Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (1): 14401   https://doi.org/10.1007/s11467-019-0917-0
  本期目录
Nonlocalized clustering and evolution of cluster structure in nuclei
Bo Zhou1,2(), Yasuro Funaki3(), Hisashi Horiuchi4(), Akihiro Tohsaki4()
1. Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0817, Japan
2. Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
3. College of Science and Engineering, Kanto Gakuin University, Yokohama 236-8501, Japan
4. Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047, Japan
 全文: PDF(10188 KB)  
Abstract

We explain various facets of the THSR (Tohsaki–Horiuchi–Schuck-Röpke) wave function. We first discuss the THSR wave function as a wave function of cluster-gas state, since the THSR wave function was originally introduced to elucidate the 3α-condensate-like character of the Hoyle state (02+ state) of 12C. We briefly review the cluster-model studies of the Hoyle state in 1970’s in order to explain how there emerged the idea to assign the α condensate character to the Hoyle state. We then explain that the THSR wave function can describe very well also non-gaslike ordinary cluster states with spatial localization of clusters. This fact means that the dynamical motion of clusters is of nonlocalized nature just as in gas-like states of clusters and the localization of clusters is due to the inter-cluster Pauli principle which is against the close approach of two clusters. The nonlocalized cluster dynamics is formulated by the container model of cluster dynamics. The container model describes gas-like state and non-gaslike states as the solutions of the Hill–Wheeler equation with respect to the size parameter of THSR wave function which is just the size parameter of the container. When we notice that fact that the THSR wave function with the smallest value of size parameter is equivalent to the shell-model wave function, we see that the container model describes the evolution of cluster structure from the ground state with shell-model structure up to the gas-like cluster state via ordinary non-gaslike cluster states. For the description of various cluster structure, more generation of THSR wave function have been introduced and we review some typical examples with their actual applications.

Key wordsHoyle state    alpha condensation    THSR wave function    nonlocalized clustering    container model    evolution of cluster structure
收稿日期: 2019-04-27      出版日期: 2019-08-29
Corresponding Author(s): Bo Zhou,Yasuro Funaki,Hisashi Horiuchi,Akihiro Tohsaki   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(1): 14401.
Bo Zhou, Yasuro Funaki, Hisashi Horiuchi, Akihiro Tohsaki. Nonlocalized clustering and evolution of cluster structure in nuclei. Front. Phys. , 2020, 15(1): 14401.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0917-0
https://academic.hep.com.cn/fop/CN/Y2020/V15/I1/14401
1 K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus, Vieweg, 1977
https://doi.org/10.1007/978-3-322-85255-7
2 Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Katō, Y. Suzuki, and E. Uegaki, Comprehensive Study of Alpha-Nuclei, Prog. Theor. Phys. Suppl. 68, 29 (1980)
https://doi.org/10.1143/PTPS.68.29
3 M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, and U.- G. Meißner, Microscopic clustering in light nuclei, Rev. Mod. Phys. 90, 035004 (2018)
https://doi.org/10.1103/RevModPhys.90.035004
4 T. Furuta and A. Ono, Nuclear liquid-gas phase transition studied with antisymmetrized molecular dynamics, Phys. Rev. C 74, 014612 (2006)
https://doi.org/10.1103/PhysRevC.74.014612
5 T. Yamada, Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, and A. Tohsaki, Nuclear Alpha-Particle Condensates, in: Clusters in Nuclei, Vol.2, Lecture Notes in Physics, edited by C. Beck, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp 229–298
https://doi.org/10.1007/978-3-642-24707-1_5
6 H. Horiuchi, K. Ikeda, and K. Katō, Recent developments in nuclear cluster physics, Prog. Theor. Phys. Suppl. 192, 1 (2012)
https://doi.org/10.1143/PTPS.192.1
7 Y. Funaki, H. Horiuchi, and A. Tohsaki, Cluster models from RGM to alpha condensation and beyond, Prog. Part. Nucl. Phys. 82, 78 (2015)
https://doi.org/10.1016/j.ppnp.2015.01.001
8 A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Alpha cluster condensation in 12C and 16O, Phys. Rev. Lett. 87, 192501 (2001)
https://doi.org/10.1103/PhysRevLett.87.192501
9 Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Analysis of previous microscopic calculations for the second 0+ state in 12C in terms of 3αparticle Bose-condensed state, Phys. Rev. C 67, 051306 (2003)
https://doi.org/10.1103/PhysRevC.67.051306
10 B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, and T. Yamada, Nonlocalized clustering: A new concept in nuclear cluster structure physics, Phys. Rev. Lett. 110, 262501 (2013)
https://doi.org/10.1103/PhysRevLett.110.262501
11 B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, and T. Yamada, Nonlocalized cluster dynamics and nuclear molecular structure, Phys. Rev. C 89, 034319 (2014)
https://doi.org/10.1103/PhysRevC.89.034319
12 H. Horiuchi, Three-alpha model of 12C orthogonality condition model as an approximation of resonating group treatment, Prog. Theor. Phys. 51, 1266 (1974)
https://doi.org/10.1143/PTP.51.1266
13 E. Uegaki, S. Okabe, Y. Abe, and H. Tanaka, Structure of the Excited States in 12C (I), Prog. Theor. Phys. 57, 1262 (1977)
https://doi.org/10.1143/PTP.57.1262
14 M. Kamimura, Transition densities between the 01+, 21+,41+, 02+, 22+, 11– and 31– states in 12C derived from the three-alpha resonating-group wave functions, Nucl. Phys. A 351, 456 (1981)
https://doi.org/10.1016/0375-9474(81)90182-2
15 J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla, K. E. Schmidt, and R. B. Wiringa, Quantum Monte Carlo methods for nuclear physics, Rev. Mod. Phys. 87, 1067 (2015)
https://doi.org/10.1103/RevModPhys.87.1067
16 Y. Funaki, Hoyle band and alpha condensation in 12C, Phys. Rev. C 92, 021302 (2015)
https://doi.org/10.1103/PhysRevC.92.021302
17 Y. Funaki, Monopole excitation of the Hoyle state and linear-chain state in 12C, Phys. Rev. C 94, 024344 (2016)
https://doi.org/10.1103/PhysRevC.94.024344
18 B. Zhou, A. Tohsaki, H. Horiuchi, and Z. Ren, Breathinglike excited state of the Hoyle state in 12C, Phys. Rev. C 94, 044319 (2016)
https://doi.org/10.1103/PhysRevC.94.044319
19 Y. Funaki, T. Yamada, H. Horiuchi, G. Röpke, P. Schuck, and A. Tohsaki, α-particle condensation in 16O studied with a full four-body orthogonality Condition model calculation, Phys. Rev. Lett. 101, 082502 (2008)
https://doi.org/10.1103/PhysRevLett.101.082502
20 Y. Funaki, T. Yamada, A. Tohsaki, H. Horiuchi, G. Röpke, and P. Schuck, Microscopic study of 4-α particle condensation with inclusion of resonances, Phys. Rev. C 82, 024312 (2010)
https://doi.org/10.1103/PhysRevC.82.024312
21 H. Horiuchi and K. Ikeda, A molecule-like structure in atomic nuclei of 16O* and 20Ne, Prog. Theor. Phys. 40, 277 (1968)
https://doi.org/10.1143/PTP.40.277
22 B. Zhou, Z. Ren, C. Xu, Y. Funaki, T. Yamada, A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, New concept for the ground-state band in 20Ne within a microscopic cluster model, Phys. Rev. C 86, 014301 (2012)
https://doi.org/10.1103/PhysRevC.86.014301
23 P. Navrátil, J. P. Vary, and B. R. Barrett, Large-basis ab initio no-core shell model and its application to 12C, Phys. Rev. C 62, 054311 (2000)
https://doi.org/10.1103/PhysRevC.62.054311
24 S. Quaglioni, C. Romero-Redondo, and P. Navrátil, Three-cluster dynamics within an ab initioframework, Phys. Rev. C 88, 034320 (2013)
https://doi.org/10.1103/PhysRevC.88.034320
25 J.-P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, How atomic nuclei cluster, Nature 487, 341 (2012)
https://doi.org/10.1038/nature11246
26 P. W. Zhao, N. Itagaki, and J. Meng, Rod-shaped nuclei at extreme spin and isospin, Phys. Rev. Lett. 115, 022501 (2015)
https://doi.org/10.1103/PhysRevLett.115.022501
27 Y. Iwata, T. Ichikawa, N. Itagaki, J. A. Maruhn, and T. Otsuka, Examination of the stability of a rod-shaped structure in 24Mg, Phys. Rev. C 92, 011303 (2015)
https://doi.org/10.1103/PhysRevC.92.011303
28 T. Yamada, Y. Funaki, T. Myo, H. Horiuchi, K. Ikeda, G. Röpke, P. Schuck, and A. Tohsaki, Isoscalar monopole excitations in 16O: Alpha-cluster states at low energy and mean-field-type states at higher energy, Phys. Rev. C 85, 034315 (2012)
https://doi.org/10.1103/PhysRevC.85.034315
29 W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai, and G. Q. Zhang, Giant dipole resonance as a fingerprint of clustering configurations in 12C and 16O, Phys. Rev. Lett. 113, 032506 (2014)
https://doi.org/10.1103/PhysRevLett.113.032506
30 Y. Chiba, M. Kimura, and Y. Taniguchi, Isoscalar dipole transition as a probe for asymmetric clustering, Phys. Rev. C 93, 034319 (2016)
https://doi.org/10.1103/PhysRevC.93.034319
31 K. Ikeda, N. Takigawa, and H. Horiuchi, The systematic structure-change into the molecule-like structures in the self-conjugate 4nnuclei, Prog. Theor. Phys. Suppl. E 68, 464 (1968)
https://doi.org/10.1143/PTPS.E68.464
32 F. Hoyle, On nuclear reactions occuring in very hot STARS (I): The synthesis of elements from carbon to nickel, Astrophys. J., Suppl. Ser. 1, 121 (1954)
https://doi.org/10.1086/190005
33 C. W. Cook, W. A. Fowler, C. C. Lauritsen, and T. Lauritsen, 12B, 12C, and the red giants, Phys. Rev. 107, 508 (1957)
https://doi.org/10.1103/PhysRev.107.508
34 J. P. Vary, P. Maris, H. Potter, M. A. Caprio, R. Smith, S. Binder, A. Calci, S. Fischer, J. Langhammer, R. Roth, H. M. Aktulga, E. Ng, C. Yang, D. Oryspayev, M. Sosonkina, E. Saule, and U. Çatalyürek, Ab initio no core shell model – recent results and further prospects, arXiv: 1507.04693[nucl-th] (2015)
35 H. Morinaga, Interpretation of some of the excited states of 4nself-conjugate nuclei, Phys. Rev. 101, 254 (1956)
https://doi.org/10.1103/PhysRev.101.254
36 H. Morinaga, On the spin of a broad state around 10 MeV in 12C, Phys. Lett. 21, 78 (1966)
https://doi.org/10.1016/0031-9163(66)91349-7
37 Y. Suzuki, H. Horiuchi, and K. Ikeda, Study of α chain states through their decay widths, Prog. Theor. Phys. 47, 1517 (1972)
https://doi.org/10.1143/PTP.47.1517
38 S. Saito, Effect of Pauli principle in scattering of two clusters, Prog. Theor. Phys. 40, 893 (1968)
https://doi.org/10.1143/PTP.40.893
39 S. Saito, Interaction between clusters and Pauli principle, Prog. Theor. Phys. 41, 705 (1969)
https://doi.org/10.1143/PTP.41.705
40 S. Saito, Theory of resonating group method and generator coordinate method, and orthogonality condition model, Prog. Theor. Phys. Suppl. 62, 11 (1977)
https://doi.org/10.1143/PTPS.62.11
41 D. Brink, In: Proceedings of the International School of Physics ”Enrico Fermi”, Course 36, Academic Press, New York, London, 1966
42 P. Descouvemont and D. Baye, Microscopic theory of the 8Be(α, γ)12C reaction in a three-cluster model, Phys. Rev. C 36, 54 (1987)
https://doi.org/10.1103/PhysRevC.36.54
43 H. Horiuchi, Generator coordinate treatment of composite particle reaction and molecule-like structures, Prog. Theor. Phys. 43, 375 (1970)
https://doi.org/10.1143/PTP.43.375
44 H. Horiuchi, Kernels of GCM, RGM and OCM and their calculation methods, Prog. Theor. Phys. Suppl. 62, 90 (1977)
https://doi.org/10.1143/PTPS.62.90
45 Y. Funaki, H. Horiuchi, A. Tohsaki, P. Schuck, and G. Röpke, Description of 8Be as deformed gas-like twoalpha- particle states, Prog. Theor. Phys. 108, 297 (2002)
https://doi.org/10.1143/PTP.108.297
46 A. Tohsaki-Suzuki, M. Kamimura, and K. Ikeda, Microscopic study of the interaction between complex nuclei, Prog. Theor. Phys. Suppl. 68, 359 (1980)
https://doi.org/10.1143/PTPS.68.359
47 Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Resonance states in 12C and α-particle condensation, Eur. Phys. J. A 24, 321 (2005)
https://doi.org/10.1140/epja/i2004-10238-x
48 Y. Funaki, H. Horiuchi, W. von Oertzen, G. Röpke, P. Schuck, A. Tohsaki, and T. Yamada, Concepts of nuclear α-particle condensation, Phys. Rev. C 80, 064326 (2009)
https://doi.org/10.1103/PhysRevC.80.064326
49 A. Volkov, Equilibrium deformation calculations of the ground state energies of 1p shell nuclei, Nucl. Phys. 74, 33 (1965)
https://doi.org/10.1016/0029-5582(65)90244-0
50 B. Zhou, Y. Funaki, A. Tohsaki, H. Horiuchi, and Z. Ren, The container picture with two-alpha correlation for the ground state of 12C, Prog. Theor. Exp. Phys. 2014, 101D01 (2014)
https://doi.org/10.1093/ptep/ptu127
51 M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, and A. Richter, Structure of the Hoyle state in 12C, Phys. Rev. Lett. 98, 032501 (2007)
https://doi.org/10.1103/PhysRevLett.98.032501
52 M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, and A. Richter, Pair decay width of the Hoyle state and its role for stellar carbon production, Phys. Rev. Lett. 105, 022501 (2010)
https://doi.org/10.1103/PhysRevLett.105.022501
53 Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Inelastic form factors to alpha-particle condensate states in 12C and 16O: What can we learn? Eur. Phys. J. A 28, 259 (2006)
https://doi.org/10.1140/epja/i2006-10061-5
54 S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs, T. A. Lähde, T. Luu, and U.-G. Meiβner, Ab Initioalpha–alpha scattering, Nature 528, 111 (2015)
https://doi.org/10.1038/nature16067
55 S. Elhatisari, N. Li, A. Rokash, J. M. Alarcón, D. Du, N. Klein, B.-n. Lu, U.-G. Meiβner, E. Epelbaum, H. Krebs, T. A. Lähde, D. Lee, and G. Rupak, Nuclear binding near a quantum phase transition, Phys. Rev. Lett. 117, 132501 (2016)
https://doi.org/10.1103/PhysRevLett.117.132501
56 E. Epelbaum, H. Krebs, T. A. Lähde, D. Lee, and U.- G. Meiβner, Structure and rotations of the Hoyle state, Phys. Rev. Lett. 109, 252501 (2012)
https://doi.org/10.1103/PhysRevLett.109.252501
57 E. Epelbaum, H. Krebs, T. A. Lähde, D. Lee, and U.-G. Meiβner, Viability of carbon-based life as a function of the light quark mass, Phys. Rev. Lett. 110, 112502 (2013)
https://doi.org/10.1103/PhysRevLett.110.112502
58 A. C. Dreyfuss, K. D. Launey, T. Dytrych, J. P. Draayer, and C. Bahri, Hoyle state and rotational features in carbon- 12 within a No-Core shell-model framework, Phys. Lett. B 727, 511 (2013)
https://doi.org/10.1016/j.physletb.2013.10.048
59 T. Dytrych, K. D. Launey, J. P. Draayer, P. Maris, J. P. Vary, E. Saule, U. Catalyurek, M. Sosonkina, D. Langr, and M. A. Caprio, Collective Modes in Light Nuclei from First Principles, Phys. Rev. Lett. 111, 252501 (2013)
https://doi.org/10.1103/PhysRevLett.111.252501
60 G. K. Tobin, M. C. Ferriss, K. D. Launey, T. Dytrych, J. P. Draayer, A. C. Dreyfuss, and C. Bahri, Symplectic No-Core Shell-Model approach to intermediate-mass nuclei, Phys. Rev. C 89, 034312 (2014)
https://doi.org/10.1103/PhysRevC.89.034312
61 R. B. Wiringa, S. C. Pieper, J. Carlson, and V. R. Pandharipande, Quantum Monte Carlo calculations of A=8 nuclei, Phys. Rev. C 62, 014001 (2000)
https://doi.org/10.1103/PhysRevC.62.014001
62 P. Schuck, Y. Funaki, H. Horiuchi, G. Röpke, A. Tohsaki, and T. Yamada, Alpha particle clusters and their condensation in nuclear systems, Phys. Scr. 91, 123001 (2016)
https://doi.org/10.1088/0031-8949/91/12/123001
63 M. Itoh, H. Akimune, M. Fujiwara, U. Garg, H. Hashimoto, T. Kawabata, K. Kawase, S. Kishi, T. Murakami, K. Nakanishi, Y. Nakatsugawa, B. K. Nayak, S. Okumura, H. Sakaguchi, H. Takeda, S. Terashima, M. Uchida, Y. Yasuda, M. Yosoi, and J. Zenihiro, Study of the cluster state at Ex=10.3 MeV in 12C, Nucl. Phys. A 738, 268 (2004)
https://doi.org/10.1016/j.nuclphysa.2004.04.044
64 M. Freer, H. Fujita, Z. Buthelezi, J. Carter, R. W. Fearick, S. V. Förtsch, R. Neveling, S. M. Perez, P. Papka, F. D. Smit, J. A. Swartz, and I. Usman, 2+ excitation of the 12C Hoyle state, Phys. Rev. C 80, 041303 (2009)
https://doi.org/10.1103/PhysRevC.80.041303
65 M. Itoh, H. Akimune, M. Fujiwara, U. Garg, N. Hashimoto, T. Kawabata, K. Kawase, S. Kishi, T. Murakami, K. Nakanishi, Y. Nakatsugawa, B. K. Nayak, S. Okumura, H. Sakaguchi, H. Takeda, S. Terashima, M. Uchida, Y. Yasuda, M. Yosoi, and J. Zenihiro, Candidate for the 2+ excited Hoyle state at Ex~10 MeV in 12C, Phys. Rev. C 84, 054308 (2011)
https://doi.org/10.1103/PhysRevC.84.054308
66 H. O. U. Fynbo and M. Freer, Rotations of the Hoyle State in 12C, Physics 4, 94 (2011)
https://doi.org/10.1103/Physics.4.94
67 W. R. Zimmerman, N. E. Destefano, M. Freer, M. Gai, and F. D. Smit, Further evidence for the broad 22+ state at 9.6 MeV in 12C, Phys. Rev. C 84, 027304 (2011)
https://doi.org/10.1103/PhysRevC.84.027304
68 W. R. Zimmerman, M. W. Ahmed, B. Bromberger, S. C. Stave, A. Breskin, V. Dangendorf, T. Delbar, M. Gai, S. S. Henshaw, J. M. Mueller, C. Sun, K. Tittelmeier, H. R. Weller, and Y. K. Wu, Unambiguous identification of the second 2+ state in 12C and the structure of the Hoyle state, Phys. Rev. Lett. 110, 152502 (2013)
https://doi.org/10.1103/PhysRevLett.110.152502
69 M. Itoh, H. Akimune, M. Fujiwara, U. Garg, T. Kawabata, K. Kawase, Tetsuya Murakami, K. Nakanishi, Y. Nakatsugawa, H. Sakaguchi, S. Terashima, Makoto Uchida, Y. Yasuda, M. Yosoi, and J. Zenihiro, Nature of 10 MeV state in 12C, J. Phys.: Conf. Ser. 436, 012006 (2013)
https://doi.org/10.1088/1742-6596/436/1/012006
70 C. Kurokawa and K. Katō, New broad 0+ state in 12C, Phys. Rev. C 71, 021301 (2005)
https://doi.org/10.1103/PhysRevC.71.021301
71 S.-I. Ohtsubo, Y. Fukushima, M. Kamimura, and E. Hiyama, Complex-scaling calculation of three-body resonances using complex-range Gaussian basis functions: Application to 3α resonances in 12C, Prog. Theor. Exp. Phys. 2013, 073D02 (2013)
https://doi.org/10.1093/ptep/ptt048
72 J. Aguilar and J. M. Combes, A class of analytic perturbations for one-body Schrödinger Hamiltonians, Commun. Math. Phys. 22, 269 (1971)
https://doi.org/10.1007/BF01877510
73 E. Balslev and J. M. Combes, Spectral properties of many-body Schrödinger operators with dilatationanalytic interactions, Comm. Math. Phys. 22, 280 (1971)
https://doi.org/10.1007/BF01877511
74 A. T. Kruppa, R. G. Lovas, and B. Gyarmati, Complex scaling in the cluster model: Resonances in 8Be, Phys. Rev. C 37, 383 (1988)
https://doi.org/10.1103/PhysRevC.37.383
75 A. T. Kruppa and K. Katō, Resonances in complex-scaled orthogonality condition model of nuclear cluster system, Prog. Theor. Phys. 84, 1145 (1990)
https://doi.org/10.1143/PTP.84.1145
76 S. Aoyama, T. Myo, K. Katō, and K. Ikeda, The complex scaling method for many-body resonances and its applications to three-body resonances, Prog. Theor. Phys. 116, 1 (2006)
https://doi.org/10.1143/PTP.116.1
77 Y. Kanada-En’yo, The structure of ground and excited states of 12C, Prog. Theor. Phys. 117, 655 (2007)
https://doi.org/10.1143/PTP.117.655
78 Y. Funaki, H. Horiuchi, and A. Tohsaki, New treatment of resonances with a bound state approximation using a pseudo-potential, Prog. Theor. Phys. 115, 115 (2006)
https://doi.org/10.1143/PTP.115.115
79 T. Yamada, Y. Funaki, H. Horiuchi, K. Ikeda, and A. Tohsaki, Monopole excitation to cluster states, Prog. Theor. Phys. 120, 1139 (2008)
https://doi.org/10.1143/PTP.120.1139
80 T. Yamada and P. Schuck, Single α-particle orbits and Bose-Einstein condensation in 12C, Eur. Phys. J. A 26, 185 (2005)
https://doi.org/10.1140/epja/i2005-10168-1
81 A. Hasegawa and S. Nagata, Ground state of 6Li, Prog. Theor. Phys. 45, 1786 (1971)
https://doi.org/10.1143/PTP.45.1786
82 F. Tanabe, A. Tohsaki, and R. Tamagaki, α-α scattering at intermediate energies applicability of orthogonality condition model and upper limit of isoscalar mesonnucleon coupling constants inferred from potential tail, Prog. Theor. Phys. 53, 677 (1975)
https://doi.org/10.1143/PTP.53.677
83 F. Ajzenberg-Selove, Energy levels of light nuclei A= 16–17, Nucl. Phys. A 460, 1 (1986)
https://doi.org/10.1016/0375-9474(86)90038-2
84 T. Wakasa, E. Ihara, K. Fujita, Y. Funaki, K. Hatanaka, H. Horiuchi, M. Itoh, J. Kamiya, G. Röpke, H. Sakaguchi, N. Sakamoto, Y. Sakemi, P. Schuck, Y. Shimizu, M. Takashina, S. Terashima, A. Tohsaki, M. Uchida, H. P. Yoshida, and M. Yosoi, New candidate for an alpha cluster condensed state in 16O(α, A′) at 400 MeV, Phys. Lett. B 653, 173 (2007)
https://doi.org/10.1016/j.physletb.2007.08.016
85 Y. Suzuki, Structure Study of 16O by 12C+ alpha clustercoupling model (I), Prog. Theor. Phys. 55, 1751 (1976)
https://doi.org/10.1143/PTP.55.1751
86 Y. Suzuki, Structure study of 16O by 12C+α clustercoupling model (II), Prog. Theor. Phys. 56, 111 (1976)
https://doi.org/10.1143/PTP.56.111
87 A. M. Lane and R. G. Thomas, R-matrix theory of nuclear reactions, Rev. Mod. Phys. 30, 257 (1958)
https://doi.org/10.1103/RevModPhys.30.257
88 T. Yamada, Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, and A. Tohsaki, Criterion for Bose–Einstein condensation in traps and self-bound systems, Phys. Rev. A 78, 035603 (2008)
https://doi.org/10.1103/PhysRevA.78.035603
89 T. Yamada, Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, and A. Tohsaki, Internal one-particle density matrix for Bose–Einstein condensates with finite number of particles in a harmonic potential, Phys. Rev. C 79, 054314 (2009)
https://doi.org/10.1103/PhysRevC.79.054314
90 A. Tohsaki, New effective internucleon forces in microscopic α-cluster model, Phys. Rev. C 49, 1814 (1994)
https://doi.org/10.1103/PhysRevC.49.1814
91 H. Matsumura and Y. Suzuki, A microscopic analysis of the amount of-condensation in 12C, Nucl. Phys. A 739, 238 (2004)
https://doi.org/10.1016/j.nuclphysa.2004.04.104
92 A. Arima, Elliott’s SU(3) model and its developments in nuclear physics, J. Phys. G Nucl. Part. Phys. 25, 581 (1999)
https://doi.org/10.1088/0954-3899/25/4/003
93 M. Lyu, Z. Ren, B. Zhou, Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, and T. Yamada, Investigation of 9Be from a nonlocalized clustering concept, Phys. Rev. C 91, 014313 (2015)
https://doi.org/10.1103/PhysRevC.91.014313
94 A. Tohsaki, The interaction of a nucleon and alpha condensate, Int. J. Mod. Phys. E 17, 2106 (2008)
https://doi.org/10.1142/S0218301308011173
95 J. Hiura, Y. Abe, S. Saitō, and O. Endō, Alpha-cluster plus 16O-core model for 20Ne and neighboring nuclei, Prog. Theor. Phys. 42, 555 (1969)
https://doi.org/10.1143/PTP.42.555
96 T. Matsuse, M. Kamimura, and Y. Fukushima, Study of the alpha-clustering structure of 20Ne based on the resonating group method for 16O+α, Prog. Theor. Phys. 53, 706 (1975)
https://doi.org/10.1143/PTP.53.706
97 M. LeMere, Y. C. Tang, and D. R. Thompson, Study of the A+16O system with the resonating-group method, Phys. Rev. C 14, 23 (1976)
https://doi.org/10.1103/PhysRevC.14.23
98 S. Hara, K. T. Hecht, and Y. Suzuki, Alpha cluster formation in 20Ne in the cluster-orbital shell model (I), Prog. Theor. Phys. 84, 254 (1990)
https://doi.org/10.1143/PTP.84.254
99 S. Hara, K. Ogawa, and Y. Suzuki, Alpha Cluster Formation in 20Ne in the cluster-orbital shell model (II), Prog. Theor. Phys. 88, 329 (1992)
https://doi.org/10.1143/PTP.88.329
100 T. Yamaya, K. Katori, M. Fujiwara, S. Katō, and S. Ohkubo, Alpha-cluster study of 40Ca and 44Ti by the (6Li,d) reaction, Prog. Theor. Phys. 132, 73 (1998)
https://doi.org/10.1143/PTPS.132.73
101 A. Astier, P. Petkov, M.-G. Porquet, D. S. Delion, and P. Schuck, Novel manifestation of-clustering structures: New α+208Pb states in 212Po revealed by their enhanced E1 decays, Phys. Rev. Lett. 104, 042701 (2010)
https://doi.org/10.1103/PhysRevLett.104.042701
102 Z. Ren and B. Zhou, Alpha-clustering effects in heavy nuclei, Front. Phys. 13, 132110 (2018)
https://doi.org/10.1007/s11467-018-0846-3
103 Y. Kanada-En’yo, Description of an-cluster tail in 8Be and 20Ne: Delocalization of the cluster by quantum penetration, Prog. Theor. Exp. Phys. 2014, 103D03 (2014)
https://doi.org/10.1093/ptep/ptu121
104 T. Suhara, Y. Funaki, B. Zhou, H. Horiuchi, and A. Tohsaki, One-dimensional α condensation of α-linearchain states, J. Phys.: Conf. Ser. 569, 012008 (2014)
https://doi.org/10.1088/1742-6596/569/1/012008
105 T. Ichikawa, J. A. Maruhn, N. Itagaki, and S. Ohkubo, Linear chain structure of four-α clusters in 16O, Phys. Rev. Lett. 107, 112501 (2011)
https://doi.org/10.1103/PhysRevLett.107.112501
106 Y. Funaki, T. Yamada, E. Hiyama, B. Zhou, and K. Ikeda, Container structure of alpha-alpha-Lambda clusters in 9-lambda–Beryrium, Prog. Theor. Exp. Phys. 2014, 113D01 (2014)
https://doi.org/10.1093/ptep/ptu143
107 V. I. Kukulin and V. M. Krasnopol’sky, Description of few-body systems via analytical continuation in coupling constant, J. Phys. A: Math. Gen. 10, L33 (1977)
https://doi.org/10.1088/0305-4470/10/2/002
108 M. Freer, S. Almaraz-Calderon, A. Aprahamian, N. I. Ashwood, M. Barr, B. Bucher, P. Copp, M. Couder, N. Curtis, X. Fang, F. Jung, S. Lesher, W. Lu, J. D. Malcolm, A. Roberts, W. P. Tan, C. Wheldon, and V. A. Ziman, Evidence for a new 12C state at 13.3 MeV, Phys. Rev. C 83, 034314 (2011)
https://doi.org/10.1103/PhysRevC.83.034314
109 R. Bijker and F. Iachello, Cluster states in nuclei as representations of a U(N+1) group, Phys. Rev. C 61, 067305 (2000)
https://doi.org/10.1103/PhysRevC.61.067305
110 D. J. Marín-Lámbarri, R. Bijker, M. Freer, M. Gai, T. Kokalova, D. J. Parker, and C. Wheldon, Evidence for triangular D3h symmetry in 12C, Phys. Rev. Lett. 113, 012502 (2014)
https://doi.org/10.1103/PhysRevLett.113.012502
111 S. Ohkubo and Y. Hirabayashi, Alpha-particle condensate states in 16O, Phys. Lett. B 684, 127 (2010)
https://doi.org/10.1016/j.physletb.2009.12.066
112 Y. Funaki, T. Yamada, H. Horiuchi, G. Röpke, P. Schuck, and A. Tohsaki, Alpha cluster states and condensation in 16O, Prog. Theor. Phys. 196, 439 (2012)
https://doi.org/10.1143/PTPS.196.439
113 T. Suhara and Y. Kanada-En’yo, Effects of alpha-cluster breaking on 3α-cluster structures in 12C, Phys. Rev. C 91, 024315 (2015)
https://doi.org/10.1103/PhysRevC.91.024315
114 E. Uegaki, Y. Abe, S. Okabe, and H. Tanaka, Structure of the excited states in 12C (II), Prog. Theor. Phys. 62, 1621 (1979)
https://doi.org/10.1143/PTP.62.1621
115 R. Imai, T. Tada, and M. Kimura, Real-time evolution method and its application to the 3α cluster system, Phys. Rev. C 99, 064327 (2019)
https://doi.org/10.1103/PhysRevC.99.064327
116 R. Bijker and F. Iachello, The algebraic cluster model: Three-body clusters, Ann. Phys. 298, 334 (2002)
https://doi.org/10.1006/aphy.2002.6255
117 B. Zhou, Y. Funaki, H. Horiuchi, M. Kimura, Z. Ren, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, and T. Yamada, Nonlocalized motion in a two-dimensional container of α particles in 3– and 4– states of 12C, Phys. Rev. C 99, 051303 (2019)
https://doi.org/10.1103/PhysRevC.99.051303
118 R. Bijker and F. Iachello, Evidence for tetrahedral symmetry in 16O, Phys. Rev. Lett. 112, 152501 (2014)
https://doi.org/10.1103/PhysRevLett.112.152501
119 Y. Kanada-En’yo, Tetrahedral 4α and 12C+α cluster structures in 16O, Phys. Rev. C 96, 034306 (2017)
https://doi.org/10.1103/PhysRevC.96.034306
120 Y. Kanada-En’yo and H. Horiuchi, Structure of light unstable nuclei studied with antisymmetrized molecular dynamics, Prog. Theor. Phys. Suppl. 142, 205 (2001)
https://doi.org/10.1143/PTPS.142.205
121 M. Freer, The clustered nucleus — cluster structures in stable and unstable nuclei, Rep. Prog. Phys. 70, 2149 (2007)
https://doi.org/10.1088/0034-4885/70/12/R03
122 Z. H. Yang, Y. L. Ye, Z. H. Li, J. L. Lou, J. S. Wang, D. X. Jiang, Y. C. Ge, Q. T. Li, H. Hua, X. Q. Li, F. R. Xu, J. C. Pei, R. Qiao, H. B. You, H. Wang, Z. Y. Tian, K. A. Li, Y. L. Sun, H. N. Liu, J. Chen, J. Wu, J. Li, W. Jiang, C. Wen, B. Yang, Y. Y. Yang, P. Ma, J. B. Ma, S. L. Jin, J. L. Han, and J. Lee, Observation of enhanced monopole strength and clustering in 12Be, Phys. Rev. Lett. 112, 162501 (2014)
https://doi.org/10.1103/PhysRevLett.112.162501
123 T. Baba and M. Kimura, Structure and decay pattern of the linear-chain state in 14C, Phys. Rev. C 94, 044303 (2016)
https://doi.org/10.1103/PhysRevC.94.044303
124 Y. Kanada-En’yo, M. Kimura, and A. Ono, Antisymmetrized molecular dynamics and its applications to cluster phenomena, Prog. Theor. Exp. Phys. 2012, 01A202 (2012)
https://doi.org/10.1093/ptep/pts001
125 M. Lyu, Z. Ren, B. Zhou, Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, and T. Yamada, Investigation of 10Be and its cluster dynamics with the nonlocalized clustering approach, Phys. Rev. C 93, 054308 (2016)
https://doi.org/10.1103/PhysRevC.93.054308
126 R. Tamagaki, Potential models of nuclear forces at small distances, Prog. Theor. Phys. 39, 91 (1968)
https://doi.org/10.1143/PTP.39.91
127 N. Yamaguchi, T. Kasahara, S. Nagata, and Y. Akaishi, Effective interaction with three-body effects, Prog. Theor. Phys. 62, 1018 (1979)
https://doi.org/10.1143/PTP.62.1018
128 F. Kobayashi and Y. Kanada-En’yo, Novel cluster states in 10Be, Phys. Rev. C 86, 064303 (2012)
https://doi.org/10.1103/PhysRevC.86.064303
129 T. Suhara and Y. Kanada-En’yo, Quadrupole deformation β and γ constraint in a framework of antisymmetrized molecular dynamics, Prog. Theor. Phys. 123, 303 (2010)
https://doi.org/10.1143/PTP.123.303
130 E. Hiyama and T. Yamada, Structure of light hypernuclei, Prog. Part. Nucl. Phys. 63, 339 (2009)
https://doi.org/10.1016/j.ppnp.2009.05.001
131 Y. Funaki, M. Isaka, E. Hiyama, T. Yamada, and K. Ikeda, Multi-cluster dynamics in Λ13C and analogy to clustering in 12C, Phys. Lett. B 773, 336 (2017)
https://doi.org/10.1016/j.physletb.2017.08.048
132 Y. Yamamoto, T. Motoba, T. Fukuda, M. Takahashi, and K. Ikeda, Formation and transition of strangeness=–2 nuclear systems, Prog. Theor. Phys. 117, 281 (1994)
https://doi.org/10.1143/PTPS.117.281
133 T. Yamada, T. Motoba, K. Ikeda, and H. Bandō, Structure study of typical light hypernuclei, Prog. Theor. Phys. 81, 104 (1985)
https://doi.org/10.1143/PTPS.81.104
134 E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Three- and four-body cluster models of Hypernuclei Using the G-Matrix ∧N Interaction Λ9Be, Λ13C, ΛΛ6He and ΛΛ10Be, Prog. Theor. Phys. 97, 881 (1997)
https://doi.org/10.1143/PTP.97.881
135 O. Hashimoto and H. Tamura, Spectroscopy of Λ hypernuclei, Prog. Part. Nucl. Phys. 57, 564 (2006)
https://doi.org/10.1016/j.ppnp.2005.07.001
136 T. Yamada and Y. Funaki, Alpha-cluster structures and monopole excitations in 13C, Phys. Rev. C 92, 034326 (2015)
https://doi.org/10.1103/PhysRevC.92.034326
137 Q. Zhao, Z. Ren, M. Lyu, H. Horiuchi, Y. Funaki, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, T. Yamada, and B. Zhou, Investigation of the 9B nucleus and its clusternucleon correlations, Phys. Rev. C 97, 054323 (2018)
https://doi.org/10.1103/PhysRevC.97.054323
138 W. Sünkel, A generator coordinate technique for arbitrary cluster widths, Phys. Lett. B 65, 419 (1976)
https://doi.org/10.1016/0370-2693(76)90433-0
139 M. Colonna and P. Chomaz, Spinodal decomposition in nuclear molecular dynamics, Phys. Lett. B 436, 1 (1998)
https://doi.org/10.1016/S0370-2693(98)00882-X
140 T. Maruyama, K. Niita, and A. Iwamoto, Extension of quantum molecular dynamics and its application to heavy-ion collisions, Phys. Rev. C 53, 297 (1996)
https://doi.org/10.1103/PhysRevC.53.297
141 Y. Tang, M. LeMere, and D. Thompsom, Resonatinggroup method for nuclear many-body problems, Phys. Rep. 47, 167 (1978)
https://doi.org/10.1016/0370-1573(78)90175-8
142 M. Dufour and P. Descouvemont, Molecular states in a microscopic four α model, Nucl. Phys. A 927, 134 (2014)
143 B. Zhou, New trial wave function for the nuclear cluster structure of nuclei, Prog. Theor. Exp. Phys. 2018, 041D01 (2018)
https://doi.org/10.1093/ptep/pty034
144 A. Tohsaki-Suzuki, New computational methods of analytical derivation of exchange kernels, Prog. Theor. Phys. Suppl. 62, 191 (1977)
https://doi.org/10.1143/PTPS.62.191
145 Y. Tang, Microscopic cluster theory for nuclear systems, Nucl. Phys. A 463, 377 (1987)
https://doi.org/10.1016/0375-9474(87)90680-4
146 K. Toshitaka, M. Takehiro, and A. Akito, Effect of breathing excitations of the triton nucleus on the alphatriton cluster structure of 7Li, Nucl. Phys. A 414, 185 (1984)
https://doi.org/10.1016/0375-9474(84)90639-0
147 N. Itagaki, M. Kimura, C. Kurokawa, M. Ito, and W. von Oertzen, Alpha condensed state with a core nucleus, Phys. Rev. C 75, 037303 (2007)
https://doi.org/10.1103/PhysRevC.75.037303
148 N. Itagaki, T. Kokalova, and W. Von Oertzen, Three alpha state around 40Ca, Mod. Phys. Lett. A 25, 1947 (2010)
https://doi.org/10.1142/S021773231000071X
149 T. Ichikawa, N. Itagaki, T. Kawabata, T. Kokalova, and W. von Oertzen, Gas-like state of clusters around a 16O core in 24Mg, Phys. Rev. C 83, 061301 (2011)
https://doi.org/10.1103/PhysRevC.83.061301
150 A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Colloquium status of α-particle condensate structure of the Hoyle state, Rev. Mod. Phys. 89, 011002 (2017)
https://doi.org/10.1103/RevModPhys.89.011002
151 B. Bayman and A. Bohr, On the connection between the cluster model and the SU3 coupling scheme for particles in a harmonic oscillator potential, Nucl. Phys. 9, 596 (1958)
https://doi.org/10.1016/0029-5582(58)90343-2
152 H. Horiuchi, Coexistence of cluster states and mean-fieldtype states, J. Phys. G Nucl. Part. Phys. 37, 064021 (2010)
https://doi.org/10.1088/0954-3899/37/6/064021
153 J. K. Perring and T. H. R. Skyrme, The alpha-particle and shell models of the nucleus, Proc. Phys. Soc. A 69, 600 (1956)
https://doi.org/10.1088/0370-1298/69/8/304
154 K. Wildermuth and T. Kanellopoulos, The “cluster model” of the atomic nuclei, Nucl. Phys. 7, 150 (1958)
https://doi.org/10.1016/0029-5582(58)90245-1
155 K. Wildermuth and T. Kanellopoulos, On the structure of rotational levels of atomic nuclei, Nucl. Phys. 9, 449 (1958)
https://doi.org/10.1016/0029-5582(58)90380-8
156 M. G. Mayer and J. H. D. Jensen, Elementary Theory of Nuclear Shell Structure, Wiley, 1960
157 R. K. Shelline and K. Wildermuth, Experimental evidence for cluster structures in light and medium weight nuclei, Nucl. Phys. 21, 196 (1960)
https://doi.org/10.1016/0029-5582(60)90046-8
158 M. Kimura and H. Horiuchi, 16O+16O molecular band and their relation to the superdeformed band of 32S, Nucl. Phys. A 738, 236 (2004)
https://doi.org/10.1016/j.nuclphysa.2004.04.073
159 T. Kawabata, H. Akimune, H. Fujita, Y. Fujita, M. Fujiwara, K. Hara, K. Hatanaka, M. Itoh, Y. Kanada-En’yo, S. Kishi, K. Nakanishi, H. Sakaguchi, Y. Shimbara, A. Tamii, S. Terashima, M. Uchida, T. Wakasa, Y. Yasuda, H. Yoshida, and M. Yosoi, Cluster structure in 11B, Phys. Lett. B 646, 6 (2007)
https://doi.org/10.1016/j.nuclphysa.2007.01.016
160 R. Tamagaki and H. Tanaka, Repulsive core of effective α-α potential, Prog. Theor. Phys. 34, 191 (1965)
https://doi.org/10.1143/PTP.34.191
161 H. Horiuchi, Multi-cluster allowed states and spectroscopic amplitude of cluster transfer, Prog. Theor. Phys. 58, 204 (1977)
https://doi.org/10.1143/PTP.58.204
162 Y. Fujiwara and H. Horiuchi, Generator coordinate theory of normalization kernels of cluster systems (II), Prog. Theor. Phys. 65, 1632 (1981)
https://doi.org/10.1143/PTP.65.1632
163 M. Kimura, Deformed-basis antisymmetrized molecular dynamics and its application to 20Ne, Phys. Rev. C 69, 044319 (2004)
https://doi.org/10.1103/PhysRevC.69.044319
164 Y. Kanada-En’yo and H. Horiuchi, Clustering in Yrast States of 20Ne studied with antisymmetrized molecular dynamics, Prog. Theor. Phys. 93, 115 (1995)
https://doi.org/10.1143/PTP.93.115
165 M. Kimura and H. Horiuchi, Coexistence of cluster structure and superdeformation in 44Ti, Nucl. Phys. A 767, 58 (2006)
https://doi.org/10.1016/j.nuclphysa.2005.12.006
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed