Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (2): 23601   https://doi.org/10.1007/s11467-019-0933-0
  本期目录
Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy
Zhi-Yue Zheng1,2,3, Rui Xu1,2, Kun-Qi Xu2, Shi-Li Ye2, Fei Pang1, Le Lei1, Sabir Hussain2,4, Xin-Meng Liu1, Wei Ji1, Zhi-Hai Cheng1()
1. 1Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
2. 2CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
3. 3State Key Laboratory of Digital Manufacturing Equipment and Technology, Department of Instrument Science and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
4. 4University of Chinese Academy of Sciences, Beijing 100039, China
 全文: PDF(2154 KB)  
Abstract

The phase behavior of water is a topic of perpetual interest due to its remarkable anomalous properties and importance to biology, material science, geoscience, nanoscience, etc. It is predicted confined water at interface can exist in large amounts of crystalline or amorphous states. However, the experimental evidence of coexistence of liquid water phases at interface is still insufficient. Here, a special folding few-layers graphene film was elaborate prepared to form a hydrophobic/hydrophobic interface, which can provide a suited platform to study the structure and properties of confined liquid water. The real-space visualization of intercalated water layers phases at the folding interface is obtained using advanced atomic force microscopy (AFM). The folding graphene interface displays complicated internal interfacial characteristics. The intercalated water molecules present themselves as two phases, lowdensity liquid (LDL, solid-like) and high-density liquid (HDL, liquid-like), according to their specific mechanical properties taken in two multifrequency-AFM (MF-AFM) modes. Furthermore, the water molecules structural evolution is demonstrated in a series of continuous MF-AFM measurements. The work preliminary confirms the existence of two liquid phases of water in real space and will inspire further experimental work to deeply understanding their liquid dynamics behavior.

Key words2D material    interfacial intercalation    coexistence of liquid water phases    multifrequency-AFM    hydrophobic graphene interface
收稿日期: 2019-06-14      出版日期: 2019-11-22
Corresponding Author(s): Zhi-Hai Cheng   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(2): 23601.
Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy. Front. Phys. , 2020, 15(2): 23601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0933-0
https://academic.hep.com.cn/fop/CN/Y2020/V15/I2/23601
1 F. Perakis, K. Amann-Winkel, F. Lehmkühler, M. Sprung, D. Mariedahl, J. A. Sellberg, H. Pathak, A. Späh, F. Cavalca, D. Schlesinger, A. Ricci, A. Jain, B. Massani, F. Aubree, C. J. Benmore, T. Loerting, G. Grübel, L. G. M. Pettersson, and A. Nilsson, Diffusive dynamics during the high-to-low density transition in amorphous ice, Proc. Natl. Acad. Sci. USA 114(31), 8193 (2017)
https://doi.org/10.1073/pnas.1705303114
2 C. U. Kim, M. W. Tate, and S. M. Gruner, Glassto-cryogenic-liquid transitions in aqueous solutions suggested by crack healing, Proc. Natl. Acad. Sci. USA 112(38), 11765 (2015)
https://doi.org/10.1073/pnas.1510256112
3 C. U. Kim, B. Barstow, M. W. Tate, and S. M. Gruner, Evidence for liquid water during the high-density to lowdensity amorphous ice transition, Proc. Natl. Acad. Sci. USA 106(12), 4596 (2009)
https://doi.org/10.1073/pnas.0812481106
4 P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Phase-behavior of metastable water, Nature 360(6402), 324 (1992)
https://doi.org/10.1038/360324a0
5 J. C. Palmer, F. Martelli, Y. R. Liu, A. Z. Car, A. Z. Panagiotopoulos, and P. G. Debenedetti, Metastable liquid–liquid transition in a molecular model of water, Nature 510(7505), 385 (2014)
https://doi.org/10.1038/nature13405
6 K. Amann-Winkel, R. Böhmer, F. Fujara, C. Gainaru, B. Geil, and T. Loerting, Water’s controversial glass transitions, Rev. Mod. Phys. 88(1), 011002 (2016)
https://doi.org/10.1103/RevModPhys.88.011002
7 E. O. Rizzatti, M. A. A. Barbosa, and M. C. Barbosa, Core-softened potentials, multiple liquid–liquid critical points, and density anomaly regions: An exact solution, Front. Phys. 13(1), 136102 (2018)
https://doi.org/10.1007/s11467-017-0725-3
8 O. Mishima, K. Takemura, and K. Aoki, Visual observations of the amorphous-amorphous transition in H2O under pressure, Science 254(5030), 406 (1991)
https://doi.org/10.1126/science.254.5030.406
9 K. Winkel, E. Mayer, and T. Loerting, Equilibrated highdensity amorphous ice and its first-order transition to the low-density form, J. Phys. Chem. B 115(48), 14141 (2011)
https://doi.org/10.1021/jp203985w
10 F. Martelli, H. Y. Ko, C. C. Borallo, and G. Franzese, Structural properties of water confined by phospholipid membranes, Front. Phys. 13(1), 136801 (2018)
https://doi.org/10.1007/s11467-017-0704-8
11 V. De Michele, G. Romanelli, and A. Cupane, Dynamics of supercooled confined water measured by deep inelastic neutron scattering, Front. Phys. 13(1), 138205 (2018)
https://doi.org/10.1007/s11467-017-0699-1
12 B. Bhushan, Nanotribology, Nanomechanics, and Materials Characterization, Chapter 28, 2011
https://doi.org/10.1007/978-3-642-15283-2
13 B. Bhushan, Springer Handbook of Nanotechnology, 2010
https://doi.org/10.1007/978-3-642-02525-9
14 K. Xu, S. Ye, L. Lei, L. Meng, S. Hussain, Z. Zheng, H. Zeng, W. Ji, R. Xu, and Z. Cheng, Dynamic interfacial mechanical-thermal characteristics of atomically thin two-dimensional crystals, Nanoscale 10(28), 13548 (2018)
https://doi.org/10.1039/C8NR03586E
15 R. Xu, S. Ye, K. Xu, L. Lei, S. Hussain, Z. Zheng, F. Pang, S. Xing, X. Liu, W. Ji, and Z. Cheng, Nanoscale charge transfer and diffusion at the MoS2/SiO2 interface by atomic force microscopy: contact injection versus triboelectrification, Nanotechnology 29(35), 355701 (2018)
https://doi.org/10.1088/1361-6528/aacad7
16 R. Garcia and E. T. Herruzo, The emergence of multifrequency force microscopy, Nat. Nanotechnol. 7(4), 217 (2012)
https://doi.org/10.1038/nnano.2012.38
17 R. Garcia, Amplitude Modulation Atomic Force Microscopy, Wiley-VCH Verlag GmbH & Co. KGaA, 2010
https://doi.org/10.1002/9783527632183
18 L. Tetard, A. Passian, and T. Thundat, New modes for subsurface atomic force microscopy through nanomechanical coupling, Nat. Nanotechnol. 5(2), 105 (2010)
https://doi.org/10.1038/nnano.2009.454
19 J. I. Bai and X. C. Zeng, Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure, Proc. Natl. Acad. Sci. USA 109(52), 21240 (2012)
https://doi.org/10.1073/pnas.1213342110
20 W. H. Zhao, L. Wang, J. Bai, L. F. Yuan, J. L. Yang, and X. C. Zeng, Highly confined water: Two-dimensional ice, amorphous ice, and clathrate hydrates, Acc. Chem. Res. 47(8), 2505 (2014)
https://doi.org/10.1021/ar5001549
21 Y. B. Zhu, F. C. Wang, J. I. Bai, X. C. Zeng, and H. A. Wu, Compression limit of two-dimensional water constrained in graphene nanocapillaries, ACS Nano 9(12), 12197 (2015)
https://doi.org/10.1021/acsnano.5b06572
22 R. Zangi and A. E. Mark, Monolayer ice, Phys. Rev. Lett. 91(2), 025502 (2003)
https://doi.org/10.1103/PhysRevLett.91.025502
23 J. Bai, C. A. Angell, and X. C. Zeng, Guest-free monolayer clathrate and its coexistence with two-dimensional high-density ice., Proc. Natl. Acad. Sci. USA 107(13), 5718 (2010)
https://doi.org/10.1073/pnas.0906437107
24 K. Koga, H. Tanaka, and X. C. Zeng, First-order transition in confined water between high-density liquid and low-density amorphous phases, Nature 408(6812), 564 (2000)
https://doi.org/10.1038/35046035
25 R. Zangi and A. E. Mark, Bilayer ice and alternate liquid phases of confined water, J. Chem. Phys. 119(3), 1694 (2003)
https://doi.org/10.1063/1.1580101
26 K. Koga, X. C. Zeng, and H. Tanaka, Freezing of confined water: A bilayer ice phase in hydrophobic nanopores, Phys. Rev. Lett. 79(26), 5262 (1997)
https://doi.org/10.1103/PhysRevLett.79.5262
27 S. H. Han, M. Y. Choi, P. Kumar, and H. E. Stanley, Phase transitions in confined water nanofilms, Nat. Phys. 6(9), 685 (2010)
https://doi.org/10.1038/nphys1708
28 H. Lee, J. H. Ko, J. S. Choi, J. H. Hwang, Y. H. Kim, M. Salmeron, and J. Y. Park, Enhancement of Friction by Water Intercalated between Graphene and Mica, J. Phys. Chem. Lett. 8(15), 3482 (2017)
https://doi.org/10.1021/acs.jpclett.7b01377
29 K. S. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
https://doi.org/10.1007/s11467-018-0835-6
30 R. Wang, X. G. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)
https://doi.org/10.1007/s11467-018-0859-y
31 S. Hussain, K. Xu, S. Ye, L. Lei, X. Liu, R. Xu, L. Xie, and Z. Cheng, Local electrical characterization of twodimensional materials with functional atomic force microscopy, Front. Phys. 14(3), 33401 (2019)
https://doi.org/10.1007/s11467-018-0879-7
32 Q. Li, J. Song, F. Besenbacher, and M. D. Dong, Twodimensional material confined water, Acc. Chem. Res. 48(1), 119 (2015)
https://doi.org/10.1021/ar500306w
33 G. Algara-Siller, O. Lehtinen, F. C. Wang, R. R. Nair, U. Kaiser, H. A. Wu, A. K. Geim, and I. V. Grigorieva, Square ice in graphene nanocapillaries, Nature 519(7544), 443 (2015)
https://doi.org/10.1038/nature14295
34 Y. Zhu, F. Wang, J. Bai, X. C. Zeng, and H. Wu, ABstacked square-like bilayer ice in graphene nanocapillaries, Phys. Chem. Chem. Phys. 18(32), 22039 (2016)
https://doi.org/10.1039/C6CP03061K
35 J. Chen, G. Schusteritsch, C. J. Pickard, C. G. Salzmann, and A. Michaelides, Two dimensional ice from first principles: Structures and phase transitions, Phys. Rev. Lett. 116(2), 025501 (2016)
https://doi.org/10.1103/PhysRevLett.116.025501
36 J. S. Choi, J. S. Kim, I. S. Byun, D. H. Lee, M. J. Lee, B. H. Park, C. Lee, D. Yoon, H. Cheong, K. H. Lee, Y. W. Son, J. Y. Park, and M. Salmeron, Friction anisotropydriven domain imaging on exfoliated monolayer graphene, Science 333(6042), 607 (2011)
https://doi.org/10.1126/science.1207110
37 Z. Zheng, R. Xu, S. Ye, S. Hussain, W. Ji, P. Cheng, Y. Li, Y. Sugawara, and Z. Cheng, High harmonic exploring on different materials in dynamic atomic force microscopy, Sci. China Technol. Sci. 61(3), 452 (2017)
https://doi.org/10.1007/s11431-017-9161-4
38 K. Xu, Y. Pan, S. Ye, L. Lei, S. Hussain, Q. Wang, Z. Yang, X. Liu, W. Ji, R. Xu, and Z. Cheng, Shear anisotropy-driven crystallographic orientation imaging in flexible hexagonal two-dimensional atomic crystals, Appl. Phys. Lett. 115(6), 063101 (2019)
https://doi.org/10.1063/1.5096418
39 S. Ye, K. Xu, L. Lei, S. Hussain, F. Pang, X. Liu, Z. Zheng, W. Ji, X. Shi, R. Xu, L. Xie, and Z. Cheng, Nanoscratch on single-layer MoS2 crystal by atomic force microscopy: Semi-circular to periodical zigzag cracks, Mater. Res. Express 6(2), 025048 (2018)
https://doi.org/10.1088/2053-1591/aaf14f
40 D. Martinez-Martin, E. T. Herruzo, C. Dietz, J. Gomez-Herrero, and R. Garcia, Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy, Phys. Rev. Lett. 106(19), 198101 (2011)
https://doi.org/10.1103/PhysRevLett.106.198101
41 J. R. Lozano and R. Garcia, Theory of phase spectroscopy in bimodal atomic force microscopy, Phys. Rev. B 79(1), 014110 (2009)
https://doi.org/10.1103/PhysRevB.79.014110
42 Y. Li, C. Yu, Y. Gan, P. Jiang, J. Yu, Y. Ou, D. F. Zou, C. Huang, J. Wang, T. Jia, Q. Luo, X. F. Yu, H. Zhao, C. F. Gao, and J. Y. Li, Mapping the elastic properties of twodimensional MoS2 via bimodal atomic force microscopy and finite element simulation, npj Comput. Mater. 4(1), 49 (2018)
https://doi.org/10.1038/s41524-018-0105-8
43 H. Qiu, X. C. Zeng, and W. Guo, Water in inhomogeneous nanoconfinement: Coexistence of multi layered liquid and transition to ice nanoribbons, ACS Nano 9(10), 9877 (2015)
https://doi.org/10.1021/acsnano.5b04947
44 K. Amann-Winkel, C. Gainaru, P. H. Handle, M. Seidl, H. Nelson, R. Bohmer, and T. Loerting, Water’s second glass transition, Proc. Natl. Acad. Sci. USA 110(44), 17720 (2013)
https://doi.org/10.1073/pnas.1311718110
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed