Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (2): 24603   https://doi.org/10.1007/s11467-019-0945-9
  本期目录
Relation between gravitational mass and baryonic mass for non-rotating and rapidly rotating neutron stars
He Gao1(), Shun-Ke Ai2,1, Zhou-Jian Cao1, Bing Zhang2, Zhen-Yu Zhu3,4, Ang Li3, Nai-Bo Zhang5, Andreas Bauswein6
1. Department of Astronomy, Beijing Normal University, Beijing 100875, China
2. Department of Physics and Astronomy, University of Nevada Las Vegas, NV 89154, USA
3. Department of Astronomy, Xiamen University, Xiamen 361005, China
4. Institute for Theoretical Physics, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
5. Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai 264209, China
6. GSI Helmholtzzentrum für Schwerionenforschung, Planckstraβe 1, 64291 Darmstadt, Germany
 全文: PDF(1719 KB)  
Abstract

With a selected sample of neutron star (NS) equations of state (EOSs) that are consistent with the current observations and have a range of maximum masses, we investigate the relations between NS gravitational mass Mg and baryonic mass Mb, and the relations between the maximum NS mass supported through uniform rotation (Mmax) and that of nonrotating NSs (MTOV). We find that for an EOS-independent quadratic, universal transformation formula (Mb=Mg+A×Mg2), the best-fit A value is 0.080 for non-rotating NSs, 0.064 for maximally rotating NSs, and 0.073 when NSs with arbitrary rotation are considered. The residual error of the transformation is ~0.1M for non-spin or maximum-spin, but is as large as ~0.2M for all spins. For different EOSs, we find that the parameter A for non-rotating NSs is proportional to R1.41 (where R1.4 is NS radius for 1.4M in units of km). For a particular EOS, if one adopts the best-fit parameters for different spin periods, the residual error of the transformation is smaller, which is of the order of 0.01 M for the quadratic form and less than 0.01M⊙ for the cubic form (Mb=Mg+A1×Mg2+A2×Mg3). We also find a very tight and general correlation between the normalized mass gain due to spin Δm(MmaxMTOV)/MTOV and the spin period normalized to the Keplerian period P, i.e., log10Δm=(2.74±0.05)log10P+log10(0.20±0.01), which is independent of EOS models. These empirical relations are helpful to study NS-NS mergers with a long-lived NS merger product using multi-messenger data. The application of our results to GW170817 is discussed.

Key wordsgravitational waves
收稿日期: 2019-11-04      出版日期: 2020-01-08
Corresponding Author(s): He Gao   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(2): 24603.
He Gao, Shun-Ke Ai, Zhou-Jian Cao, Bing Zhang, Zhen-Yu Zhu, Ang Li, Nai-Bo Zhang, Andreas Bauswein. Relation between gravitational mass and baryonic mass for non-rotating and rapidly rotating neutron stars. Front. Phys. , 2020, 15(2): 24603.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0945-9
https://academic.hep.com.cn/fop/CN/Y2020/V15/I2/24603
1 J. M. Lattimer, The nuclear equation of state and neutron star masses, Annu. Rev. Nucl. Part. Sci. 62(1), 485 (2012)
https://doi.org/10.1146/annurev-nucl-102711-095018
2 A. K. Harding, The neutron star zoo, Front. Phys. 8(6), 679 (2013)
https://doi.org/10.1007/s11467-013-0285-0
3 J. Antoniadis, P. C. C. Freire, N. Wex, T. M. Tauris, R. S. Lynch, M. H. van Kerkwijk, M. Kramer, C. Bassa, V. S. Dhillon, T. Driebe, J. W. T. Hessels, V. M. Kaspi, V. I. Kondratiev, N. Langer, T. R. Marsh, M. A. McLaughlin, T. T. Pennucci, S. M. Ransom, I. H. Stairs, J. van Leeuwen, J. P. W. Verbiest, and D. G. Whelan, A massive pulsar in a compact relativistic binary, Science 340(6131), 1233232 (2013)
https://doi.org/10.1126/science.1233232
4 S. Lawrence, J. G. Tervala, P. F. Bedaque, and M. C. Miller, An upper bound on neutron star masses from models of short gamma-ray bursts, Astrophys. J. 808(2), 186 (2015)
https://doi.org/10.1088/0004-637X/808/2/186
5 C. L. Fryer, K. Belczynski, E. Ramirez-Ruiz, S. Rosswog, G. Shen, and A. W. Steiner, The fate of the compact remnant in neutron star mergers, Astrophys. J. 812(1), 24 (2015)
https://doi.org/10.1088/0004-637X/812/1/24
6 B. Margalit and B. D. Metzger, Constraining the maximum mass of neutron stars from multi-messenger observations of GW170817, Astrophys. J. 850(2), L19 (2017)
https://doi.org/10.3847/2041-8213/aa991c
7 L. Rezzolla, E. R. Most, and L. R. Weih, Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars, Astrophys. J. 852(2), L25 (2018)
https://doi.org/10.3847/2041-8213/aaa401
8 M. Ruiz, S. L. Shapiro, and A. Tsokaros, GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass, Phys. Rev. D 97(2), 021501 (2018)
https://doi.org/10.1103/PhysRevD.97.021501
9 A. Rowlinson, P. T. O’Brien, N. R. Tanvir, B. Zhang, P. A. Evans, N. Lyons, A. J. Levan, R. Willingale, K. L. Page, O. Onal, D. N. Burrows, A. P. Beardmore, T. N. Ukwatta, E. Berger, J. Hjorth, A. S. Fruchter, R. L. Tunnicliffe, D. B. Fox, and A. Cucchiara, The unusual X-ray emission of the short Swift GRB 090515: Evidence for the formation of a magnetar? Mon. Not. R. Astron. Soc. 409(2), 531 (2010)
https://doi.org/10.1111/j.1365-2966.2010.17354.x
10 A. Rowlinson, P. T. O’Brien, B. D. Metzger, N. R. Tanvir, and A. J. Levan, Signatures of magnetar central engines in short GRB light curves, Mon. Not. R. Astron. Soc. 430(2), 1061 (2013)
https://doi.org/10.1093/mnras/sts683
11 H. J. Lü, B. Zhang, W. H. Lei, Y. Li, and P. Lasky, The millisecond magnetar central engine in short GRBs, Astrophys. J. 805(2), 89 (2015)
https://doi.org/10.1088/0004-637X/805/2/89
12 P. D. Lasky, B. Haskell, V. Ravi, E. J. Howell, and D. M. Coward, Nuclear equation of state from observations of short gamma-ray burst remnants, Phys. Rev. D 89(4), 047302 (2014)
https://doi.org/10.1103/PhysRevD.89.047302
13 V. Ravi and P. D. Lasky, The birth of black holes: neutron star collapse times, gamma-ray bursts and fast radio bursts, Mon. Not. R. Astron. Soc. 441(3), 2433 (2014)
https://doi.org/10.1093/mnras/stu720
14 H. Gao, B. Zhang, and H. J. Lü, Constraints on binary neutron star merger product from short GRB observations, Phys. Rev. D 93(4), 044065 (2016)
https://doi.org/10.1103/PhysRevD.93.044065
15 A. Li, B. Zhang, N. B. Zhang, H. Gao, B. Qi, and T. Liu, Internal X-ray plateau in short GRBs: Signature of supramassive fast-rotating quark stars? Phys. Rev. D 94(8), 083010 (2016)
https://doi.org/10.1103/PhysRevD.94.083010
16 J. M. Lattimer and M. Prakash, Neutron star observations: Prognosis for equation of state constraints, Phys. Rep. 442(1–6), 109 (2007)
https://doi.org/10.1016/j.physrep.2007.02.003
17 F. X. Timmes, S. E. Woosley, and T. A. Weaver, The neutron star and black hole initial mass function, Astrophys. J. 457, 834 (1996)
https://doi.org/10.1086/176778
18 C. L. Fryer, K. Belczynski, G. Wiktorowicz, M. Dominik, V. Kalogera, and D. E. Holz, Compact remnant mass function: Dependence on the explosion mechanism and metallicity, Astrophys. J. 749(1), 91 (2012)
https://doi.org/10.1088/0004-637X/749/1/91
19 O. Pejcha and T. A. Thompson, The landscape of the neutrino mechanism of core-collapse supernovae: Neutron star and black hole mass functions, explosion energies, and nickel yields, Astrophys. J. 801(2), 90 (2015)
https://doi.org/10.1088/0004-637X/801/2/90
20 J. M. Lattimer and A. Yahil, Analysis of the neutrino events from supernova 1987A, Astrophys. J. 340, 426 (1989)
https://doi.org/10.1086/167404
21 A. Burrows, D. Klein, and R. Gandhi, The future of supernova neutrino detection, Phys. Rev. D 45(10), 3361 (1992)
https://doi.org/10.1103/PhysRevD.45.3361
22 J. Gava, J. Kneller, C. Volpe, and G. C. McLaughlin, Dynamical collective calculation of supernova neutrino signals, Phys. Rev. Lett. 103(7), 071101 (2009)
https://doi.org/10.1103/PhysRevLett.103.071101
23 G. Camelio, A. Lovato, L. Gualtieri, O. Benhar, J. A. Pons, and V. Ferrari, Evolution of a proto-neutron star with a nuclear many-body equation of state: Neutrino luminosity and gravitational wave frequencies, Phys. Rev. D 96(4), 043015 (2017)
https://doi.org/10.1103/PhysRevD.96.043015
24 S. Rosswog, T. Piran, and E. Nakar, The multimessenger picture of compact object encounters: Binary mergers versus dynamical collisions, Mon. Not. R. Astron. Soc. 430(4), 2585 (2013)
https://doi.org/10.1093/mnras/sts708
25 A. Bauswein, S. Goriely, and H. T. Janka, Systematics of dynamical mass ejection, nucleosynthesis, and radioactively powered electromagnetic signals from neutron-star mergers, Astrophys. J. 773(1), 78 (2013)
https://doi.org/10.1088/0004-637X/773/1/78
26 K. Hotokezaka, K. Kiuchi, K. Kyutoku, H. Okawa, Y. Sekiguchi, M. Shibata, and K. Taniguchi, Mass ejection from the merger of binary neutron stars, Phys. Rev. D 87(2), 024001 (2013)
https://doi.org/10.1103/PhysRevD.87.024001
27 R. Fernández, D. Kasen, B. D. Metzger, and E. Quataert, Outflows from accretion discs formed in neutron star mergers: effect of black hole spin, Mon. Not. R. Astron. Soc. 446(1), 750 (2015)
https://doi.org/10.1093/mnras/stu2112
28 C. Y. Song, T. Liu, and A. Li, Outflows from black hole hyperaccretion systems: Short and long-short gamma-ray bursts and “quasi-supernovae”, Mon. Not. R. Astron. Soc. 477(2), 2173 (2018)
https://doi.org/10.1093/mnras/sty783
29 B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119, 161101 (2017)
30 D. Radice, A. Perego, S. Bernuzzi, and B. Zhang, Longlived remnants from binary neutron star mergers, Mon. Not. R. Astron. Soc. 481(3), 3670 (2018)
https://doi.org/10.1093/mnras/sty2531
31 J. M. Lattimer and M. Prakash, Neutron star structure and the equation of state, Astrophys. J. 550(1), 426 (2001)
https://doi.org/10.1086/319702
32 M. Coughlin, T. Dietrich, K. Kawaguchi, S. Smartt, C. Stubbs, and M. Ujevic, Toward rapid transient identification and characterization of kilonovae, Astrophys. J. 849(1), 12 (2017)
https://doi.org/10.3847/1538-4357/aa9114
33 G. Bozzola, N. Stergioulas, and A. Bauswein, Universal relations for differentially rotating relativistic stars at the threshold to collapse, Mon. Not. R. Astron. Soc. 474(3), 3557 (2018)
https://doi.org/10.1093/mnras/stx3002
34 A. M. Studzińska, M. Kucaba, D. Gondek-Rosińska, L. Villain, and M. Ansorg, Effect of the equation of state on the maximum mass of differentially rotating neutron stars, Mon. Not. R. Astron. Soc. 463(3), 2667 (2016)
https://doi.org/10.1093/mnras/stw2152
35 D. Gondek-Rosińska, I. Kowalska, L. Villain, M. Ansorg, and M. Kucaba, A New View on the Maximum Mass of Differentially Rotating Neutron Stars, Astrophys. J. 837(1), 58 (2017)
https://doi.org/10.3847/1538-4357/aa56c1
36 A. Bauswein and N. Stergioulas, Semi-analytic derivation of the threshold mass for prompt collapse in binary neutron-star mergers, Mon. Not. R. Astron. Soc. 471(4), 4956 (2017)
https://doi.org/10.1093/mnras/stx1983
37 L. R. Weih, E. R. Most, and L. Rezzolla, On the stability and maximum mass of differentially rotating relativistic stars, Mon. Not. R. Astron. Soc. 473(1), L126 (2018)
https://doi.org/10.1093/mnrasl/slx178
38 E. M. Butterworth and J. R. Ipser, On the structure and stability of rapidly rotating fluid bodies in general relativity (I): The numerical method for computing structure and its application to uniformly rotating homogeneous bodies, Astrophys. J. 204, 200 (1976)
https://doi.org/10.1086/154163
39 N. Stergioulas and J. L. Friedman, Comparing models of rapidly rotating relativistic stars constructed by two numerical methods, Astrophys. J. 444, 306 (1995)
https://doi.org/10.1086/175605
40 F. Douchin and P. Haensel, A unified equation of state of dense matter and neutron star structure, Astronomy and Astrophysics 380, 151 (2001)
https://doi.org/10.1051/0004-6361:20011402
41 R. B. Wiringa, V. Fiks, and A. Fabrocini, Equation of state for dense nucleon matter, Phys. Rev. C 38(2), 1010 (1988)
https://doi.org/10.1103/PhysRevC.38.1010
42 A. Akmal and V. R. Pandharipande, Spin-isospin structure and pion condensation in nucleon matter, Phys. Rev. C 56(4), 2261 (1997)
https://doi.org/10.1103/PhysRevC.56.2261
43 S. Goriely, N. Chamel, and J. M. Pearson, Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas (XII): Stiffness and stability of neutron-star matter, Phys. Rev. C 82(3), 035804 (2010)
https://doi.org/10.1103/PhysRevC.82.035804
44 S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H. H. Wolter, Composition and thermodynamics of nuclear matter with light clusters, Phys. Rev. C 81(1), 015803 (2010)
https://doi.org/10.1103/PhysRevC.81.015803
45 H. Müther, M. Prakash, and T. L. Ainsworth, The nuclear symmetry energy in relativistic Brueckner-Hartree- Fock calculations, Phys. Lett. B 199(4), 469 (1987)
https://doi.org/10.1016/0370-2693(87)91611-X
46 H. Müller and B. D. Serot, Relativistic mean-field theory and the high-density nuclear equation of state, Nucl. Phys. A. 606(3–4), 508 (1996)
https://doi.org/10.1016/0375-9474(96)00187-X
47 G. B. Cook, S. L. Shapiro, and S. A. Teukolsky, Rapidly rotating neutron stars in general relativity: Realistic equations of state, Astrophys. J. 424, 823 (1994)
https://doi.org/10.1086/173934
48 J. P. Lasota, P. Haensel, and M. A. Abramowicz, Fast rotation of neutron stars, Astrophys. J. 456, 300 (1996)
https://doi.org/10.1086/176650
49 C. Breu and L. Rezzolla, Maximum mass, moment of inertia and compactness of relativistic stars, Mon. Not. R. Astron. Soc. 459(1), 646 (2016)
https://doi.org/10.1093/mnras/stw575
50 Y. W. Yu, L. D. Liu, and Z. G. Dai, A long-lived remnant neutron star after GW170817 inferred from its associated kilonova, Astrophys. J. 861(2), 114 (2018)
https://doi.org/10.3847/1538-4357/aac6e5
51 S. Z. Li, L. D. Liu, Y. W. Yu, and B. Zhang, What powered the optical transient AT2017gfo associated with GW170817? Astrophys. J. 861(2), L12 (2018)
https://doi.org/10.3847/2041-8213/aace61
52 S. Ai, H. Gao, Z. G. Dai, X. F. Wu, A. Li, B. Zhang, and M. Z. Li, The allowed parameter space of a long-lived neutron star as the merger remnant of GW170817, Astrophys. J. 860(1), 57 (2018)
https://doi.org/10.3847/1538-4357/aac2b7
53 L. Piro, E. Troja, B. Zhang, G. Ryan, H. van Eerten, R. Ricci, M. H. Wieringa, A. Tiengo, N. R. Butler, S. B. Cenko, O. D. Fox, H. G. Khandrika, G. Novara, A. Rossi, and T. Sakamoto, A long-lived neutron star merger remnant in GW170817: Constraints and clues from Xray observations, Mon. Not. R. Astron. Soc. 483(2), 1912 (2019)
https://doi.org/10.1093/mnras/sty3047
54 B. D. Metzger, Welcome to the multi-messenger era! Lessons from a neutron star merger and the landscape ahead, arXiv: 1710.05931 (2017)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed