Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (5): 52601   https://doi.org/10.1007/s11467-019-0922-3
  本期目录
Perfect optical nonreciprocity in a double-cavity optomechanical system
Xiao-Bo Yan1(), He-Lin Lu2, Feng Gao3, Feng Gao3, Liu Yang4()
1. College of Electronic Science, Northeast Petroleum University, Daqing 163318, China
2. Department of Physics, Yunnan Minzu University, Kunming 650500, China
3. College of Science, Shenyang Aerospace University, Shenyang 110136, China
4. College of Automation, Harbin Engineering University, Harbin 150001, China
 全文: PDF(847 KB)  
Abstract

Nonreciprocal devices are indispensable for building quantum networks and ubiquitous in modern communication technology. Here, we propose to take advantage of the interference between optomechanical interaction and linearly-coupled interaction to realize optical nonreciprocal transmission in a double-cavity optomechanical system. Particularly, we have derived essential conditions for perfect optical nonreciprocity and analysed properties of the optical nonreciprocal transmission. These results can be used to control optical transmission in quantum information processing.

Key wordsoptomechanics    optical nonreciprocity    nonreciprocal transmission
收稿日期: 2019-07-29      出版日期: 2019-09-16
Corresponding Author(s): Xiao-Bo Yan,Liu Yang   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(5): 52601.
Xiao-Bo Yan, He-Lin Lu, Feng Gao, Feng Gao, Liu Yang. Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys. , 2019, 14(5): 52601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0922-3
https://academic.hep.com.cn/fop/CN/Y2019/V14/I5/52601
1 D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, What is – and what is not – an optical isolator, Nat. Photonics 7(8), 579 (2013)
https://doi.org/10.1038/nphoton.2013.185
2 C. L. Hogan, The ferromagnetic faraday effect at microwave frequencies and its applications, Bell Syst. Tech. J. 31(1), 1 (1952)
https://doi.org/10.1002/j.1538-7305.1952.tb01374.x
3 L. J. Aplet and J. W. Carson, A Faraday effect optical isolator, Appl. Opt. 3(4), 544 (1964)
https://doi.org/10.1364/AO.3.000544
4 L. Ranzani and J. Aumentado, Graph-based analysis of nonreciprocity in coupled-mode systems, New J. Phys. 17(2), 023024 (2015)
https://doi.org/10.1088/1367-2630/17/2/023024
5 B. He, L. Yang, X. Jiang, and M. Xiao, Transmission nonreciprocity in a mutually coupled circulating structure, Phys. Rev. Lett. 120(20), 203904 (2018)
https://doi.org/10.1103/PhysRevLett.120.203904
6 C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, Brillouin-scattering-induced transparency and non-reciprocal light storage, Nat. Commun. 6(1), 6193 (2015)
https://doi.org/10.1038/ncomms7193
7 K. Fang, Z. Yu, and S. Fan, Photonic Aharonov–Bohm effect based on dynamic modulation, Phys. Rev. Lett. 108(15), 153901 (2012)
https://doi.org/10.1103/PhysRevLett.108.153901
8 M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
https://doi.org/10.1103/RevModPhys.86.1391
9 Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. Gong, Optomechanical sensing with on-chip microcavities, Front. Phys. 8(5), 475 (2013)
https://doi.org/10.1007/s11467-013-0384-y
10 K. Y. Zhang, L. Zhou, G. J. Dong, and W. P. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6(3), 237 (2011)
https://doi.org/10.1007/s11467-011-0164-5
11 F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902 (2007)
https://doi.org/10.1103/PhysRevLett.99.093902
12 I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901 (2007)
https://doi.org/10.1103/PhysRevLett.99.093901
13 B. He, L. Yang, Q. Lin, and M. Xiao, Radiation pressure cooling as a quantum dynamical process, Phys. Rev. Lett. 118(23), 233604 (2017)
https://doi.org/10.1103/PhysRevLett.118.233604
14 G. S. Agarwal and S. Huang, Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A 81, 041803(R) (2010)
https://doi.org/10.1103/PhysRevA.81.041803
15 S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Optomechanically induced transparency, Science 330(6010), 1520 (2010)
https://doi.org/10.1126/science.1195596
16 C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, Transient optomechanically induced transparency in a silica microsphere, Phys. Rev. A 87(5), 055802 (2013)
https://doi.org/10.1103/PhysRevA.87.055802
17 Y. C. Liu, B. B. Li, and Y. F. Xiao, Electromagnetically induced transparency in optical microcavities, Nanophotonics 6(5), 789 (2017)
https://doi.org/10.1515/nanoph-2016-0168
18 H. Xiong and Y. Wu, Fundamentals and applications of optomechanically induced transparency, Appl. Phys. Rev. 5(3), 031305 (2018)
https://doi.org/10.1063/1.5027122
19 H. Zhang, F. Saif, Y. Jiao, and H. Jing, Loss-induced transparency in optomechanics, Opt. Express 26(19), 25199 (2018)
https://doi.org/10.1364/OE.26.025199
20 X. B. Yan, W. Z. Jia, Y. Li, J. H. Wu, X. L. Li, and H. W. Mu, Optomechanically induced amplification and perfect transparency in double-cavity optomechanics, Front. Phys. 10(3), 104202 (2015)
https://doi.org/10.1007/s11467-015-0456-2
21 F. X. Sun, D. Mao, Y. T. Dai, Z. Ficek, Q. Y. He, and Q. H. Gong, Phase control of entanglement and quantum steering in a three-mode optomechanical system, New J. Phys. 19(12), 123039 (2017)
https://doi.org/10.1088/1367-2630/aa9c9a
22 L. Tian, Robust photon entanglement via quantum interference in optomechanical interfaces, Phys. Rev. Lett. 110(23), 233602 (2013)
https://doi.org/10.1103/PhysRevLett.110.233602
23 Z. J. Deng, S. J. M. Habraken, and F. Marquardt, Entanglement rate for Gaussian continuous variable beams, New J. Phys. 18(6), 063022 (2016)
https://doi.org/10.1088/1367-2630/18/6/063022
24 Z. J. Deng, X. B. Yan, Y. D. Wang, and C. W. Wu, Optimizing the output-photon entanglement in multimode optomechanical systems, Phys. Rev. A 93(3), 033842 (2016)
https://doi.org/10.1103/PhysRevA.93.033842
25 X. B. Yan, Enhanced output entanglement with reservoir engineering, Phys. Rev. A 96(5), 053831 (2017)
https://doi.org/10.1103/PhysRevA.96.053831
26 X. B. Yan, Z. J. Deng, X. D. Tian, and J. H. Wu, Entanglement optimization of filtered output fields in cavity optomechanics, Opt. Express 27(17), 24393 (2019)
https://doi.org/10.1364/OE.27.024393
27 Z. R. Zhong, X. Wang, and W. Qin, Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure, Front. Phys. 13(5), 130319 (2018)
https://doi.org/10.1007/s11467-018-0824-9
28 J. H. Liu, Y. B. Zhang, Y. F. Yu, and Z. M. Zhang, Photonphonon squeezing and entanglement in a cavity optomechanical system with a flying atom, Front. Phys. 14(1), 12601 (2019)
https://doi.org/10.1007/s11467-018-0861-4
29 K. Børkje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin, Signatures of nonlinear cavity optomechanics in the weak coupling regime, Phys. Rev. Lett. 111(5), 053603 (2013)
https://doi.org/10.1103/PhysRevLett.111.053603
30 X. Y. Lü, W. M. Zhang, S. Ashhab, Y. Wu, and F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems, Sci. Rep. 3(1), 2943 (2013)
https://doi.org/10.1038/srep02943
31 X. B. Yan, C. L. Cui, K. H. Gu, X. D. Tian, C. B. Fu, and J. H. Wu, Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system, Opt. Express 22(5), 4886 (2014)
https://doi.org/10.1364/OE.22.004886
32 G. S. Agarwal and S. Huang, Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes, New J. Phys. 16(3), 033023 (2014)
https://doi.org/10.1088/1367-2630/16/3/033023
33 M. M. Zhao, Z. Qian, B. P. Hou, Y. Liu, and Y. H. Zhao, Optomechanical properties of a degenerate nonperiodic cavity chain, Front. Phys. 14(2), 22601 (2019)
https://doi.org/10.1007/s11467-019-0898-z
34 S. Manipatruni, J. T. Robinson, and M. Lipson, Optical nonreciprocity in optomechanical structures, Phys. Rev. Lett. 102(21), 213903 (2009)
https://doi.org/10.1103/PhysRevLett.102.213903
35 M. Hafezi and P. Rabl, Optomechanically induced nonreciprocity in microring resonators, Opt. Express 20(7), 7672 (2012)
https://doi.org/10.1364/OE.20.007672
36 Z. Wang, L. Shi, Y. Liu, X. Xu, and X. Zhang, Optical nonreciprocity in asymmetric optomechanical couplers, Sci. Rep. 5(1), 8657 (2015)
https://doi.org/10.1038/srep08657
37 M. A. Miri, F. Ruesink, E. Verhagen, and A. Alú, Optical nonreciprocity based on optomechanical coupling, Phys. Rev. Appl. 7(6), 064014 (2017)
https://doi.org/10.1103/PhysRevApplied.7.064014
38 D. L. Sounas and A. Alú, Non-reciprocal photonics based on time modulation, Nat. Photonics 11(12), 774 (2017)
https://doi.org/10.1038/s41566-017-0051-x
39 F. Ruesink, M. A. Miri, A. Alú, and E. Verhagen, Nonreciprocity and magnetic-free isolation based on optomechanical interactions, Nat. Commun. 7(1), 13662 (2016)
https://doi.org/10.1038/ncomms13662
40 Z. Shen, Y. L. Zhang, Y. Chen, C. L. Zou, Y. F. Xiao, X. B. Zou, F. W. Sun, G. C. Guo, and C. H. Dong, Experimental realization of optomechanically induced nonreciprocity, Nat. Photonics 10(10), 657 (2016)
https://doi.org/10.1038/nphoton.2016.161
41 G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Demonstration of efficient nonreciprocity in a microwave optomechanical circuit, Phys. Rev. X 7(3), 031001 (2017)
https://doi.org/10.1103/PhysRevX.7.031001
42 N. R. Bernier, L. D. Tóth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, Nonreciprocal reconfigurable microwave optomechanical circuit, Nat. Commun. 8(1), 604 (2017)
https://doi.org/10.1038/s41467-017-00447-1
43 S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. B. Dieterle, O. Painter, and J. M. Fink, Mechanical on-chip microwave circulator, Nat. Commun. 8(1), 953 (2017)
https://doi.org/10.1038/s41467-017-01304-x
44 K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering, Nat. Phys. 13(5), 465 (2017)
https://doi.org/10.1038/nphys4009
45 F. Ruesink, J. P. Mathew, M. A. Miri, A. Alú, and E. Verhagen, Optical circulation in a multimode optomechanical resonator, Nat. Commun. 9(1), 1798 (2018)
https://doi.org/10.1038/s41467-018-04202-y
46 X. W. Xu and Y. Li, Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems, Phys. Rev. A 91(5), 053854 (2015)
https://doi.org/10.1103/PhysRevA.91.053854
47 X. W. Xu, Y. Li, A. X. Chen, and Y. Liu, Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems, Phys. Rev. A 93(2), 023827 (2016)
https://doi.org/10.1103/PhysRevA.93.023827
48 L. Tian and Z. Li, Nonreciprocal quantum-state conversion between microwave and optical photons, Phys. Rev. A 96(1), 013808 (2017)
https://doi.org/10.1103/PhysRevA.96.013808
49 C. C. Xia, X. B. Yan, X. D. Tian, and F. Gao, Ideal optical isolator with a two-cavity optomechanical system, Opt. Commun. 451, 197 (2019)
https://doi.org/10.1016/j.optcom.2019.06.059
50 D. Malz, L. D. Tóth, N. R. Bernier, A. K. Feofanov, T. J. Kippenberg, and A. Nunnenkamp, Quantum-limited directional amplifiers with optomechanics, Phys. Rev. Lett. 120(2), 023601 (2018)
https://doi.org/10.1103/PhysRevLett.120.023601
51 S. J. M. Habraken, K. Stannigel, M. D. Lukin, P. Zoller, and P. Rabl, Continuous mode cooling and phonon routers for phononic quantum networks, New J. Phys. 14(11), 115004 (2012)
https://doi.org/10.1088/1367-2630/14/11/115004
52 A. Seif, W. DeGottardi, K. Esfarjani, and M. Hafezi, Thermal management and non-reciprocal control of phonon flow via optomechanics, Nat. Commun. 9(1), 1207 (2018)
https://doi.org/10.1038/s41467-018-03624-y
53 J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature 452(7183), 72 (2008)
https://doi.org/10.1038/nature06715
54 A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, Dispersive optomechanics: a membrane inside a cavity, New J. Phys. 10(9), 095008 (2008)
https://doi.org/10.1088/1367-2630/10/9/095008
55 J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, Strong and tunable nonlinear optomechanical coupling in a low-loss system, Nat. Phys. 6(9), 707 (2010)
https://doi.org/10.1038/nphys1707
56 M. Ludwig, A. Safavi-Naeini, O. Painter, and F. Marquardt, Enhanced quantum nonlinearities in a two-mode optomechanical system, Phys. Rev. Lett. 109(6), 063601 (2012)
https://doi.org/10.1103/PhysRevLett.109.063601
57 D. F. Walls and G. J. Milburn, Quantum Optics, Berlin: Springer-Verlag, Berlin, 1994
https://doi.org/10.1007/978-3-642-79504-6
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed