Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (2): 21601   https://doi.org/10.1007/s11467-019-0931-2
  本期目录
Error-detected N-photon cluster state generation based on the controlledphase gate using a quantum dot in an optical microcavity
Lei-Xia Liang1, Yan-Yan Zheng1,2, Yuan-Xia Zhang1, Mei Zhang1()
1. 1Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
2. 2School of Physics and Electronic Information, Yan’an University, Yan’an 716000, China
 全文: PDF(898 KB)  
Abstract

We propose a scheme for error-detected generation of an N-photon cluster state with a quantum dot (QD) embedded in a single-sided optical microcavity (QD-cavity system). The basic structure of this scheme is an error-detected controlled-phase (C-phase) gate on the hybrid electron–photon system. In this scheme, the fidelity of N-photon cluster state generation can be reached unity even if low-Q cavity and cavity leakage are considered. By using error detecting, the generation of an N-photon cluster state can be performed by repeating until success, which also leads to a high success probability, compared with other schemes assisted by the QD-cavity system. The error-detected generation of an N-photon cluster state in the highly controllable way may benefit on the quantum network in the future.

Key wordscontrolled-phase gate    cluster state    error-detected    QD-cavity system
收稿日期: 2019-08-04      出版日期: 2019-11-22
Corresponding Author(s): Mei Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(2): 21601.
Lei-Xia Liang, Yan-Yan Zheng, Yuan-Xia Zhang, Mei Zhang. Error-detected N-photon cluster state generation based on the controlledphase gate using a quantum dot in an optical microcavity. Front. Phys. , 2020, 15(2): 21601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0931-2
https://academic.hep.com.cn/fop/CN/Y2020/V15/I2/21601
1 M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
2 P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, S. Goldwasser, pp 124–134, IEEE Computer Society Press, 1994
3 L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79(2), 325 (1997)
https://doi.org/10.1103/PhysRevLett.79.325
4 G. L. Long, Grover algorithm with zero theoretical failure rate, Phys. Rev. A 64(2), 022307 (2001)
https://doi.org/10.1103/PhysRevA.64.022307
5 Y. B. Sheng and L. Zhou, Blind quantum computation with a noise channel, Phys. Rev. A 98(5), 052343 (2018)
https://doi.org/10.1103/PhysRevA.98.052343
6 Z. Z. Zou, X. T. Yu, and Z. C. Zhang, Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network, Front. Phys. 13(2), 130202 (2018)
https://doi.org/10.1007/s11467-017-0721-7
7 N. A. Gershenfeld and I. L. Chuang, Bulk spin-resonance quantum computation, Science 275(5298), 350 (1997)
https://doi.org/10.1126/science.275.5298.350
8 G. R. Feng, G. F. Xu, and G. L. Long, Experimental realization of nonadiabatic holonomic quantum computation, Phys. Rev. Lett. 110(19), 190501 (2013)
https://doi.org/10.1103/PhysRevLett.110.190501
9 Y. Long, G. R. Feng, Y. C. Tang, W. Qin, and G. L. Long, NMR realization of adiabatic quantum algorithms for the modified Simon problem, Phys. Rev. A 88(1), 012306 (2013)
https://doi.org/10.1103/PhysRevA.88.012306
10 X. K. Song, H. Zhang, Q. Ai, J. Qiu, and F. G. Deng, Shortcut to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm, New J. Phys. 18(2), 023001 (2016)
https://doi.org/10.1088/1367-2630/18/2/023001
11 X. K. Song, Q. Ai, J. Qiu, and F. G. Deng, Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics, Phys. Rev. A 93(5), 052324 (2016)
https://doi.org/10.1103/PhysRevA.93.052324
12 D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1), 120 (1998)
https://doi.org/10.1103/PhysRevA.57.120
13 A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. Di-Vincenzo, D. Loss, M. Sherwin, and A. Small, Quantum information processing using quantum dot spins and cavity QED, Phys. Rev. Lett. 83(20), 4204 (1999)
https://doi.org/10.1103/PhysRevLett.83.4204
14 T. Li and F. G. Deng, Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities, Phys. Rev. A 94(6), 062310 (2016)
https://doi.org/10.1103/PhysRevA.94.062310
15 T. Li, J. C. Gao, F. G. Deng, and G. L. Long, Highfidelity quantum gates on quantum-dot-confined electron spins in low-Qoptical microcavities, Ann. Phys. 391, 150 (2018)
https://doi.org/10.1016/j.aop.2018.02.009
16 T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, Decoherence-protected quantum gates for a hybrid solid-state spin register, Nature 484(7392), 82 (2012)
https://doi.org/10.1038/nature10900
17 H. R. Wei and F. G. Deng, Compact quantum gates on electron-spin qubits assisted by diamond nitrogenvacancy centers inside cavities, Phys. Rev. A 88(4), 042323 (2013)
https://doi.org/10.1103/PhysRevA.88.042323
18 T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, Demonstration of conditional gate operation using superconducting charge qubits, Nature 425(6961), 941 (2003)
https://doi.org/10.1038/nature02015
19 M. Hua, M. J. Tao, A. Alsaedi, T. Hayat, and F. G. Deng, Universal distributed quantum computing on superconducting qutrits with dark photons, Ann. Phys. 530(4), 1700402 (2018)
https://doi.org/10.1002/andp.201700402
20 H. Fan and X. B. Zhu, superconducting qubits for quantum walks, Front. Phys. 14(6), 61201 (2019)
https://doi.org/10.1007/s11467-019-0915-2
21 X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, An all-optical quantum gate in a semiconductor quantum dot, Science 301(5634), 809 (2003)
https://doi.org/10.1126/science.1083800
22 E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)
https://doi.org/10.1038/35051009
23 M. A. Nielsen, Optical quantum computation using cluster states, Phys. Rev. Lett. 93(4), 040503 (2004)
https://doi.org/10.1103/PhysRevLett.93.040503
24 H. R. Wei and F. G. Deng, Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity, Opt. Express 21(15), 17671 (2013)
https://doi.org/10.1364/OE.21.017671
25 C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators, Opt. Express 21(16), 19252 (2013)
https://doi.org/10.1364/OE.21.019252
26 Y. H. Kang, Y. Xia, and P. M. Lu, Two-photon phase gate with linear optical elements and atom-cavity system, Quantum Inform. Process. 15(11), 4521 (2016)
https://doi.org/10.1007/s11128-016-1429-2
27 B. C. Ren and F. G. Deng, Hyper-parallel photonic quantum computing with coupled quantum dots, Sci. Rep. 4(1), 4623 (2015)
https://doi.org/10.1038/srep04623
28 B. C. Ren, G. Y. Wang, and F. G. Deng, Universal hyperparallel hybrid photonic quantum gates with dipoleinduced transparency in the weak-coupling regime, Phys. Rev. A 91(3), 032328 (2015)
https://doi.org/10.1103/PhysRevA.91.032328
29 B. C. Ren, and F. G. Deng, Robust hyperparallel photonic quantum entangling gate with cavity QED, Opt. Express 25(10), 10863 (2017)
https://doi.org/10.1364/OE.25.010863
30 T. Li and G. L. Long, Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities, Phys. Rev. A 94(2), 022343 (2016)
https://doi.org/10.1103/PhysRevA.94.022343
31 G. Y. Wang, T. Li, Q. Ai, and F. G. Deng, Self-errorcorrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom, Opt. Express 26(18), 23333 (2018)
https://doi.org/10.1364/OE.26.023333
32 B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, Three-photon polarization-spatial hyperparallel quantum Fredkin gate assisted by diamond nitrogen vacancy center in optical cavity, Ann. Phys. 530(5), 1800043 (2018)
https://doi.org/10.1002/andp.201800043
33 F. G. Deng, B. C. Ren, and X. H. Li, Quantum hyperentanglement and its applications in quantum information processing, Sci. Bull. 62(1), 46 (2017)
https://doi.org/10.1016/j.scib.2016.11.007
34 D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, Entanglement of atoms via cold controlled collisions, Phys. Rev. Lett. 82(9), 1975 (1999)
https://doi.org/10.1103/PhysRevLett.82.1975
35 D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Fast quantum gates for neutral atoms, Phys. Rev. Lett. 85(10), 2208 (2000)
https://doi.org/10.1103/PhysRevLett.85.2208
36 G. Z. Song, Q. Liu, J. Qiu, G. J. Yang, F. Alzahrani, A. Hobiny, F. G. Deng, and M. Zhang, Heralded quantum gates for atomic systems assisted by the scattering of photons off single emitters, Ann. Phys. 387, 152 (2017)
https://doi.org/10.1016/j.aop.2017.10.005
37 J. Joo and D. L. Feder, Error-correcting one-way quantum computation with global entangling gates, Phys. Rev. A 80(3), 032312 (2009)
https://doi.org/10.1103/PhysRevA.80.032312
38 A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
https://doi.org/10.1103/PhysRevLett.67.661
39 C. H. Bennett, G. Brassard, and N. D. Mermin, Quantum cryptography without Bell’s theorem, Phys. Rev. Lett. 68(5), 557 (1992)
https://doi.org/10.1103/PhysRevLett.68.557
40 X. H. Li, F. G. Deng, and H. Y. Zhou, Efficient quantum key distribution over a collective noise channel, Phys. Rev. A 78(2), 022321 (2008)
https://doi.org/10.1103/PhysRevA.78.022321
41 M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)
https://doi.org/10.1103/PhysRevA.59.1829
42 G. L. Long and X. S. Liu, Theoretically efficient highcapacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
https://doi.org/10.1103/PhysRevA.65.032302
43 F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein– Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
https://doi.org/10.1103/PhysRevA.68.042317
44 F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahrani, A. Hobiny, and F. G. Deng, High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states, Sci. China Phys. Mech. Astron. 60(12), 120313 (2017)
https://doi.org/10.1007/s11433-017-9100-9
45 W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118(22), 220501 (2017)
https://doi.org/10.1103/PhysRevLett.118.220501
46 F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, Experimental long-distance quantum secure direct communication, Sci. Bull. 62(22), 1519 (2017)
https://doi.org/10.1016/j.scib.2017.10.023
47 S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Threestep three-party quantum secure direct communication, Sci. China Phys. Mech. Astron. 61, 090312 (2017)
https://doi.org/10.1007/s11433-018-9224-5
48 C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky– Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
49 C. H. Bennett and S. J. Wiesner, Communication via oneand two-particle operators on Einstein–Podolsky–Rosen states, Phys. Rev. Lett. 69(20), 2881 (1992)
https://doi.org/10.1103/PhysRevLett.69.2881
50 X. S. Liu, G. L. Long, D. M. Tong, and F. Li, General scheme for superdense coding between multiparties, Phys. Rev. A 65(2), 022304 (2002)
https://doi.org/10.1103/PhysRevA.65.022304
51 H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, Quantum repeaters:the role of imperfect local operations in quantum communication, Phys. Rev. Lett. 81(26), 5932 (1998)
https://doi.org/10.1103/PhysRevLett.81.5932
52 L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Longdistance quantum communication with atomic ensembles and linear optics, Nature 414(6862), 413 (2001)
https://doi.org/10.1038/35106500
53 N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Quantum repeaters based on atomic ensembles and linear optics, Rev. Mod. Phys. 83(1), 33 (2011)
https://doi.org/10.1103/RevModPhys.83.33
54 T. J. Wang, S. Y. Song, and G. L. Long, Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities, Phys. Rev. A 85(6), 062311 (2012)
https://doi.org/10.1103/PhysRevA.85.062311
55 T. Li, G. J. Yang, and F. G. Deng, Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities, Phys. Rev. A 93(1), 012302 (2016)
https://doi.org/10.1103/PhysRevA.93.012302
56 G. Z. Song, M. Zhang, Q. Ai, G. J. Yang, A. Alsaedi, A. Hobiny, and F. G. Deng, Heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides, Ann. Phys. 378, 33 (2017)
https://doi.org/10.1016/j.aop.2017.01.007
57 P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Ultrabright source of polarizationentangled photons, Phys. Rev. A 60(2), R773 (1999)
https://doi.org/10.1103/PhysRevA.60.R773
58 J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95(26), 260501 (2005)
https://doi.org/10.1103/PhysRevLett.95.260501
59 R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, and A. Cabello, Experimental entanglement and nonlocality of a two-photon six-qubit cluster state, Phys. Rev. Lett. 103(16), 160401 (2009)
https://doi.org/10.1103/PhysRevLett.103.160401
60 D. Kalamidas, Linear optical scheme for error-free entanglement distribution and a quantum repeater, Phys. Rev. A 73(5), 054304 (2006)
https://doi.org/10.1103/PhysRevA.73.054304
61 T. Yamamoto, J. Shimamura, S. K. Ozdemir, M. Koashi, and N. Imoto, Faithful qubit distribution assisted by one additional qubit against collective noise, Phys. Rev. Lett. 95(4), 040503 (2005)
https://doi.org/10.1103/PhysRevLett.95.040503
62 X. H. Li, F. G. Deng, and H. Y. Zhou, Faithful qubit transmission against collective noise without ancillary qubits, Appl. Phys. Lett. 91(14), 144101 (2007)
https://doi.org/10.1063/1.2794433
63 C. Y. Gao, G. Y. Wang, H. Zhang, and F. G. Deng, Multiphoton self-error-correction hyperentanglement distribution over arbitrary collective-noise channels, Quantum Inform. Process. 16(1), 11 (2017)
https://doi.org/10.1007/s11128-016-1482-x
64 Y. X. Jiang, P. L. Guo, C. Y. Gao, H. B. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, Self-errorrejecting photonic qubit transmission in polarizationspatial modes with linear optical elements, Sci. China Phys. Mech. Astron. 60(12), 120312 (2017)
https://doi.org/10.1007/s11433-017-9091-0
65 C. H. Bennett, G. Brassard, S. Popescu, B. J. Schumacher, A. Smolin, and W. K. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76(5), 722 (1996)
https://doi.org/10.1103/PhysRevLett.76.722
66 C. Simon and J. W. Pan, Polarization entanglement purification using spatial entanglement, Phys. Rev. Lett. 89(25), 257901 (2002)
https://doi.org/10.1103/PhysRevLett.89.257901
67 Y. B. Sheng and F. G. Deng, Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement, Phys. Rev. A 81(3), 032307 (2010)
https://doi.org/10.1103/PhysRevA.81.032307
68 Y. B. Sheng and F. G. Deng, One-step deterministic polarization-entanglement purification using spatial entanglement, Phys. Rev. A 82(4), 044305 (2010)
https://doi.org/10.1103/PhysRevA.82.044305
69 X. H. Li, Deterministic polarization-entanglement purification using spatial entanglement, Phys. Rev. A 82(4), 044304 (2010)
https://doi.org/10.1103/PhysRevA.82.044305
70 F. G. Deng, One-step error correction for multipartite polarization entanglement, Phys. Rev. A 83(6), 062316 (2011)
https://doi.org/10.1103/PhysRevA.83.062316
71 Y. B. Sheng and L. Zhou, Deterministic polarization entanglement purification using time-bin entanglement, Laser Phys. Lett. 11(8), 085203 (2014)
https://doi.org/10.1088/1612-2011/11/8/085203
72 B. C. Ren, F. F. Du, and F. G. Deng, Two-step hyperentanglement purification with the quantum-state-joining method, Phys. Rev. A 90(5), 052309 (2014)
https://doi.org/10.1103/PhysRevA.90.052309
73 G. Y. Wang, Q. Liu, and F. G. Deng, Hyperentanglement purification for two-photon six-qubit quantum systems, Phys. Rev. A 94(3), 032319 (2016)
https://doi.org/10.1103/PhysRevA.94.032319
74 G. Y. Wang, T. Li, Q. Ai, A. Alsaedi, T. Hayat, and F. G. Deng, Heralded entanglement purification for highcapacity quantum communication with two-photon fourqubit systems, arXiv: 1802.00111 (2018)
75 L. Zhou and Y. B. Sheng, Polarization entanglement purification for concatenated Greenberger–Horne–Zeilinger state, Ann. Phys. 385, 10 (2017)
https://doi.org/10.1016/j.aop.2017.07.012
76 L. Zhou and Y. B. Sheng, Purification of Logic-Qubit Entanglement, Sci. Rep. 6(1), 28813 (2016)
https://doi.org/10.1038/srep28813
77 C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A 53(4), 2046 (1996)
https://doi.org/10.1103/PhysRevA.53.2046
78 Z. Zhao, J. W. Pan, and M. S. Zhan, Practical scheme for entanglement concentration, Phys. Rev. A 64(1), 014301 (2001)
https://doi.org/10.1103/PhysRevA.64.014301
79 T. Yamamoto, M. Koashi, and N. Imoto, Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64(1), 012304 (2001)
https://doi.org/10.1103/PhysRevA.64.012304
80 Y. B. Sheng, F. G. Deng, and H. Y. Zhou, Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics, Phys. Rev. A 77(6), 062325 (2008)
https://doi.org/10.1103/PhysRevA.77.062325
81 B. C. Ren, F. F. Du, and F. G. Deng, Hyperentanglement concentration for two-photon four-qubit systems with linear optics, Phys. Rev. A 88(1), 012302 (2013)
https://doi.org/10.1103/PhysRevA.88.012302
82 B. C. Ren and G. L. Long, General hyperentanglement concentration for photon systems assisted by quantumdot spins inside optical microcavities, Opt. Express 22(6), 6547 (2014)
https://doi.org/10.1364/OE.22.006547
83 X. H. Li and S. Ghose, Hyperentanglement concentration for time-bin and polarization hyperentangled photons, Phys. Rev. A 91(6), 062302 (2015)
https://doi.org/10.1103/PhysRevA.91.062302
84 C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, Nonlocal hyperconcentration on entangled photons using photonic module system, Ann. Phys. 369, 128 (2016)
https://doi.org/10.1016/j.aop.2016.03.003
85 J. Liu, L. Zhou, W. Zhong, and Y. B. Sheng, Logic Bell state concentration with parity check measurement, Front. Phys. 14(2), 21601 (2019)
https://doi.org/10.1007/s11467-018-0866-z
86 P. G. Kwiat and H. Weinfurter, Embedded Bell-state analysis, Phys. Rev. A 58(4), R2623 (1998)
https://doi.org/10.1103/PhysRevA.58.R2623
87 N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, Bell measurements for teleportation, Phys. Rev. A 59(5), 3295 (1999)
https://doi.org/10.1103/PhysRevA.59.3295
88 C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, Complete deterministic linear optics Bell state analysis, Phys. Rev. Lett. 96(19), 190501 (2006)
https://doi.org/10.1103/PhysRevLett.96.190501
89 T. C. Wei, J. T. Barreiro, and P. G. Kwiat, Hyperentangled Bell state analysis, Phys. Rev. A 75(6), 060305 (2007)
https://doi.org/10.1103/PhysRevA.75.060305
90 Y. B. Sheng, F. G. Deng, and G. L. Long, Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82(3), 032318 (2010)
https://doi.org/10.1103/PhysRevA.82.032318
91 B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities, Opt. Express 20(22), 24664 (2012)
https://doi.org/10.1364/OE.20.024664
92 T. J. Wang, Y. Lu, and G. L. Long, Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities, Phys. Rev. A 86(4), 042337 (2012)
https://doi.org/10.1103/PhysRevA.86.042337
93 Q. Liu and M. Zhang, Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators, Phys. Rev. A 91(6), 062321 (2015)
https://doi.org/10.1103/PhysRevA.91.062321
94 G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantumdot spins in double-sided optical microcavities, Opt. Express 24(25), 28444 (2016)
https://doi.org/10.1364/OE.24.028444
95 X. H. Li and S. Ghose, Hyperentangled Bell-state analysis and hyperdense coding assisted by auxiliary entanglement, Phys. Rev. A 96, 020303(R) (2017)
https://doi.org/10.1103/PhysRevA.96.020303
96 H. J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett. 86(5), 910 (2001)
https://doi.org/10.1103/PhysRevLett.86.910
97 R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86(22), 5188 (2001)
https://doi.org/10.1103/PhysRevLett.86.5188
98 H. F. Wang, C. P. Yang, and F. Nori, Robust and scalable optical one-way quantum computation, Phys. Rev. A 81(5), 052332 (2010)
https://doi.org/10.1103/PhysRevA.81.052332
99 M. Varnava, D. E. Browne, and T. Rudolph, Loss tolerance in one-way quantum computation via counterfactual error correction, Phys. Rev. Lett. 97(12), 120501 (2006)
https://doi.org/10.1103/PhysRevLett.97.120501
100 G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, One-way quantum computation with two-photon multiqubit cluster states, Phys. Rev. A 78(4), 042335 (2008)
https://doi.org/10.1103/PhysRevA.78.042335
101 M. Borhani and D. Loss, Cluster states from Heisenberg interactions, Phys. Rev. A 71(3), 034308 (2005)
https://doi.org/10.1103/PhysRevA.71.034308
102 Y. Tokunaga, S. Kuwashiro, T. Yamamoto, M. Koashi, and N. Imoto, Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of oneway quantum computing, Phys. Rev. Lett. 100(21), 210501 (2008)
https://doi.org/10.1103/PhysRevLett.100.210501
103 M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, Experimental generation of four-mode continuous-variable cluster states, Phys. Rev. A 78(1), 012301 (2008)
https://doi.org/10.1103/PhysRevA.78.012301
104 T. Yu, A. D. Zhu, S. Zhang, K. H. Yeon, and S. C. Yu, Deterministic controlled-phase gate and preparation of cluster states via singly charged quantum dots in cavity quantum electrodynamics, Phys. Scr. 84(2), 025001 (2011)
https://doi.org/10.1088/0031-8949/84/02/025001
105 C. Zhang, Y. F. Huang, B. H. Liu, C. F. Li, and G. C. Guo, Experimental generation of a high-fidelity fourphoton linear cluster state, Phys. Rev. A 93(6), 062329 (2016)
https://doi.org/10.1103/PhysRevA.93.062329
106 D. Loss and D. P. Di Vincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1), 120 (1998)
https://doi.org/10.1103/PhysRevA.57.120
107 C. Piermarocchi, P. Chen, L. J. Sham, and D. G. Steel, Optical RKKY interaction between charged semiconductor quantum dots, Phys. Rev. Lett. 89(16), 167402 (2002)
https://doi.org/10.1103/PhysRevLett.89.167402
108 T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence, Phys. Rev. A 68(1), 012310 (2003)
https://doi.org/10.1103/PhysRevA.68.012310
109 S. M. Clark, K. C. Fu, T. D. Ladd, and Y. Yamamoto, Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses, Phys. Rev. Lett. 99(4), 040501 (2007)
https://doi.org/10.1103/PhysRevLett.99.040501
110 W. Yao, R. B. Liu, and L. J. Sham, Theory of control of the spin-photon interface for quantum networks, Phys. Rev. Lett. 95(3), 030504 (2005)
https://doi.org/10.1103/PhysRevLett.95.030504
111 A. Imamogłu, D. D. Awschalom, G. Burkard, D. P. Di-Vincenzo, D. Loss, M. Sherwin, and A. Small, Quantum information processing using quantum dot spins and cavity QED, Phys. Rev. Lett. 83(20), 4204 (1999)
https://doi.org/10.1103/PhysRevLett.83.4204
112 J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Coherent manipulation of coupled electron spins in semiconductor quantum dots, Science 309(5744), 2180 (2005)
https://doi.org/10.1126/science.1116955
113 A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, Mode locking of electron spin coherences in singly charged quantum dots, Science 313(5785), 341 (2006)
https://doi.org/10.1126/science.1128215
114 K. D. Greve, D. Press, P. L. McMahon, and Y. Yamamoto, Ultrafast optical control of individual quantum dot spin qubits, Rep. Prog. Phys. 76(9), 092501 (2013)
https://doi.org/10.1088/0034-4885/76/9/092501
115 J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Picosecond coherent optical manipulation of a single electron spin in a quantum dot, Science 320(5874), 349 (2008)
https://doi.org/10.1126/science.1154798
116 K. De Greve, P. L. McMahon, D. Press, T. D. Ladd, D. Bisping, C. Schneider, M. Kamp, L. Worschech, S. Höfling, A. Forchel, and Y. Yamamoto, Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit, Nat. Phys. 7(11), 872 (2011)
https://doi.org/10.1038/nphys2078
117 M. Atature, J. Dreiser, A. Badolato, A. Högele, K. Karrai, and A. Imamoglu, Quantum-dot spin-state preparation with near-unity fidelity, Science 312(5773), 551 (2006)
https://doi.org/10.1126/science.1126074
118 J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Picosecond coherent optical manip-ulation of a single electron spin in a quantum dot, Science 320(5874), 349 (2008)
https://doi.org/10.1126/science.1154798
119 D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, Complete quantum control of a single quantum dot spin using ultrafast optical pulses, Nature 456(7219), 218 (2008)
https://doi.org/10.1038/nature07530
120 C. Y. Hu, A. Young, J. L. ÓBrien, W. J. Munro, and J. G. Rarity, Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon, Phys. Rev. B 78(8), 085307 (2008)
https://doi.org/10.1103/PhysRevB.78.085307
121 C. Y. Hu, W. J. Munro, and J. G. Rarity, Deterministic photon entangler using a charged quantum dot inside a micro-cavity, Phys. Rev. B 78(12), 125318 (2008)
https://doi.org/10.1103/PhysRevB.78.125318
122 P. Lodahl, S. Mahmoodian, and S. Stobbe, Interfacing single photons and single quantum dots with photonic nanos-tructures, Rev. Mod. Phys. 87(2), 347 (2015)
https://doi.org/10.1103/RevModPhys.87.347
123 M. J. Kastoryano, F. Reiter, and A. S. Sørensen, Dissipative preparation of entanglement in optical cavities, Phys. Rev. Lett. 106(9), 090502 (2011)
https://doi.org/10.1103/PhysRevLett.106.090502
124 Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, Robust-fidelity atom-photon entangling gates in the weak-coupling regime, Phys. Rev. Lett. 109(16), 160504 (2012)
https://doi.org/10.1103/PhysRevLett.109.160504
125 R. J. Warburton, Single spins in self-assembled quantum dots, Nat. Mater. 12(6), 483 (2013)
https://doi.org/10.1038/nmat3585
126 R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, and P. M. Petroff, Charged excitons in self-assembled semiconductor quantum dots, Phys. Rev. Lett. 79(26), 5282 (1997)
https://doi.org/10.1103/PhysRevLett.79.5282
127 D. F. Walls and G. J. Milburn, Quantum Optics, Springer-Verlag, 1994
https://doi.org/10.1007/978-3-642-79504-6
128 A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, Quantum-dotinduced phase shift in a pillar microcavity, Phys. Rev. A 84(1), 011803 (2011)
https://doi.org/10.1103/PhysRevA.84.011803
129 H. R. Wei and F. G. Deng, Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities, Opt. Express 22(1), 593 (2014)
https://doi.org/10.1364/OE.22.000593
130 X. B. Zou and W. Mathis, Generating a four-photon polarization-entangled cluster state, Phys. Rev. A 71(3), 032308 (2005)
https://doi.org/10.1103/PhysRevA.71.032308
131 Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, Measurement of conditional phase shifts for quantum logic, Phys. Rev. Lett. 75(25), 4710 (1995)
https://doi.org/10.1103/PhysRevLett.75.4710
132 J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, Strong coupling in a single quantum dot-semiconductor microcavity system, Nature 432(7014), 197 (2004)
https://doi.org/10.1038/nature02969
133 S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp, and A. Forchel, AlAs/GaAs micropillar cavities with quality factors exceeding 150.000, Appl. Phys. Lett. 90(25), 251109 (2007)
https://doi.org/10.1063/1.2749862
134 J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Coherent manipulation of coupled electron spins in semiconductor quantum dots, Science 309(5744), 2180 (2005)
https://doi.org/10.1126/science.1116955
135 A. B. Young, C. Y. Hu, and J. G. Rarity, Generating entanglement with low-Q-factor microcavities, Phys. Rev. A 87(1), 012332 (2013)
https://doi.org/10.1103/PhysRevA.87.012332
136 N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, Demonstration of a simple entangling optical gate and its use in Bell-state analysis, Phys. Rev. Lett. 95(21), 210504 (2005)]
https://doi.org/10.1103/PhysRevLett.95.210504
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed