Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (6): 63601   https://doi.org/10.1007/s11467-019-0916-1
  本期目录
Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods
Guo-Feng Zhang1(), Chang-Gang Yang1, Yong Ge2, Yong-Gang Peng3(), Rui-Yun Chen1, Cheng-Bing Qin1, Yan Gao1, Lei Zhang1, Hai-Zheng Zhong2, Yu-Jun Zheng3, Lian-Tuan Xiao1(), Suo-Tang Jia1
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
2. Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
3. School of Physics, Shandong University, Jinan 250100, China
 全文: PDF(3261 KB)  
Abstract

We report an experimental investigation of the influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods (DRs), which is important for their polarization-based practical applications. By covering the single DRs with N-type semiconductor indium tin oxide (ITO) nanoparticles, the surface of single DRs is charged by ITO through interfacial electron transfer. This is confirmed by the experimental observations of the reduced photoluminescence intensities and lifetimes as well as the suppressing blinking. It is found that the full width at half maximum of histogram of polarization degrees of the single DRs is broadened from 0.24 (on glass) to 0.41 (in ITO). In order to explain the exprimental results, the band-edge exciton fine structure of single DRs is calculated by taking into account the sample parameters, the emission polarization, and the surface charges. The calculation results show that the level ordering of the emitting states determines the polarization degrees tending to increase or decrease under the influence of surface electrons. The surface electrons can induce an increase in the spacing between the emitting levels to change the populations and thus change the polarization degrees. In addition, different numbers of surface electrons may randomly distribute on the long CdSe/CdS rods, leading to the heterogeneous influences on the single DRs causing the broadening of polarization degrees also.

Key wordssingle CdSe/CdS dot-in-rods    polarization properties    surface charges    band-edge exciton fine structure
收稿日期: 2019-05-17      出版日期: 2019-08-21
Corresponding Author(s): Guo-Feng Zhang,Yong-Gang Peng,Lian-Tuan Xiao   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(6): 63601.
Guo-Feng Zhang, Chang-Gang Yang, Yong Ge, Yong-Gang Peng, Rui-Yun Chen, Cheng-Bing Qin, Yan Gao, Lei Zhang, Hai-Zheng Zhong, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods. Front. Phys. , 2019, 14(6): 63601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0916-1
https://academic.hep.com.cn/fop/CN/Y2019/V14/I6/63601
1 Z. G. Xiao, R. A. Kerner, L. F. Zhao, N. L. Tran, K. M. Lee, T. W. Koh, G. D. Scholes, and B. P. Rand, Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites, Nat. Photonics 11(2), 108 (2017)
https://doi.org/10.1038/nphoton.2016.269
2 D. Han, M. Imran, M. Zhang, S. Chang, X. Wu, X. Zhang, J. Tang, M. Wang, S. Ali, X. Li, G. Yu, J. Han, L. Wang, B. Zou, and H. Zhong, Efficient light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals: The enhancing role of the ligand-assisted reprecipitation process, ACS Nano 12(8), 8808 (2018)
https://doi.org/10.1021/acsnano.8b05172
3 V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. Eisler, and M. G. Bawendi, Optical gain and stimulated emission in nanocrystal quantum dots, Science 290(5490), 314 (2000)
https://doi.org/10.1126/science.290.5490.314
4 D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulovic, Photodetectors based on treated CdSe quantumdot films, Appl. Phys. Lett. 87(21), 213505 (2005)
https://doi.org/10.1063/1.2136227
5 G. C. Shan, Z. Q. Yin, C. H. Shek, and W. Huang, Single photon sources with single semiconductor quantum dots, Front. Phys. 9(2), 170 (2014)
https://doi.org/10.1007/s11467-013-0360-6
6 W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, Iodide management in formamidiniumlead- halide-based perovskite layers for efficient solar cells, Science 356(6345), 1376 (2017)
https://doi.org/10.1126/science.aan2301
7 W. D. Sheng, M. Korkusinski, A. D. Guclu, M. Zielinski, P. Potasz, E. S. Kadantsev, O. Voznyy, and P. Hawrylak, Electronic and optical properties of semiconductor and graphene quantum dots, Front. Phys. 7(3), 328 (2012)
https://doi.org/10.1007/s11467-011-0200-5
8 Y. Y. Fan, H. L. Liu, R. C. Han, L. Huang, H. Shi, Y. L. Sha, and Y. Q. Jiang, Extremely high brightness from polymer-encapsulated quantum dots for two-photon cellular and deep-tissue imaging, Sci. Rep. 5(1), 9908 (2015)
https://doi.org/10.1038/srep09908
9 E. M. Thomas, S. Ghimire, R. Kohara, A. N. Anil, K. Yuyama, Y. Takano, K. G. Thomas, and V. Biju, Blinking suppression in highly excited CdSe/ZnS quantum dots by electron transfer under large positive Gibbs (free) energy change, ACS Nano 12(9), 9060 (2018)
https://doi.org/10.1021/acsnano.8b03010
10 G. Luo, Z. Z. Zhang, H. O. Li, X. X. Song, G. W. Deng, G. Cao, M. Xiao, and G. P. Guo, Quantum dot behavior in transition metal dichalcogenides nanostructures, Front. Phys. 12(4), 128502 (2017)
https://doi.org/10.1007/s11467-017-0652-3
11 H. Huang, L. Polavarapu, J. A. Sichert, A. S. Susha, A. S. Urban, and A. L. Rogach, Colloidal lead halide perovskite nanocrystals: Synthesis, optical properties and applications, NPG Asia Mater. 8(11), e328 (2016)
https://doi.org/10.1038/am.2016.167
12 H. Yuan, E. Debroye, E. Bladt, G. Lu, M. Keshavarz, K. P. F. Janssen, M. B. J. Roeffaers, S. Bals, E. H. Sargent, and J. Hofkens, Imaging heterogeneously distributed photo-active traps in perovskite single crystals, Adv. Mater. 30(13), 1705494 (2018)
https://doi.org/10.1002/adma.201705494
13 Q. S. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, All-inorganic perovskite nanocrystal scintillators, Nature 561(7721), 88 (2018)
https://doi.org/10.1038/s41586-018-0451-1
14 Q. B. Zeng, S. Chen, L. You, and R. Lu, Transport through a quantum dot coupled to two Majorana bound states, Front. Phys. 12(4), 127302 (2017)
https://doi.org/10.1007/s11467-016-0620-3
15 A. Sitt, I. Hadar, and U. Banin, Band-gap engineering, optoelectronic properties and applications of colloidal heterostructured semiconductor nanorods, Nano Today 8(5), 494 (2013)
https://doi.org/10.1016/j.nantod.2013.08.002
16 T. Kodanek, H. M. Banbela, S. Naskar, P. Adel, N. C. Bigall, and D. Dorfs, Phase transfer of 1- and 2-dimensional Cd-based nanocrystals, Nanoscale 7(45), 19300 (2015)
https://doi.org/10.1039/C5NR06221G
17 D. V. Talapin, R. Koeppe, S. Gotzinger, A. Kornowski, J. M. Lupton, A. L. Rogach, O. Benson, J. Feldmann, and H. Weller, Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality, Nano Lett. 3(12), 1677 (2003)
https://doi.org/10.1021/nl034815s
18 I. Coropceanu, A. Rossinelli, J. R. Caram, F. S. Freyria, and M. G. Bawendi, Slow-injection growth of seeded CdSe/CdS nanorods with unity fluorescence quantum yield and complete shell to core energy transfer, ACS Nano 10(3), 3295 (2016)
https://doi.org/10.1021/acsnano.5b06772
19 M. Saba, S. Minniberger, F. Quochi, J. Roither, M. Marceddu, A. Gocalinska, M. V. Kovalenko, D. V. Talapin, W. Heiss, A. Mura, and G. Bongiovanni, Excitonexciton interaction and optical gain in colloidal CdSe/ CdS dot/rod nanocrystals, Adv. Mater. 21(48), 4942 (2009)
https://doi.org/10.1002/adma.200901482
20 C. D. Sonnichsen, T. Kipp, X. Tang, and P. Kambhampati, Efficient optical gain in CdSe/CdS dots-in-rods, ACS Photonics 6(2), 382 (2019)
https://doi.org/10.1021/acsphotonics.8b01033
21 Y. Gao, V. D. Ta, X. Zhao, Y. Wang, R. Chen, E. Mutlugun, K. E. Fong, S. T. Tan, C. Dang, X. W. Sun, H. Sun, and H. V. Demir, Observation of polarized gain from aligned colloidal nanorods, Nanoscale 7(15), 6481 (2015)
https://doi.org/10.1039/C4NR07395A
22 M. Allione, A. Ballester, H. B. Li, A. Comin, J. L. Movilla, J. I. Climente, L. Manna, and I. Moreels, Twophoton-induced blue shift of core and shell optical transitions in colloidal CdSe/CdS quasi-type II quantum rods, ACS Nano 7(3), 2443 (2013)
https://doi.org/10.1021/nn3057559
23 A. Shabaev and A. L. Efros, 1D exciton spectroscopy of semiconductor nanorods, Nano Lett. 4(10), 1821 (2004)
https://doi.org/10.1021/nl049216f
24 N. Le Thomas, E. Herz, O. Schops, U. Woggon, and M. V. Artemyev, Exciton fine structure in single CdSe nanorods, Phys. Rev. Lett. 94(1), 016803 (2005)
https://doi.org/10.1103/PhysRevLett.94.016803
25 Y. Louyer, L. Biadala, J. B. Trebbia, M. J. Fernee, P. Tamarat, and B. Lounis, Efficient biexciton emission in elongated CdSe/ZnS nanocrystals, Nano Lett. 11(10), 4370 (2011)
https://doi.org/10.1021/nl202506c
26 S. Vezzoli, M. Manceau, G. Lemenager, Q. Glorieux, E. Giacobino, L. Carbone, M. De Vittorio, and A. Bramati, Exciton fine structure of CdSe/CdS nanocrystals determined by polarization microscopy at room temperature, ACS Nano 9(8), 7992 (2015)
https://doi.org/10.1021/acsnano.5b01354
27 J. Planelles, F. Rajadell, and J. I. Climente, Electronic origin of linearly polarized emission in CdSe/CdS dot-inrod heterostructures, J. Phys. Chem. C 120(48), 27724 (2016)
https://doi.org/10.1021/acs.jpcc.6b11240
28 I. Hadar, G. B. Hitin, A. Sitt, A. Faust, and U. Banin, Polarization properties of semiconductor nanorod heterostructures: From single particles to the ensemble, J. Phys. Chem. Lett. 4(3), 502 (2013)
https://doi.org/10.1021/jz3021167
29 B. T. Diroll, A. Koschitzky, and C. B. Murray, Tunable optical anisotropy of seeded CdSe/CdS nanorods, J. Phys. Chem. Lett. 5(1), 85 (2014)
https://doi.org/10.1021/jz402426f
30 I. Angeloni, W. Raja, A. Polovitsyn, F. De Donato, R. P. Zaccaria, and I. Moreels, Band-edge oscillator strength of colloidal CdSe/CdS dot-in-rods: Comparison of absorption and time-resolved fluorescence spectroscopy, Nanoscale 9(14), 4730 (2017)
https://doi.org/10.1039/C6NR09021D
31 J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, Monitoring surface charge movement in single elongated semiconductor nanocrystals, Phys. Rev. Lett. 93(16), 167402 (2004)
https://doi.org/10.1103/PhysRevLett.93.167402
32 J. Müller,J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures, Phys. Rev. B 72(20), 205339 (2005)
https://doi.org/10.1103/PhysRevB.72.205339
33 S. H. Lohmann, C. Strelow, A. Mews, and T. Kippe, Surface charges on CdSe-dot/CdS-rod nanocrystals: Measuring and modeling the diffusion of exciton-fluorescence rates and energies, ACS Nano 11(12), 12185 (2017)
https://doi.org/10.1021/acsnano.7b05303
34 S. H. Lohmann, P. Harder, F. Bourier, C. Strelow, A. Mews, and T. Kipp, Influence of interface-driven strain on the spectral diffusion properties of core/shell CdSe/CdS dot/rod nanoparticles, J. Phys. Chem. C 123(8), 5099 (2019)
https://doi.org/10.1021/acs.jpcc.8b12253
35 M. J. Fernée, B. Littleton, T. Plakhotnik, H. Rubinsztein-Dunlop, D. E. Gomez, and P. Mulvaney, Charge hopping revealed by jitter correlations in the photoluminescence spectra of single CdSe nanocrystals, Phys. Rev. B 81(15), 155307 (2010)
https://doi.org/10.1103/PhysRevB.81.155307
36 M. J. Fernée, T. Plakhotnik, Y. Louyer, B. N. Littleton, C. Potzner, P. Tamarat, P. Mulvaney, and B. Lounis, Spontaneous spectral diffusion in CdSe quantum dots, J. Phys. Chem. Lett. 3(12), 1716 (2012)
https://doi.org/10.1021/jz300456h
37 K. T. Early, P. K. Sudeep, T. Emrick, and M. D. Barnes, Polarization-driven stark shifts in quantum dot luminescence from single CdSe/oligo-PPV nanoparticles, Nano Lett. 10(5), 1754 (2010)
https://doi.org/10.1021/nl1001789
38 T. Ihara and Y. Kanemitsu, Spectral diffusion of neutral and charged exciton transitions in single CdSe/ZnS nanocrystals due to quantum-confined stark effect, Phys. Rev. B 90(19), 195302 (2014)
https://doi.org/10.1103/PhysRevB.90.195302
39 D. Braam, A. Molleken, G. M. Prinz, C. Notthoff, M. Geller, and A. Lorke, Role of the ligand layer for photoluminescence spectral diffusion of CdSe/ZnS nanoparticles, Phys. Rev. B 88(12), 125302 (2013)
https://doi.org/10.1103/PhysRevB.88.125302
40 S. E. Yalcin, B. Q. Yang, J. A. Labastide, and M. D. Barnes, Electrostatic force microscopy and spectral studies of electron attachment to single quantum dots on indiumtin oxide substrates, J. Phys. Chem. C 116(29), 15847 (2012)
https://doi.org/10.1021/jp305857d
41 S. Y. Jin, N. H. Song, and T. Q. Lian, Suppressed blinking dynamics of single QDs on ITO, ACS Nano 4(3), 1545 (2010)
https://doi.org/10.1021/nn901808f
42 H. Cheng, C. Yuan, J. Wang, T. Lin, J. Shen, Y. Hung, J. Tang, and F. Tseng, Modification of photon emission statistics from single colloidal CdSe quantum dots by conductive materials, J. Phys. Chem. C 118(31), 18126 (2014)
https://doi.org/10.1021/jp503426a
43 B. Li, G. Zhang, Z. Wang, Z. Li, R. Chen, C. Qin, Y. Gao, L. Xiao, and S. Jia, Suppressing the fluorescence blinking of single quantum dots encased in N-type semiconductor nanoparticles, Sci. Rep. 6(1), 32662 (2016)
https://doi.org/10.1038/srep32662
44 Z. J. Li, G. F. Zhang, B. Li, R. Y. Chen, C. B. Qin, Y. Gao, L. T. Xiao, and S. T. Jia, Enhanced biexciton emission from single quantum dots encased in N-type semiconductor nanoparticles, Appl. Phys. Lett. 111(15), 153106 (2017)
https://doi.org/10.1063/1.4989605
45 K. T. Early, K. D. McCarthy, M. Y. Odoi, P. K. Sudeep, T. Emrick, and M. D. Barnes, Linear dipole behavior in single CdSe-oligo(phenylene vinylene) nanostructures, ACS Nano 3(2), 453 (2009)
https://doi.org/10.1021/nn800785s
46 G. F. Zhang, Y. G. Peng, H. Q. Xie, B. Li, Z. J. Li, C. G. Yang, W. L. Guo, C. B. Qin, R. Y. Chen, Y. Gao, Y. J. Zheng, L. T. Xiao, and S. T. Jia, Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films, Front. Phys. 14(2), 23605 (2019)
https://doi.org/10.1007/s11467-018-0874-z
47 A. P. Litvin, I. V. Martynenko, F. Purcell-Milton, A. V. Baranov, A. V. Fedorov, and Y. K. Gun’ko, Colloidal quantum dots for optoelectronics, J. Mater. Chem. A 5(26), 13252 (2017)
https://doi.org/10.1039/C7TA02076G
48 Y. Jiang, S. Cho, and M. Shim, Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays,J. Mater. Chem. C 6(11), 2618 (2018)
https://doi.org/10.1039/C7TC05972H
49 L. Meng, C. Yang, J. Meng, Y. Wang, Y. Ge, Z. Shao, G. Zhang, A. L. Rogach, and H. Zhong, In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission, Nano Res. 12(6), 1411 (2019)
https://doi.org/10.1007/s12274-019-2353-4
50 T. Ihara, R. Sato, T. Teranishi, and Y. Kanemitsu, Delocalized and localized charged excitons in single CdSe/CdS dot-in-rods revealed by polarized photoluminescence blinking, Phys. Rev. B 90(3), 035309 (2014)
https://doi.org/10.1103/PhysRevB.90.035309
51 F. Hu, B. Lv, C. Yin, C. Zhang, X. Wang, B. Lounis, and M. Xiao, Carrier multiplication in a single semiconductor nanocrystal, Phys. Rev. Lett. 116(10), 106404 (2016)
https://doi.org/10.1103/PhysRevLett.116.106404
52 G. C. Yuan, D. E. Gomez, N. Kirkwood, K. Boldt, and P. Mulvaney, Two mechanisms determine quantum dot blinking, ACS Nano 12(4), 3397 (2018)
https://doi.org/10.1021/acsnano.7b09052
53 B. Li, H. Huang, G. Zhang, C. Yang, W. Guo, R. Chen, C. Qin, Y. Gao, V. P. Biju, A. L. Rogach, L. Xiao, and S. Jia, Excitons and biexciton dynamics in single CsPbBr3 perovskite quantum dots, J. Phys. Chem. Lett. 9(24), 6934 (2018)
https://doi.org/10.1021/acs.jpclett.8b03098
54 H. Yuan, E. Debroye, G. Caliandro, K. P. Janssen, J. van Loon, C. E. Kirschhock, J. A. Martens, J. Hofkens, and M. B. Roeffaers, Photoluminescence blinking of singlecrystal methylammonium lead iodide perovskite nanorods induced by surface traps, ACS Omega 1(1), 148 (2016)
https://doi.org/10.1021/acsomega.6b00107
55 B. Li, G. Zhang, C. Yang, Z. Li, R. Chen, C. Qin, Y. Gao, H. Huang, L. Xiao, and S. Jia, Fast recognition of single quantum dots from high multi-exciton emission and clustering effects, Opt. Express 26(4), 4674 (2018)
https://doi.org/10.1364/OE.26.004674
56 H. Zang, P. K. Routh, Y. Huang, J. S. Chen, E. Sutter, P. Sutter, and M. Cotlet, Nonradiative energy transfer from individual CdSe/ZnS quantum dots to single-layer and few-layer tin disulfide, ACS Nano 10(4), 4790 (2016)
https://doi.org/10.1021/acsnano.6b01538
57 W. He, C. Qin, Z. Qiao, Y. Gong, X. Zhang, G. Zhang, R. Chen, Y. Gao, L. Xiao, and S. Jia, In situ manipulation of fluorescence resonance energy transfer between quantum dots and monolayer graphene oxide by laser irradiation, Nanoscale 11(3), 1236 (2019)
https://doi.org/10.1039/C8NR07858K
58 C. Lethiec, J. Laverdant, H. Vallon, C. Javaux, B. Dubertret, J. M. Frigerio, C. Schwob, L. Coolen, and A. Maitre, Measurement of three-dimensional dipole orientation of a single fluorescent nanoemitter by emission polarization analysis, Phys. Rev. X 4(2), 021037 (2014)
https://doi.org/10.1103/PhysRevX.4.021037
59 A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states, Phys. Rev. B 54(7), 4843 (1996)
https://doi.org/10.1103/PhysRevB.54.4843
60 A. Sihvola, Dielectric polarization and particle shape effects, J. Nanomater. 2007, 45090 (2007)
https://doi.org/10.1155/2007/45090
61 J. S. Kamal, R. Gomes, Z. Hens, M. Karvar, K. Neyts, S. Compernolle, and F. Vanhaecke, Direct determination of absorption anisotropy in colloidal quantum rods, Phys. Rev. B 85(3), 035126 (2012)
https://doi.org/10.1103/PhysRevB.85.035126
62 S. L. Chuang and C. S. Chang, K·Pmethod for strained Wurtzite semiconductors, Phys. Rev. B 54(4), 2491 (1996)
https://doi.org/10.1103/PhysRevB.54.2491
63 L. Carbone, C. Nobile, M. De Giorgi, F. D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I. R. Franchini, M. Nadasan, A. F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, and L. Manna, Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach, Nano Lett. 7(10), 2942 (2007)
https://doi.org/10.1021/nl0717661
[1] Supplementary Material Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed