Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (5): 52603   https://doi.org/10.1007/s11467-019-0924-1
  本期目录
Controllable electromagnetically induced grating in a cascade-type atomic system
Jin-Peng Yuan1,2, Chao-Hua Wu1,2, Yi-Hong Li1,2, Li-Rong Wang1,2(), Yun Zhang3(), Lian-Tuan Xiao1,2, Suo-Tang Jia1,2
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
3. Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan
 全文: PDF(2409 KB)  
Abstract

A controllable electromagnetically induced grating (EIG) is experimentally realized in a coherent rubidium ensemble with 5S1/2–5P3/2–5D5/2 cascade configuration. In our work, a whole picture describing the relation between the first-order diffraction efficiency and the power of the coupling field is experimentally presented for the first time, which agrees well with the theoretical prediction. More important, by fine tuning the experimental parameters, the first-order diffraction efficiency of as high as 25% can be achieved and a clear three-order diffraction pattern is also observed. Such a controllable periodic structure can provide a powerful tool for studying the control of light dynamics, pave the way for realizing new optical device.

Key wordscoherent optical effects    diffraction gratings    multiphoton processes
收稿日期: 2019-07-30      出版日期: 2019-09-17
Corresponding Author(s): Li-Rong Wang,Yun Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(5): 52603.
Jin-Peng Yuan, Chao-Hua Wu, Yi-Hong Li, Li-Rong Wang, Yun Zhang, Lian-Tuan Xiao, Suo-Tang Jia. Controllable electromagnetically induced grating in a cascade-type atomic system. Front. Phys. , 2019, 14(5): 52603.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0924-1
https://academic.hep.com.cn/fop/CN/Y2019/V14/I5/52603
1 S. E. Harris, Electromagnetically induced transparency, Phys. Today 50(7), 36 (1997)
https://doi.org/10.1063/1.881806
2 M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77(2), 633 (2005)
https://doi.org/10.1103/RevModPhys.77.633
3 L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas, Nature 397(6720), 594 (1999)
https://doi.org/10.1038/17561
4 J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid, Phys. Rev. Lett. 95(6), 063601 (2005)
https://doi.org/10.1103/PhysRevLett.95.063601
5 Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, Long lifetime and highfidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy, Phys. Rev. Lett. 111(24), 240503 (2013)
https://doi.org/10.1103/PhysRevLett.111.240503
6 Z. Wu, K. Chang, Y. Hu, Y. Zhang, Z. Jiang, and Y. Zhang, Modulation of four-wave mixing via photonic band gap, Front. Phys. 9(5), 665 (2014)
https://doi.org/10.1007/s11467-014-0434-0
7 H. Ling, Y. Q. Li, and M. Xiao, Electromagnetically induced grating: Homogeneously broadened medium, Phys. Rev. A 57(2), 1338 (1998)
https://doi.org/10.1103/PhysRevA.57.1338
8 F. Bozorgzadeh, M. Sahrai, and H. Khoshsima, Controlling the electromagnetically induced grating via spontaneously generated coherence, Eur. Phys. J. D 70(9), 191 (2016)
https://doi.org/10.1140/epjd/e2016-60623-x
9 A. W. Brown and M. Xiao, All-optical switching and routing based on an electromagnetically induced absorption grating, Opt. Lett. 30(7), 699 (2005)
https://doi.org/10.1364/OL.30.000699
10 A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, Nonlinear optics with stationary pulses of light, Phys. Rev. Lett. 94(6), 063902 (2005)
https://doi.org/10.1103/PhysRevLett.94.063902
11 D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, Dynamics of a stored Zeeman coherence grating in an external magnetic field, J. Phys. At. Mol. Opt. Phys. 43(11), 115502 (2010)
https://doi.org/10.1088/0953-4075/43/11/115502
12 L. E. de Araujo, Electromagnetically induced phase grating, Opt. Lett. 35(7), 977 (2010)
https://doi.org/10.1364/OL.35.000977
13 M. Gao, Z. Wang, Z. Ullah, H. Chen, D. Zhang, Y. Zhang, and Y. Zhang, Modulated photonic band gaps generated by high-order wave mixing, J. Opt. Soc. Am. B 32(1), 179 (2015)
https://doi.org/10.1364/JOSAB.32.000179
14 J. Tabosa, A. Lezama, and G. Cardoso, Transient Bragg diffraction by a transferred population grating: application for cold atoms velocimetry, Opt. Commun. 165(1–3), 59 (1999)
https://doi.org/10.1016/S0030-4018(99)00228-X
15 P. W. Zhai, X. M. Su, and J. Y. Gao, Optical bistability in electromagnetically induced grating, Phys. Lett. A 289(1–2), 27 (2001)
https://doi.org/10.1016/S0375-9601(01)00576-X
16 L. Zhao, W. Duan, and S. F. Yelin, All-optical beam control with high speed using image-induced blazed gratings in coherent media, Phys. Rev. A 82(1), 013809 (2010)
https://doi.org/10.1103/PhysRevA.82.013809
17 J. Wen, Y. Zhai, S. Du, and M. Xiao, Engineering biphoton wave packets with an electromagnetically induced grating, Phys. Rev. A 82(4), 043814 (2010)
https://doi.org/10.1103/PhysRevA.82.043814
18 M. Mitsunaga and N. Imoto, Observation of an electromagnetically induced grating in cold sodium atoms, Phys. Rev. A 59(6), 4773 (1999)
https://doi.org/10.1103/PhysRevA.59.4773
19 J. Sheng, J. Wang, M. A. Miri, D. N. Christodoulides, and M. Xiao, Observation of discrete diffraction patterns in an optically induced lattice, Opt. Express 23(15), 19777 (2015)
https://doi.org/10.1364/OE.23.019777
20 J. Yuan, Y. Li, S. Li, C. Li, L. Wang, L. Xiao, and S. Jia, Experimental study of discrete diffraction behavior in a coherent atomic system, Laser Phys. Lett. 14(12), 125206 (2017)
https://doi.org/10.1088/1612-202X/aa931a
21 B. K. Dutta and P. K. Mahapatra, Electromagnetically induced grating in a three-level X-type system driven by a strong standing wave pump and weak probe fields, J. Phys. At. Mol. Opt. Phys. 39(5), 1145 (2006)
https://doi.org/10.1088/0953-4075/39/5/013
22 R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence, Phys. Rev. A 83(3), 033824 (2011)
https://doi.org/10.1103/PhysRevA.83.033824
23 F. Zhou, Y. Qi, H. Sun, D. Chen, J. Yang, Y. Niu, and S. Gong, Electromagnetically induced grating in asymmetric quantum wells via Fano interference, Opt. Express 21(10), 12249 (2013)
https://doi.org/10.1364/OE.21.012249
24 Z. H. Xiao, L. Zheng, and H. Lin, Photoinduced diffraction grating in hybrid artificial molecule, Opt. Express 20(2), 1219 (2012)
https://doi.org/10.1364/OE.20.001219
25 S. Kuang, C. Jin, and C. Li, Gain-phase grating based on spatial modulation of active Raman gain in cold atoms, Phys. Rev. A 84(3), 033831 (2011)
https://doi.org/10.1103/PhysRevA.84.033831
26 L. Wang, F. Zhou, P. Hu, Y. Niu, and S. Gong, Twodimensional electromagnetically induced cross-grating in a four-level tripod-type atomic system, J. Phys. At. Mol. Opt. Phys. 47(22), 225501 (2014)
https://doi.org/10.1088/0953-4075/47/22/225501
27 A. Vafafard and M. Sahrai, Electromagnetically induced grating based on Zeeman coherence oscillations in cases beyond the multi-photon resonance condition, J. Opt. Soc. Am. B 35(9), 2118 (2018)
https://doi.org/10.1364/JOSAB.35.002118
28 T. Naseri and R. Sadighi-Bonabi, Electromagnetically induced phase grating via population trapping condition in a microwave-driven four-level atomic system, J. Opt. Soc. Am. B 31(11), 2879 (2014)
https://doi.org/10.1364/JOSAB.31.002879
29 T. Naseri and R. Sadighi-Bonabi, Efficient electromagetically induced phase grating via quantum interference in a four-level n-type atomic system, J. Opt. Soc. Am. B 31(10), 2430 (2014)
https://doi.org/10.1364/JOSAB.31.002430
30 A. Vafafard and M. Mahmoudi, Switching from electromagnetically induced absorption grating to electromagnetically induced phase grating in a closed-loop atomic system, Appl. Opt. 54(36), 10613 (2015)
https://doi.org/10.1364/AO.54.010613
31 T. Naseri and R. Moradi, Realization of electromagnetically induced phase grating and Kerr nonlinearity in a graphene ensemble under Raman excitation, Superlattices Microstruct. 101, 592 (2017)
https://doi.org/10.1016/j.spmi.2016.10.016
32 S. Wang, J. Yuan, L. Wang, L. Xiao, and S. Jia, Investigation on the monochromatic two-photon transition spectroscopy of rubidium by using intensity modulation method, J. Phys. Soc. Jpn. 87(8), 084301 (2018)
https://doi.org/10.7566/JPSJ.87.084301
33 Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, Observation of electromagnetically induced Talbot effect in an atomic system, Phys. Rev. A 97(1), 013603 (2018)
https://doi.org/10.1103/PhysRevA.97.013603
34 J. Yuan, C. Wu, Y. Li, L. Wang, Y. Zhang, L. Xiao, and S. Jia, Integer and fractional electromagnetically induced Talbot effects in a ladder-type coherent atomic system, Opt. Express 27(1), 92 (2019)
https://doi.org/10.1364/OE.27.000092
35 Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. Zhang, and M. Xiao, Observation of parity-time symmetry in optically induced atomic lattices, Phys. Rev. Lett. 117(12), 123601 (2016)
https://doi.org/10.1103/PhysRevLett.117.123601
36 Z. Zhang, D. Ma, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, Non-Hermitian optics in atomic systems, J. Phys. At. Mol. Opt. Phys. 51(7), 072001 (2018)
https://doi.org/10.1088/1361-6455/aaaf9f
37 Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, Four-wave mixing dipole soliton in laser-induced atomic gratings, Phys. Rev. Lett. 106(9), 093904 (2011)
https://doi.org/10.1103/PhysRevLett.106.093904
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed