith, L. A. Orozco, H. J. Carmichael, and P. R. Rice, Time evolution and squeezing of the field amplitude in cavity QED, J. Opt. Soc. Am. B 18(12), 1911 (2001)
https://doi.org/10.1364/JOSAB.18.001911
43 C. E. Strimbu, J. Leach, and P. R. Rice, Conditioned homodyne detection at the single-photon level: Intensityfield correlations for a two-level atom in an optical parametric oscillator, Phys. Rev. A 71(1), 013807 (2005)
https://doi.org/10.1103/PhysRevA.71.013807
44 F. Wang, X. Feng, and C. H. Oh, Intensity-intensity and intensity-amplitude correlation of microwave photons from a superconducting artificial atom, Laser Phys. Lett. 13(10), 105201 (2016)
https://doi.org/10.1088/1612-2011/13/10/105201
45 Q. Xu and K. Mølmer, Intensity and amplitude correlations in the fluorescence from atoms with interacting Rydberg states, Phys. Rev. A 92(3), 033830 (2015)
https://doi.org/10.1103/PhysRevA.92.033830
46 Q. Xu, E. Greplova, B. Julsgaard, and K. Mølmer, Correlation functions and conditioned quantum dynamics in photodetection theory, Phys. Scr. 90(12), 128004 (2015)
https://doi.org/10.1088/0031-8949/90/12/128004
47 S. Gerber, D. Rotter, L. Slodicka, J. Eschner, H. J. Carmichael, and R. Blatt, Intensity-field correlations of single-atom resonance fluorescence, Phys. Rev. Lett. 102(18), 183601 (2009)
https://doi.org/10.1103/PhysRevLett.102.183601
48 W. Vogel, Squeezing and anomalous moments in resonance fluorescence, Phys. Rev. Lett. 67(18), 2450 (1991)
https://doi.org/10.1103/PhysRevLett.67.2450
49 W. Vogel, Homodyne correlation measurements with weak local oscillators, Phys. Rev. A 51(5), 4160 (1995)
https://doi.org/10.1103/PhysRevA.51.4160
50 M. J. Collett, D. F. Walls, and P. Zoller, Spectrum of squeezing in resonance fluorescence, Opt. Commun. 52(2), 145 (1984)
https://doi.org/10.1016/0030-4018(84)90300-6
51 P. R. Rice and H. J. Carmichael, Nonclassical effects in optical spectra, J. Opt. Soc. Am. B 5(8), 1661 (1988)
https://doi.org/10.1364/JOSAB.5.001661
52 J. R. Johansson, P. D. Nation, and F. Nori, QuTiP 2: A Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 184(4), 1234 (2013)
https://doi.org/10.1016/j.cpc.2012.11.019
53 G. Nienhuis, Spectral correlations in resonance fluorescence, Phys. Rev. A 47(1), 510 (1993)
https://doi.org/10.1103/PhysRevA.47.510
54 E. del Valle, A. Gonzalez-Tudela, F. P. Laussy, C. Tejedor, and M. J. Hartmann, Theory of frequency-filtered and time-resolved N-photon correlations, Phys. Rev. Lett. 109(18), 183601 (2012)
https://doi.org/10.1103/PhysRevLett.109.183601
55 A. Frank, R. Lemus, M. Carvajal, C. Jung, and E. Ziemniak, SU(2) approximation to the coupling of Morse oscillators, Chem. Phys. Lett. 308(1–2), 91 (1999)
https://doi.org/10.1016/S0009-2614(99)00576-X
56 M. Carvajal, R. Lemus, A. Frank, C. Jung, and E. Ziemniak, An extended SU(2) model for coupled Morse oscillators, Chem. Phys. 260(1–2), 105 (2000)
https://doi.org/10.1016/S0301-0104(00)00258-5
57 M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, et al., Roadmap on plasmonics, J. Opt. 20, 043001 (2018)
https://doi.org/10.1088/2040-8986/aaa114
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed