Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (1): 12601   https://doi.org/10.1007/s11467-019-0928-x
  本期目录
Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response
Zhao-Yang Shen1, He-Lin Yang1(), Xuan Liu3, Xiao-Jun Huang2, Tian-Yu Xiang1,4, Jiong Wu1, Wei Chen1
1. College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
2. College of Communication and Information Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
3. School of Computer and Information, China Three Gorges University, Yichang 443002, China
4. School of Mechanical and Electrical Engineering, Guizhou Normal University, Guiyang 550000, China
 全文: PDF(3371 KB)  
Abstract

We demonstrated a novel metamaterial with dual-band electromagnetically induced transparency (EIT) via simulation, experiment and numerical analysis, with resonance frequencies of the transparency peaks of 7.60 and 10.27 GHz. The E–ε metamaterial unit cells were composed of E-shaped and ε-shaped patterns. By analyzing the surface current distribution and the magnetic field, we qualitatively verified the toroidal dipole response in the E–ε metamaterial at 10.27 GHz. Meanwhile, by calculating the multipole’s radiated power, we found that the two transparency peaks were due to the excitation of the electric and toroidal dipole responses. By changing the incident angle from 0° to 60°, we observed changes in transmission spectra, and the quality factors (Q-factors) of the two transparency peaks increased. In addition, the proposed E–ε metamaterial can be designed to act as a refractive index sensor or other electronic equipment for the control of electromagnetic waves.

Key wordsmetamaterial    dual band electromagnetically induced transparency    toroidal dipole response
收稿日期: 2019-07-12      出版日期: 2019-11-22
Corresponding Author(s): He-Lin Yang   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(1): 12601.
Zhao-Yang Shen, He-Lin Yang, Xuan Liu, Xiao-Jun Huang, Tian-Yu Xiang, Jiong Wu, Wei Chen. Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response. Front. Phys. , 2020, 15(1): 12601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0928-x
https://academic.hep.com.cn/fop/CN/Y2020/V15/I1/12601
1 J. Hao, M. Qiu, and L. Zhou, Manipulate light polarizations with metamaterials: From microwave to visible, Front. Phys. China 5(3), 291 (2010)
https://doi.org/10.1007/s11467-010-0005-y
2 C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, Wire metamaterials: Physics and applications, Adv. Mater. 24(31), 4229 (2012)
https://doi.org/10.1002/adma.201200931
3 Z. Shen, H. Yang, X. Huang, and Z. Yu, Design of negative refractive index metamaterial with water droplets using, J. Opt. 19(11), 115101 (2017)
https://doi.org/10.1088/2040-8986/aa8a4c
4 H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. Au Kong, Left-handed materials composed of only S-shaped resonators, Phys. Rev. E 70(5), 057605 (2004)
https://doi.org/10.1103/PhysRevE.70.057605
5 Z. Shen, X. Huang, H. Yang, T. Xiang, C. Wang, Z. Yu, and J. Wu, An ultra-wideband, polarization insensitive, and wide incident angle absorber based on an irregular metamaterial structure with layers of water, J. Appl. Phys. 123(22), 225106 (2018)
https://doi.org/10.1063/1.5024319
6 G. Y. Song, W. X. Jiang, Q. Cheng, L. T. Wu, H. Y. Dong, and T. J. Cui, Acoustic magnifying lens for far-field high resolution imaging based on transformation acoustics, Adv. Mater. Technol. 2(9), 1700089 (2017)
https://doi.org/10.1002/admt.201700089
7 Z. L. Mei and T. J. Cui, Transparent shells-invisible to electromagnetic waves, Prog. Electromagn. Res. B 18, 149 (2009)
https://doi.org/10.2528/PIERB09082805
8 S. Sui, H. Ma, J. Wang, Y. Pang, and S. Qu, Topology optimization design of a lightweight ultra-broadband wideangle resistance frequency selective surface absorber, J. Phys. D Appl. Phys. 48(21), 215101 (2015)
https://doi.org/10.1088/0022-3727/48/21/215101
9 J. Wu, P. Wang, X. J. Huang, F. Rao, X. Y. Chen, Z. Y. Shen, and H. L. Yang, Design and validation of liquid permittivity sensor based on RCRR microstrip metamaterial, Sens. Actuators A Phys. 280, 222 (2018)
https://doi.org/10.1016/j.sna.2018.07.037
10 M. Kraft, Y. Luo, S. A. Maier, and J. B. Pendry, Designing plasmonic gratings with transformation optics, Phys. Rev. X 5(3), 031029 (2015)
https://doi.org/10.1103/PhysRevX.5.031029
11 Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: From symmetric to asymmetric edge rounding, ACS Nano 6(7), 6492 (2012)
https://doi.org/10.1021/nn3022684
12 Y. Y. Fu, Y. D. Xu, and H. Y. Chen, Negative refraction based on purely imaginary metamaterials, Front. Phys. 13(4), 134206 (2018)
https://doi.org/10.1007/s11467-018-0781-3
13 K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, Toroidal metamaterial, New J. Phys. 9(9), 324 (2007)
https://doi.org/10.1088/1367-2630/9/9/324
14 I. B. Zel’dovich, Electromagnetic interaction with parity violation,Sov. J. Exp. Theor. Phys. 6, 1184 (1958)
15 A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, Extremely high Q-factor metamaterials due to anapole excitation, Phys. Rev. B 95(3), 035104 (2017)
https://doi.org/10.1103/PhysRevB.95.035104
16 H. Jiang, W. Zhao, and Y. Jiang, Frequency-tunable and functionality-switchable polarization device using silicon strip array integrated with a graphene sheet, Opt. Mater. Express 7(12), 4277 (2017)
https://doi.org/10.1364/OME.7.004277
17 N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, Electromagnetic toroidal excitations in matter and free space, Nat. Mater. 15(3), 263 (2016)
https://doi.org/10.1038/nmat4563
18 T. Xiang, T. Lei, S. Hu, J. Chen, X. Huang, and H. Yang, Resonance transparency with low-loss in toroidal planar metamaterial, J. Appl. Phys. 123(9), 095104 (2018)
https://doi.org/10.1063/1.4993119
19 S. S. Li, J. B. Yuan, and L. M. Kuang, Coherent manipulation of spin squeezing in atomic Bose-Einstein condensate via electromagnetically induced transparency, Front. Phys. 8(1), 27 (2013)
https://doi.org/10.1007/s11467-013-0288-x
20 M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, Tailoring mode interference in plasmon-induced transparency metamaterials, J. Phys. D Appl. Phys. 51(17), 174005 (2018)
https://doi.org/10.1088/1361-6463/aab6fb
21 J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, Electromagnetically induced transparency in metamaterials at near-infrared frequency, Opt. Express 18(16), 17187 (2010)
https://doi.org/10.1364/OE.18.017187
22 W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles, Adv. Mater. 28(14), 2709 (2016)
https://doi.org/10.1002/adma.201504478
23 Z. Y. Shen, T. Y. Xiang, J. Wu, Z. T. Yu, and H. L. Yang, Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial, J. Magn. Magn. Mater. 476, 69 (2019)
https://doi.org/10.1016/j.jmmm.2018.12.069
24 T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal – graphene metamaterial, J. Phys. D Appl. Phys. 51(41), 415105 (2018)
https://doi.org/10.1088/1361-6463/aadb7f
25 Z. Y. Shen, T. Y. Xiang, N. Wu, J. Wu, Y. Tian, and H. L. Yang, Dual-band electromagnetically induced transparency based on electric dipole-quadrupole coupling in metamaterials, J. Phys. D Appl. Phys. 52(1), 015003 (2019)
https://doi.org/10.1088/1361-6463/aae672
26 S. Hu, D. Liu, and H. L. Yang, Electromagnetically induced transparency in an integrated metasurface based on bright-dark-bright mode coupling, J. Phys. D Appl. Phys. 52(17), 175305 (2019)
https://doi.org/10.1088/1361-6463/ab03c3
27 J. Zhang and A. Zayats, Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures, Opt. Express 21(7), 8426 (2013)
https://doi.org/10.1364/OE.21.008426
28 V. A. Fedotov, A. V. Rogacheva, V. Savinov, D. P. Tsai, and N. I. Zheludev, Resonant transparency and nontrivial non-radiating excitations in toroidal metamaterials, Sci. Rep. 3(1), 2967 (2013)
https://doi.org/10.1038/srep02967
29 L. Y. Guo, M. H. Li, X. J. Huang, and H. L. Yang, Electric toroidal metamaterial for resonant transparency and circular cross-polarization conversion, Appl. Phys. Lett. 105(3), 033507 (2014)
https://doi.org/10.1063/1.4891643
30 S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials, Ann. Phys. 528(5), 352 (2016)
https://doi.org/10.1002/andp.201600016
31 M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, Sharp toroidal resonances in planar terahertz metasurfaces, Adv. Mater. 28(37), 8206 (2016)
https://doi.org/10.1002/adma.201601611
32 L. Zhu, L. Dong, J. Guo, F. Meng, J. He, C. H. Zhao, and Q. Wu, A low-loss electromagnetically induced transparency (EIT) metamaterial based on coupling between electric and toroidal dipoles, RSC Advances 7(88), 55897 (2017)
https://doi.org/10.1039/C7RA11175D
33 L. Cong, V. Savinov, Y. K. Srivastava, S. Han, and R. Singh, A metamaterial analog of the Ising model, Adv. Mater. 30(40), 1804210 (2018)
https://doi.org/10.1002/adma.201804210
34 M. Gupta, Y. K. Srivastava, and R. Singh, A toroidal metamaterial switch, Adv. Mater. 30(4), 1704845 (2018)
https://doi.org/10.1002/adma.201704845
35 Y. Tian, S. Hu, X. J. Huang, Z. T. Yu, H. Lin, and H. L. Yang, Low-loss planar metamaterials electromagnetically induced transparency for sensitive refractive index sensing, J. Phys. D Appl. Phys. 50(40), 405105 (2017)
https://doi.org/10.1088/1361-6463/aa865b
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed