Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (5): 53606   https://doi.org/10.1007/s11467-019-0927-y
  本期目录
Reply to “Comment to ‘Dynamics of supercooled confined water measured by deep inelastic neutron scattering’ by Y. Finkelstein and R. Moreh”
V. De Michele1, G. Romanelli2, A. Cupane1()
1. Dipartimento di Fisica e Chimica, Università di Palermo, 90128, Palermo, Italy
2. ISIS Facility, Rutherford Appleton Laboratory, Oxfordshire OX11, 0QX, UK
 全文: PDF(542 KB)  
Abstract

We reply to the comment [Front. Phys. 14(5), 53605 (2019)] by Y. Finkelstein and R. Moreh on our article Front. Phys. 13(1), 138205 (2018). We agree with some of their criticisms about our calculation of the temperature effect on the kinetic energy of hydrogen atoms of supercooled confined water; we also agree with their statement that, in view of the current sensitivity of the technique, possible effects of the liquid–liquid water transition are hardly detected with deep inelastic neutron scattering (DINS). However, we disagree with their use of the translational mass ratio of a single water molecule and, in general, with their underestimation of collective effects.

Key wordssupercooled water    liquid–liquid transition    deep inelastic neutron scattering    libration    vibrational density of states    proton kinetic energy
收稿日期: 2019-08-23      出版日期: 2019-10-16
Corresponding Author(s): A. Cupane   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(5): 53606.
V. De Michele, G. Romanelli, A. Cupane. Reply to “Comment to ‘Dynamics of supercooled confined water measured by deep inelastic neutron scattering’ by Y. Finkelstein and R. Moreh”. Front. Phys. , 2019, 14(5): 53606.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0927-y
https://academic.hep.com.cn/fop/CN/Y2019/V14/I5/53606
1 Y. Finkelstein and R. Moreh, Comment to “Dynamics of supercooled confined water measured by deep inelastic neutron scattering”, Front. Phys. 14(5), 53605 (2019)
2 V. De Michele, G. Romanelli, and A. Cupane, Dynamics of supercooled confined water measured by deep inelastic neutron scattering, Front. Phys. 13(1), 138205 (2018)
https://doi.org/10.1007/s11467-017-0699-1
3 T. S. Grigera, V. Martín-Mayor, G. Parisi, and P. Verrocchio, Vibrational spectrum of topologically disordered systems, Phys. Rev. Lett. 87(8), 085502 (2001)
https://doi.org/10.1103/PhysRevLett.87.085502
4 Yu. M. Galperin, V. G. Karpov, and V. I. Kozub, Localized states in glasses, Adv. Phys. 38(6), 669 (1989)
https://doi.org/10.1080/00018738900101162
5 V. Lubchenko and P. G. Wolynes, The origin of the boson peak and thermal conductivity plateau in lowtemperature glasses, Proc. Natl. Acad. Sci. USA 100(4), 1515 (2003)
https://doi.org/10.1073/pnas.252786999
6 A. Cupane, M. Fomina, and G. Schirò, The boson peak of deeply cooled confined water reveals the existence of a low-temperature liquid–liquid crossover, J. Chem. Phys. 141, 18C510 (2014)
https://doi.org/10.1063/1.4895793
7 Y. Finkelstein and R. Moreh, Applying semi-empirical quantum harmonic calculations for studying the atomic kinetic energies in hydrogen bonded systems, Curr. Phys. Chem. 7(1), 3 (2017)
https://doi.org/10.2174/1877946807666170117121857
8 F. Perakis, G. Camisasca, T. J. Lane, A. Späh, K. T. Wikfeldt, et al., Coherent X-rays reveal the influence of cage effects on ultrafast water dynamics, Nat. Commun. 9(1), 1917 (2018)
https://doi.org/10.1038/s41467-018-04330-5
9 V. De Michele, G. Romanelli, and A. Cupane, Kinetic energy and radial momentum distribution of hydrogen and oxygen atoms of water confined in silica hydrogel in the temperature interval 170–325 K, Sci. China Phys. Mech. & Astron. 62, 107012 (2019)
https://doi.org/10.1007/s11433-019-9420-1
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed