Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (2): 24602   https://doi.org/10.1007/s11467-019-0935-y
  本期目录
Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks
Bai-Jiong Lin, Xiang-Ru Li(), Wo-Liang Yu
South China Normal University, Guangzhou 510631, China
 全文: PDF(957 KB)  
Abstract

This work investigates the detection of binary neutron stars gravitational wave based on convolutional neural network (CNN). To promote the detection performance and efficiency, we proposed a scheme based on wavelet packet (WP) decomposition and CNN. The WP decomposition is a time-frequency method and can enhance the discriminant features between gravitational wave signal and noise before detection. The CNN conducts the gravitational wave detection by learning a function mapping relation from the data under being processed to the space of detection results. This function-mapping-relation style detection scheme can detection efficiency significantly. In this work, instrument effects are considered, and the noise are computed from a power spectral density (PSD) equivalent to the Advanced LIGO design sensitivity. The quantitative evaluations and comparisons with the state-of-art method matched filtering show the excellent performances for BNS gravitational wave detection. On efficiency, the current experiments show that this WP-CNN-based scheme is more than 960 times faster than the matched filtering.

Key wordsgravitational waves    algorithms    astrostatistics techniques
收稿日期: 2019-08-15      出版日期: 2019-11-22
Corresponding Author(s): Xiang-Ru Li   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(2): 24602.
Bai-Jiong Lin, Xiang-Ru Li, Wo-Liang Yu. Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks. Front. Phys. , 2020, 15(2): 24602.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0935-y
https://academic.hep.com.cn/fop/CN/Y2020/V15/I2/24602
1 B. P. Abbott, R. Abbott, T. D. Abbott, et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116(6), 061102 (2016)
2 J. Aasi, B. P. Abbott, R. Abbott, et al., Advanced ligo, Class. Quantum Grav. 32(7), 074001 (2015)
3 B. P. Abbott, R. Abbott, T. D. Abbott, Binary black hole mergers in the first advanced LIGO observing run, Phys. Rev. X 6(4), 041015 (2016)
4 B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett. 116(24), 241103 (2016)
5 B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2, Phys. Rev. Lett. 118(22), 221101 (2017)
6 B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170608: Observation of a 19 solar-mass binary black hole coalescence, Astrophys. J. Lett. 851(2), L35 (2017)
7 B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence, Phys. Rev. Lett. 119(14), 141101 (2017)
8 B. P. Abbott, R. Abbott, T. D. Abbott, et al., GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, Phys. Rev. X 9(3), 031040 (2019)
9 B. P. Abbott, R. Abbott, T. D. Abbott, et al., Binary black hole population properties inferred from the first and second observing runs of advanced LIGO and advanced Virgo, arXiv: 1811.12940 (2018)
10 F. Acernese, M. Agathos, K. Agatsuma, et al., Advanced Virgo: A second-generation interferometric gravitational wave detector, Class. Quantum Grav. 32(2), 024001 (2015)
11 B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119(16), 161101 (2017)
12 B. P. Abbott, R. Abbott, and R. X. Adhikari, et al., Multi-messenger observations of a binary neutron star merger, Astrophys. J. Lett. 848(2), L12 (2017)
13 B. D. Metzger, Welcome to the multi-messenger era! Lessons from a neutron star merger and the landscape ahead, arXiv: 1710.05931 (2017)
14 B. Zhang, The delay time of gravitational wave — gamma-ray burst associations, Front. Phys. 14(6), 64402 (2019)
https://doi.org/10.1007/s11467-019-0913-4
15 G. González, A. Viceré, and L. Q. Wen, Gravitational wave astronomy, Front. Phys. 8(6), 771 (2013)
https://doi.org/10.1007/s11467-013-0329-5
16 B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. E. Creighton, FINDCHIRP: An algorithm for detection of gravitational waves from inspiraling compact binaries, Phys. Rev. D 85(12), 122006 (2012)
https://doi.org/10.1103/PhysRevD.85.122006
17 L. Blanchet, Gravitational radiation from post- Newtonian sources and inspiralling compact binaries, Living Rev. Rel. 17(1), 2 (2014)
https://doi.org/10.12942/lrr-2014-2
18 A. Buonanno, B. R. Iyer, E. Ochsner, Y. Pan, and B. S. Sathyaprakash, Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors, Phys. Rev. D 80(8), 084043 (2009)
https://doi.org/10.1103/PhysRevD.80.084043
19 Y. Pan, A. Buonanno, M. Boyle, L. T. Buchman, L. E. Kidder, H. P. Pfeiffer, and M. A. Scheel, Inspiral-mergerringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism, Phys. Rev. D 84(12), 124052 (2011)
https://doi.org/10.1103/PhysRevD.84.124052
20 E. Barausse and A. Buonanno, Improved effective-onebody Hamiltonian for spinning black-hole binaries, Phys. Rev. D 81, 084024 (2010)
https://doi.org/10.1103/PhysRevD.81.084024
21 T. Damour and A. Nagar, The effective-one-body approach to the general relativistic two body problem, Astrophysical Black Holes, pp 273–312, Springer (2016)
https://doi.org/10.1007/978-3-319-19416-5_7
22 T. Chu, H. Fong, P. Kumar, H. P. Pfeiffer, M. Boyle, D. A. Hemberger, L. E. Kidder, M. A. Scheel, and B. Szilagyi, On the accuracy and precision of numerical waveforms: Effect of waveform extraction methodology, Class. Quantum Grav. 33(16), 165001 (2016)
https://doi.org/10.1088/0264-9381/33/16/165001
23 S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. J. Forteza, and A. Bohé, Frequency-domain gravitational waves from nonprecessing black-hole binaries (I): New numerical waveforms and anatomy of the signal, Phys. Rev. D 93(4), 044006 (2016)
https://doi.org/10.1103/PhysRevD.93.044006
24 A. H. Mroué, M. A. Scheel, B. Szilagyi, et al., Catalog of 174 binary black hole simulations for gravitational wave astronomy, Phys. Rev. Lett. 111(24), 241104 (2013)
https://doi.org/10.1103/PhysRevLett.111.241104
25 D. George, H. Y. Shen, and E. A. Huerta, Deep transfer learning: A new deep learning glitch classification method for advanced LIGO, Phys. Rev. D 97(10), 101501 (2018)
https://doi.org/10.1103/PhysRevD.97.101501
26 M. Razzano and E. Cuoco, Image-based deep learning for classification of noise transients in gravitational wave detectors, Class. Quantum Grav. 35(9), 095016 (2018)
https://doi.org/10.1088/1361-6382/aab793
27 S. Bahaadini, N. Rohani, S. Coughlin, M. Zevin, V. Kalogera, and A. K. Katsaggelos, Deep multi-view models for glitch classification, IEEE ICASSP, 2931–2935 (2017)
https://doi.org/10.1109/ICASSP.2017.7952693
28 H. Gabbard, M. Williams, F. Hayes, and C. Messenger, Matching matched filtering with deep networks for gravitational-wave astronomy, Phys. Rev. Lett. 120(14), 141103 (2018)
https://doi.org/10.1103/PhysRevLett.120.141103
29 D. George and E. A. Huerta, Deep learning for real-time gravitational wave detection and parameter estimation: Results with advanced LIGO data, Phys. Lett. B 778, 64 (2018)
https://doi.org/10.1016/j.physletb.2017.12.053
30 X. R. Li, W. L. Yu, X. L. Fan, A method of detecting gravitational wave based on time-frequency analysis and convolutional neural networks, arXiv: 1712.00356 (2017)
31 T. D. Gebhard, N. Kilbertus, I. Harry, and B. Schölkopf, Convolutional neural networks: A magic bullet for gravitational-wave detection? Phys. Rev. D 100(6), 063015 (2019)
https://doi.org/10.1103/PhysRevD.100.063015
32 W. Wei and E. A. Huerta, Gravitational wave denoising of binary black hole mergers with deep learning, arXiv: 1901.00869 (2019)
33 A. Torres-Forné, A. Marquina, J. Font, and J. Ibáñez, Denoising of gravitational wave signals via dictionary learning algorithms, Phys. Rev. D 94(12), 124040 (2016)
https://doi.org/10.1103/PhysRevD.94.124040
34 H. Y. Shen, D. George, E. A. Huerta, and Z. Z. Zhao, Denoising gravitational waves using deep learning with recurrent denoising autoencoders, arXiv: 1711.09919 (2017)
35 Y. Bouffanais and E. K. Porter, Bayesian inference for binary neutron star inspirals using a Hamiltonian Monte Carlo Algorithm, arXiv: 1810.07443 (2018)
https://doi.org/10.1103/PhysRevD.100.104023
36 C. M. Bishop, Pattern Recognition and Machine Learning, Berlin: Springer-Verlag, Berlin Heidelberg, 2006
37 A. Nitz, I. Harry, C. M. Biwer, D. Brown, Josh Willis, T. D. Canton, L. Pekowsky, T. Dent, A. R. Williamson, C. Capano, P. Kumar, S. De, M. Cabero, T. Massinger, A. Lenon, S. Fairhurst, B. Machenschalk, A. Nielsen, S. Reyes, L. Singer, S. Babak, D. Macleod, L. M. Zertuche, J. Veitch, P. Couvares, B. Bockelman, V. Tewari, and S. Khan, ligo-cbc/pycbc: O2 Production Release 9, 2017
38 S. A. Usman, A. H. Nitz, I. W. Harry, et al., The Py- CBC search for gravitational waves from compact binary coalescence, Class. Quantum Grav. 33(21), 215004 (2016)
https://doi.org/10.1088/0264-9381/33/21/215004
39 B. Allen, χ2 time-frequency discriminator for gravitational wave detection,Phys. Rev. D 71(6), 062001 (2005)
https://doi.org/10.1103/PhysRevD.71.062001
40 A. H. Nitz, T. Dent, T. Dal Canton, S. Fairhurst, and D. A. Brown, Detecting binary compact-object mergers with gravitational waves: Understanding and Improving the sensitivity of the PyCBC search, Astrophys. J. 849(2), 118 (2017)
https://doi.org/10.3847/1538-4357/aa8f50
41 T. Dal Canton, A. H. Nitz, A. P. Lundgren, et al., Implementing a search for aligned-spin neutron star-black hole systems with advanced ground based gravitational wave detectors, Phys. Rev. D 90(8), 082004 (2014)
https://doi.org/10.1103/PhysRevD.90.082004
42 T. Hinderer, A. Taracchini, F. Foucart, et al., Effects of neutron-star dynamic tides on gravitational waveforms within the effective-one-body approach, Phys. Rev. Lett. 116(18), 181101 (2016)
https://doi.org/10.1103/PhysRevLett.116.181101
43 B. P. Abbott, R. Abbott, T. D. Abbott, et al., Properties of the binary neutron star merger GW170817, Phys. Rev. X 9(1), 011001 (2019)
44 B. J. Owen, B. S. Sathyaprakash, Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement, Phys. Rev. D 60(2), 022002 (1999)
https://doi.org/10.1103/PhysRevD.60.022002
45 E. Cuoco, G. Cella, G. M. Guidi, Whitening of nonstationary noise from gravitational wave detectors, Class. Quantum Grav. 21(5), S801 (2004)
https://doi.org/10.1088/0264-9381/21/5/061
46 E. Cuoco, G. Losurdo, G. Calamai, L. Fabbroni, M. Mazzoni, R. Stanga, G. Guidi, and F. Vetrano, Noise parametric identification and whitening for LIGO 40-m interferometer data, Phys. Rev. D 64(12), 122002 (2001)
https://doi.org/10.1103/PhysRevD.64.122002
47 P. Welch, The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Trans. Audio Electroacoust 15(2), 70–73, (1967)
https://doi.org/10.1109/TAU.1967.1161901
48 S. Blanco, A. Figliola, R. Q. Quiroga, O. A. Rosso, and E. Serrano, Time-frequency analysis of electroencephalogram series (III): Wavelet packets and information cost function, Phys. Rev. E 57(1), 932 (1998)
https://doi.org/10.1103/PhysRevE.57.932
49 S. Mallat, A Wavelet Tour of Signal Processing, Boston: Academic Press, 2009
50 X. R. Li, Y. Lu, G. Comte, A. L. Luo, Y. H. Zhao, and Y. J. Wang, Linearly supporting feature extraction for automated estimation of stellar atmospheric parameters, Astrophys. J. Suppl. 218(1), 3 (2015)
https://doi.org/10.1088/0067-0049/218/1/3
51 I. Daubechies, Ten Lectures on Wavelets, Philadelphia: Society for Industrial and Applied Mathematics, 1992
https://doi.org/10.1137/1.9781611970104
52 Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521(7553), 436 (2015)
https://doi.org/10.1038/nature14539
53 I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, Cambridge: MIT Press, 2016
54 V. Nair and G. E. Hinton, Rectified linear units improve restricted Boltzmann machines, ICML-10, 807–814 (2010)
55 P. T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, A tutorial on the cross-entropy method, Ann. Oper. Res. 134(1), 19 (2005)
https://doi.org/10.1007/s10479-005-5724-z
56 D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Nature 323(6088), 533 (1986)
https://doi.org/10.1038/323533a0
57 M. Abadi, P. Barham, J. M. Chen, et al., Tensorflow: A system for large-scale machine learning, 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 265–283 (2016)
58 D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv: 1412.6980 (2014)
59 M. Vallisneri, J. Kanner, R. Williams, A. Weinstein, and B. Stephens, The LIGO open science center, J. Phys. Conf. Ser. 610(1), 012021 (2015)
https://doi.org/10.1088/1742-6596/610/1/012021
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed