Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (2): 22603   https://doi.org/10.1007/s11467-019-0947-7
  本期目录
Optimal spectral phase control of femtosecond laser-induced up-conversion luminescence in Sm3+:NaYF4 glass
Jian-Ping Li1, Lian-Zhong Deng1(), Ye Zheng1, Peng-Peng Ding1, Tian-Qing Jia1, Zhen-Rong Sun1, Jian-Rong Qiu2, Shi-An Zhang1,3()
1. State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
2. State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
 全文: PDF(1424 KB)  
Abstract

The spectral phase of the femtosecond laser field is an important parameter that affects the upconversion (UC) luminescence efficiency of dopant lanthanide ions. In this work, we report an experimental study on controlling the UC luminescence efficiency in Sm3+:NaYF4 glass by 800-nm femtosecond laser pulse shaping using spectral phase modulation. The optimal phase control strategy efficiently enhances or suppresses the UC luminescence intensity. Based on the laser-power dependence of the UC luminescence intensity and its comparison with the luminescence spectrum under direct 266-nm femtosecond laser irradiation, we propose herein an excitation model combining non-resonant two-photon absorption with resonance-mediated three-photon absorption to explain the experimental observations.

Key wordsup-conversion luminescence    rare earth ions    quantum control    femtosecond laser    spectral phase
收稿日期: 2019-07-29      出版日期: 2020-01-20
Corresponding Author(s): Lian-Zhong Deng,Shi-An Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(2): 22603.
Jian-Ping Li, Lian-Zhong Deng, Ye Zheng, Peng-Peng Ding, Tian-Qing Jia, Zhen-Rong Sun, Jian-Rong Qiu, Shi-An Zhang. Optimal spectral phase control of femtosecond laser-induced up-conversion luminescence in Sm3+:NaYF4 glass. Front. Phys. , 2020, 15(2): 22603.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0947-7
https://academic.hep.com.cn/fop/CN/Y2020/V15/I2/22603
1 S. Y. Han, R. R. Deng, X. J. Xie, and X. G. Liu, Enhancing luminescence in lanthanide-doped upconversion nanoparticles, Angew. Chem. Int. Ed. 53(44), 11702 (2014)
https://doi.org/10.1002/anie.201403408
2 S. Heer, K. Kömpe, H. U. Güdel, and M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals, Adv. Mater. 16(23–24), 2102 (2004)
https://doi.org/10.1002/adma.200400772
3 F. Wang and X. G. Liu, Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles, J. Am. Chem. Soc. 130(17), 5642 (2008)
https://doi.org/10.1021/ja800868a
4 S. H. Wen, J. J. Zhou, K. Z. Zheng, A. Bednarkiewicz, X. G. Liu, and D. Y. Jin, Advances in highly doped upconversion nanoparticles, Nat. Commun. 9(1), 2415 (2018)
https://doi.org/10.1038/s41467-018-04813-5
5 F. Wang and X. G. Liu, Multicolor tuning of lanthanidedoped nanoparticles by single wavelength excitation, Acc. Chem. Res. 47(4), 1378 (2014)
https://doi.org/10.1021/ar5000067
6 K. Patel, V. Blair, J. Douglas, Q. L. Dai, Y. H. Liu, S. Q. Ren, and R. Brennan, Structural effects of lanthanide dopants on alumina, Sci. Rep. 7(1), 39946 (2017)
https://doi.org/10.1038/srep39946
7 D. K. Xu, A. M. Li, L. Yao, H. Lin, S. H. Yang, and Y. L. Zhang, Lanthanide-doped KLu2F7 nanoparticles with high upconversion luminescence performance: A comparative study by Judd-Ofelt analysis and energy transfer mechanistic investigation, Sci. Rep. 7(1), 43189 (2017)
https://doi.org/10.1038/srep43189
8 Q. Shao, Z. Yang, G. Zhang, Y. Hu, Y. Dong, and J. Jiang, Multifunctional lanthanide-doped core/shell nanoparticles: Integration of upconversion luminescence, temperature sensing, and photothermal conversion properties, ACS Omega 3(1), 188 (2018)
https://doi.org/10.1021/acsomega.7b01581
9 F. Xu, Y. Zhao, M. Hu, P. Zhang, N. Kong, R. Liu, C. Liu, and S. K. Choi, Lanthanide-doped core–shell nanoparticles as a multimodality platform for imaging and photodynamic therapy, Chem. Commun. 54(68), 9525 (2018)
https://doi.org/10.1039/C8CC05057K
10 X. Chen, D. Peng, Q. Ju, and F. Wang, Photon upconversion in core–shell nanoparticles, Chem. Soc. Rev. 44(6), 1318 (2015)
https://doi.org/10.1039/C4CS00151F
11 L. Tian, Y. Shang, S. Hao, Q. Han, T. Chen, W. Lv, and C. Yang, Constructing a “native” oxyfluoride layer on fluoride particles for enhanced upconversion luminescence, Adv. Funct. Mater. 28(48), 1803946 (2018)
https://doi.org/10.1002/adfm.201803946
12 X. Tian, Z. Wu, Y. Jia, J. Chen, R. K. Zheng, Y. Zhang, and H. Luo, Remanent-polarization-induced enhancement of photoluminescence in Pr3+-doped lead-free ferroelectric (Bi0.5Na0.5) TiO3 ceramic, Appl. Phys. Lett. 102(4), 042907 (2013)
https://doi.org/10.1063/1.4790290
13 V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, Er3+-doped nanoparticles for optical detection of magnetic field, Nano Lett. 9(2), 721 (2009)
https://doi.org/10.1021/nl803244v
14 F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, Temperature sensing using fluorescent nanothermometers, ACS Nano 4(6), 3254 (2010)
https://doi.org/10.1021/nn100244a
15 Z. Chen, G. Wu, H. Jia, K. Sharafudeen, W. Dai, X. Zhang, S. Zeng, J. Liu, R. Wei, S. Lv, G. Dong, and J. Qiu, Improved up-conversion luminescence from Er3+:LaF3 nanocrystals embedded in oxyfluoride glass ceramics via simultaneous triwavelength excitation, J. Phys. Chem. C 119(42), 24056 (2015)
https://doi.org/10.1021/acs.jpcc.5b08103
16 C. F. Gainer, G. S. Joshua, C. R. De Silva, and M. Romanowski, Control of green and red upconversion in NaYF4:Yb3+, Er3+ nanoparticles by excitation modulation, J. Mater. Chem. 21(46), 18530 (2011)
https://doi.org/10.1039/c1jm13684d
17 C. F. Gainer, G. S. Joshua, and M. Romanowski, Toward the use of two-color emission control in upconverting NaYF4: Er3+, Yb3+ nanoparticles for biomedical imaging, Nanoscale 8231, 82310I (2012)
18 S. Zhang, S. Xu, J. Ding, C. Lu, T. Jia, J. Qiu, and Z. Sun, Single and two-photon fluorescence control of Er3+ ions by phase-shaped femtosecond laser pulse, Appl. Phys. Lett. 104(1), 014101 (2014)
https://doi.org/10.1063/1.4860995
19 P. Liu, W. Cheng, Y. Yao, C. Xu, Y. Zheng, L. Deng, T. Jia, J. Qiu, Z. Sun, and S. Zhang, Observing quantum control of up-conversion luminescence in Dy3+ ion doped glass from weak to intermediate shaped femtosecond laser fields, Laser Phys. Lett. 14(11), 115301 (2017)
https://doi.org/10.1088/1612-202X/aa877b
20 E. De la Rosa, L. A. Diaz-Torres, P. Salas, and R. A. Rodriguez, Visible light emission under UV and IR excitation of rare earth doped ZrO2 nanophosphor, Opt. Mater. 27(7), 1320 (2005)
https://doi.org/10.1016/j.optmat.2004.11.031
21 T. P. Tang, C. M. Lee, and F. C. Yen, The photoluminescence of SrAl2O4: Sm phosphors, Ceram. Int. 32(6), 665 (2006)
https://doi.org/10.1016/j.ceramint.2005.03.034
22 G. B. Nair and S. J. Dhoble, Photoluminescence properties of Eu3+/Sm3+ activated CaZr4(PO4)6 phosphors, J. Fluoresc. 26(5), 1865 (2016)
https://doi.org/10.1007/s10895-016-1880-6
23 D. T. Marzahl, P. W. Metz, C. Kränkel, and G. Huber, Spectroscopy and laser operation of Sm3+-doped lithium lutetium tetrafluoride (LiLuF4) and strontium hexaaluminate (SrAl12O19), Opt. Express 23(16), 21118 (2015)
https://doi.org/10.1364/OE.23.021118
24 J. Liu and Y. K. Vohra, Sm:YAG optical pressure sensor to 180 GPa: Calibration and structural disorder, Appl. Phys. Lett. 64(25), 3386 (1994)
https://doi.org/10.1063/1.111283
25 M. Dyrba, P. T. Miclea, and S. Schweizer, Spectral downconversion in Sm-doped borate glasses for photovoltaic applications, Proc. SPIE 7725, 77251D (2010)
https://doi.org/10.1117/12.853942
26 J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+, J. Lumin. 117(1), 1 (2006)
https://doi.org/10.1016/j.jlumin.2005.03.011
27 D. Meshulach and Y. Silberberg, Coherent quantum control of two-photon transitions by a femtosecond laser pulse, Nature 396(6708), 239 (1998)
https://doi.org/10.1038/24329
28 D. Meshulach and Y. Silberberg, Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses, Phys. Rev. A 60(2), 1287 (1999)
https://doi.org/10.1103/PhysRevA.60.1287
29 L. Wu, M. Ji, H. Wang, Y. Kong, and Y. Zhang, Site occupancy and photoluminescence of Sm3+ in KSr4(BO3)3: Sm3+ phosphors, Opt. Mater. Express 4(8), 1535 (2014)
https://doi.org/10.1364/OME.4.001535
30 L. Z. Deng, Y. Yao, L. Deng, H. Jia, Y. Zheng, C. Xu, J. Li, T. Jia, J. Qiu, Z. Sun, and S. Zhang, Tuning upconversion luminescence in Er3+-doped glass ceramic by phase-shaped femtosecond laser field with optimal feedback control, Front. Phys. 14(1), 13602 (2019)
https://doi.org/10.1007/s11467-018-0858-z
31 W. T. Carnall, P. R. Fields, and K. Rajnak, Electronic energy levels in the trivalent lanthanide aquo ions (I): Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+, J. Chem. Phys. 49(10), 4424 (1968)
https://doi.org/10.1063/1.1669893
32 S. Q. Mawlud, M. M. Ameen, M. R. Sahar, Z. A. S. Mahraz, and K. F. Ahmed, Spectroscopic properties of Sm3+ doped sodium-tellurite glasses: Judd–Ofelt analysis, Opt. Mater. 69, 318 (2017)
https://doi.org/10.1016/j.optmat.2017.04.022
33 A. Gandman, L. Chuntonov, L. Rybak, and Z. Amitay, Coherent phase control of resonance-mediated (2+1) three-photon absorption, Phys. Rev. A 75(3), 031401 (2007)
https://doi.org/10.1103/PhysRevA.75.031401
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed