Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (2): 21602   https://doi.org/10.1007/s11467-019-0944-x
  本期目录
Directional quantum random walk induced by coherence
Jin-Fu Chen1,2, Yu-Han Ma1,2(), Chang-Pu Sun1,2()
1. Beijing Computational Science Research Center, Beijing 100193, China
2. Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
 全文: PDF(2038 KB)  
Abstract

Quantum walk (QW), which is considered as the quantum counterpart of the classical random walk (CRW), is actually the quantum extension of CRW from the single-coin interpretation. The sequential unitary evolution engenders correlation between different steps in QW and leads to a non-binomial position distribution. In this paper, we propose an alternative quantum extension of CRW from the ensemble interpretation, named quantum random walk (QRW), where the walker has many unrelated coins, modeled as two-level systems, initially prepared in the same state. We calculate the walker’s position distribution in QRW for different initial coin states with the coin operator chosen as Hadamard matrix. In one-dimensional case, the walker’s position is the asymmetric binomial distribution. We further demonstrate that in QRW, coherence leads the walker to perform directional movement. For an initially decoherenced coin state, the walker’s position distribution is exactly the same as that of CRW. Moreover, we study QRW in 2D lattice, where the coherence plays a more diversified role in the walker’s position distribution.

Key wordsquantum walk    random walk    ensemble interpretation    directional walking    coherence
收稿日期: 2019-11-08      出版日期: 2020-01-08
Corresponding Author(s): Yu-Han Ma,Chang-Pu Sun   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(2): 21602.
Jin-Fu Chen, Yu-Han Ma, Chang-Pu Sun. Directional quantum random walk induced by coherence. Front. Phys. , 2020, 15(2): 21602.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0944-x
https://academic.hep.com.cn/fop/CN/Y2020/V15/I2/21602
1 N. van Kampen, in: Stochastic Processes in Physics and Chemistry, 3rd Ed., North-Holland Personal Library, edited by N. V. Kampen, Elsevier, Amsterdam, 2007, p.ix
https://doi.org/10.1016/B978-044452965-7/50006-4
2 Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random walks, Phys. Rev. A 48(2), 1687 (1993)
https://doi.org/10.1103/PhysRevA.48.1687
3 A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous, in: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, ACM Press, 2001
4 V. Kendo, Decoherence in quantum walks – a review, Math. Struct. Comput. Sci. 17(6), 1169 (2007)
https://doi.org/10.1017/S0960129507006354
5 S. E. Venegas-Andraca, Quantum walks: A comprehensive review, Quantum Inform. Process. 11(5), 1015 (2012)
https://doi.org/10.1007/s11128-012-0432-5
6 G. Grimmett, S. Janson, and P. F. Scudo, Weak limits for quantum random walks, Phys. Rev. E 69(2), 026119 (2004)
https://doi.org/10.1103/PhysRevE.69.026119
7 G. Abal, R. Siri, A. Romanelli, and R. Donangelo, Quantum walk on the line: Entanglement and nonlocal initial conditions, Phys. Rev. A 73(4), 042302 (2006)
https://doi.org/10.1103/PhysRevA.73.042302
8 L. Ermann, J. P. Paz, and M. Saraceno, Decoherence induced by a chaotic enviroment: A quantum walker with a complex coin, Phys. Rev. A 73(1), 012302 (2006)
https://doi.org/10.1103/PhysRevA.73.012302
9 N. Shenvi, J. Kempe, and K. B. Whaley, Quantum random-walk search algorithm, Phys. Rev. A 67(5), 052307 (2003)
https://doi.org/10.1103/PhysRevA.67.052307
10 A. M. Childs, Universal computation by quantum walk, Phys. Rev. Lett. 102(18), 180501 (2009)
https://doi.org/10.1103/PhysRevLett.102.180501
11 N. B. Lovett, S. Cooper, M. Everitt, M. Trevers, and V. Kendon, Universal quantum computation using the discrete-time quantum walk, Phys. Rev. A 81(4), 042330 (2010)
https://doi.org/10.1103/PhysRevA.81.042330
12 P. Witthaut, Quantum walks and quantum simulations with Bloch-oscillating spinor atoms, Rev. A 82(3), 033602 (2010)
https://doi.org/10.1103/PhysRevA.82.033602
13 M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, Environment-assisted quantum walks in photosynthetic energy transfer, J. Chem. Phys. 129(17), 174106 (2008)
https://doi.org/10.1063/1.3002335
14 T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White, Observation of topologically protected bound states in photonic quantum walks, Nat. Commun. 3(1), 882 (2012)
https://doi.org/10.1038/ncomms1872
15 K. Wang, X. Qiu, L. Xiao, X. Zhan, Z. Bian, W. Yi, and P. Xue, Simulating dynamic quantum phase transitions in photonic quantum walks, Phys. Rev. Lett. 122(2), 020501 (2019)
https://doi.org/10.1103/PhysRevLett.122.020501
16 J. Z. Wu, W. W. Zhang, and B. C. Sanders, Topological quantum walks: Theory and experiments, Front. Phys. 14(6), 61301 (2019)
https://doi.org/10.1007/s11467-019-0918-z
17 T. A. Brun, H. A. Carteret, and A. Ambainis, Quantum walks driven by many coins, Phys. Rev. A 67(5), 052317 (2003)
https://doi.org/10.1103/PhysRevA.67.052317
18 T. D. Mackay, S. D. Bartlett, L. T. Stephenson, and B. C. Sanders, Quantum walks in higher dimensions, J. Phys. Math. Gen. 35(12), 2745 (2002)
https://doi.org/10.1088/0305-4470/35/12/304
19 A. Schreiber, K. N. Cassemiro, V. Potocek, A. Gábris, P. J. Mosley, E. Andersson, I. Jex, and C. Silberhorn, Photons walking the line: A quantum walk with adjustable coin operations, Phys. Rev. Lett. 104(5), 050502 (2010)
https://doi.org/10.1103/PhysRevLett.104.050502
20 S. Panahiyan and S. Fritzsche, Controlling quantum random walk with a step-dependent coin, New J. Phys. 20(8), 083028 (2018)
https://doi.org/10.1088/1367-2630/aad899
21 M. Karski, L. Forster, J. M. Choi, A. Steffen, W. Alt, D. Meschede, and A. Widera, Quantum walk in position space with single optically trapped atoms, Science 325(5937), 174 (2009)
https://doi.org/10.1126/science.1174436
22 F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt, and C. F. Roos, Realization of a quantum walk with one and two trapped ions, Phys. Rev. Lett. 104(10), 100503 (2010)
https://doi.org/10.1103/PhysRevLett.104.100503
23 H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein, T. Huber, and T. Schaetz, Quantum walk of a trapped ion in phase space, Phys. Rev. Lett. 103(9), 090504 (2009)
https://doi.org/10.1103/PhysRevLett.103.090504
24 P. Xue, B. C. Sanders, and D. Leibfried, Quantum walk on a line for a trapped ion, Phys. Rev. Lett. 103(18), 183602 (2009)
https://doi.org/10.1103/PhysRevLett.103.183602
25 M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, Discrete single-photon quantum walks with tunable decoherence, Phys. Rev. Lett. 104(15), 153602 (2010)
https://doi.org/10.1103/PhysRevLett.104.153602
26 A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, Quantum walks of correlated photons, Science 329(5998), 1500 (2010)
https://doi.org/10.1126/science.1193515
27 H. Tang, X. F. Lin, Z. Feng, J. Y. Chen, J. Gao, K. Sun, C. Y. Wang, P. C. Lai, X.-Y. Xu, Y. Wang, L. F. Qiao, A. L. Yang, and X. M. Jin, Experimental twodimensional quantum walk on a photonic chip, Sci. Adv. 4(5), eaat3174 (2018)
https://doi.org/10.1126/sciadv.aat3174
28 Z. Yan, Y. R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C. Wang, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C. Z. Peng, K. Xia, H. Deng, H. Rong, J. Q. You, F. Nori, H. Fan, X. Zhu, and J. W. Pan, Strongly correlated quantum walks with a 12-qubit superconducting processor, Science 364(6442), 753 (2019)
https://doi.org/10.1126/science.aaw1611
29 T. A. Brun, H. A. Carteret, and A. Ambainis, Quantum random walks with decoherent coins, Phys. Rev. A 67(3), 032304 (2003)
https://doi.org/10.1103/PhysRevA.67.032304
30 T. A. Brun, H. A. Carteret, and A. Ambainis, Quantum to classical transition for random walks, Phys. Rev. Lett. 91(13), 130602 (2003)
https://doi.org/10.1103/PhysRevLett.91.130602
31 K. Zhang, Limiting distribution of decoherent quantum random walks, Phys. Rev. A 77(6), 062302 (2008)
https://doi.org/10.1103/PhysRevA.77.062302
32 J. D. Whitfield, C. A. Rodríguez-Rosario, and A. Aspuru-Guzik, Quantum stochastic walks: A generalization of classical random walks and quantum walks, Phys. Rev. A 81(2), 022323 (2010)
https://doi.org/10.1103/PhysRevA.81.022323
33 J. Košík, V. Bužek, and M. Hillery, Quantum walks with random phase shifts, Phys. Rev. A 74(2), 022310 (2006)
https://doi.org/10.1103/PhysRevA.74.022310
34 P. Ribeiro, P. Milman, and R. Mosseri, Aperiodic quantum random walks, Phys. Rev. Lett. 93(19), 190503 (2004)
https://doi.org/10.1103/PhysRevLett.93.190503
35 L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79(2), 325 (1997)
https://doi.org/10.1103/PhysRevLett.79.325
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed