Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (3): 31601   https://doi.org/10.1007/s11467-020-0954-8
  本期目录
Simultaneous measurement-device-independent continuous variable quantum key distribution with realistic detector compensation
Xiao-Dong Wu1, Yi-Jun Wang1, Duan Huang2(), Ying Guo1()
1. School of Automation, Central South University, Changsha 410083, China
2. School of Computer Science and Engineering, Central South University, Changsha 410083, China
 全文: PDF(2287 KB)  
Abstract

We propose a novel scheme for measurement-device-independent (MDI) continuous-variable quantum key distribution (CVQKD) by simultaneously conducting classical communication and QKD, which is called “simultaneous MDI-CVQKD” protocol. In such protocol, each sender (Alice, Bob) can superimpose random numbers for QKD on classical information by taking advantage of the same weak coherent pulse and an untrusted third party (Charlie) decodes it by using the same coherent detectors, which could be appealing in practice due to that multiple purposes can be realized by employing only single communication system. What is more, the proposed protocol is MDI, which is immune to all possible side-channel attacks on practical detectors. Security results illustrate that the simultaneous MDI-CVQKD protocol can secure against arbitrary collective attacks. In addition, we employ phasesensitive optical amplifiers to compensate the imperfection existing in practical detectors. With this technology, even common practical detectors can be used for detection through choosing a suitable optical amplifier gain. Furthermore, we also take the finite-size effect into consideration and show that the whole raw keys can be taken advantage of to generate the final secret key instead of sacrificing part of them for parameter estimation. Therefore, an enhanced performance of the simultaneous MDI-CVQKD protocol can be obtained in finite-size regime.

Key wordsmeasurement-device-independent    continuous-variable quantum key distribution    simultaneous    realistic detector compensation
收稿日期: 2019-10-07      出版日期: 2020-03-17
Corresponding Author(s): Duan Huang,Ying Guo   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(3): 31601.
Xiao-Dong Wu, Yi-Jun Wang, Duan Huang, Ying Guo. Simultaneous measurement-device-independent continuous variable quantum key distribution with realistic detector compensation. Front. Phys. , 2020, 15(3): 31601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-0954-8
https://academic.hep.com.cn/fop/CN/Y2020/V15/I3/31601
1 S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, Advances in quantum cryptography, arXiv: 1906.01645 (2019)
https://doi.org/10.1364/AOP.361502
2 E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, Practical challenges in quantum key distribution, npj Quantum Inf. 2, 16025 (2016)
https://doi.org/10.1038/npjqi.2016.25
3 H. K. Lo, M. Curty, and K. Tamaki, Secure quantum key distribution, Nat. Photonics 8(8), 595 (2014)
https://doi.org/10.1038/nphoton.2014.149
4 N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74(1), 145 (2002)
https://doi.org/10.1103/RevModPhys.74.145
5 V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, The security of practical quantum key distribution, Rev. Mod. Phys. 81(3), 1301 (2009)
https://doi.org/10.1103/RevModPhys.81.1301
6 C. Weedbrook, S. Pirandola, R. García-Patrín, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys. 84(2), 621 (2012)
https://doi.org/10.1103/RevModPhys.84.621
7 L. M. Liang, S. H. Sun, M. S. Jiang, and C. Y. Li, Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices, Front. Phys. 9(5), 613 (2014)
https://doi.org/10.1007/s11467-014-0420-6
8 A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
https://doi.org/10.1103/PhysRevLett.67.661
9 H. K. Lo and H. F. Chau, Unconditional security of quantum key distribution over arbitrarily long distances, Science 283(5410), 2050 (1999)
https://doi.org/10.1126/science.283.5410.2050
10 J. Y. Wang, B. Yang, S. K. Liao, L. Zhang, Q. Shen, X. F. Hu, J. C. Wu, S. J. Yang, H. Jiang, Y. L. Tang, B. Zhong, H. Liang, W. Y. Liu, Y. H. Hu, Y. M. Huang, B. Qi, J. G. Ren, G. S. Pan, J. Yin, J. J. Jia, Y. A. Chen, K. Chen, C. Z. Peng, and J. W. Pan, Direct and full-scale experimental verifications towards ground–satellite quantum key distribution, Nat. Photonics 7(5), 387 (2013)
https://doi.org/10.1038/nphoton.2013.89
11 M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, Overcoming the rate-distance limit of quantum key distribution without quantum repeaters, Nature 557(7705), 400 (2018)
https://doi.org/10.1038/s41586-018-0066-6
12 A. Farouk, J. Batle, M. Elhoseny, M. Naseri, M. Lone, A. Fedorov, M. Alkhambashi, S. H. Ahmed, and M. Abdel-Aty, Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states, Front. Phys. 13(2), 130306 (2018)
https://doi.org/10.1007/s11467-017-0717-3
13 F. Grosshans and P. Grangier, Continuous variable quantum cryptography using coherent states, Phys. Rev. Lett. 88(5), 057902 (2002)
https://doi.org/10.1103/PhysRevLett.88.057902
14 F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, Quantum key distribution using gaussian-modulated coherent states, Nature 421(6920), 238 (2003)
https://doi.org/10.1038/nature01289
15 T. C. Ralph, Continuous variable quantum cryptography, Phys. Rev. A 61(1), 010303 (1999)
https://doi.org/10.1103/PhysRevA.61.010303
16 F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, Continuous-variable quantum key distribution with Gaussian modulation – the theory of practical implementations, Adv. Quantum Technol. 1(1), 1800011 (2018)
https://doi.org/10.1002/qute.201800011
17 B. Qi, L. L. Huang, L. Qian, and H. K. Lo, Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers, Phys. Rev. A 76(5), 052323 (2007)
https://doi.org/10.1103/PhysRevA.76.052323
18 X. D. Wu, Q. Liao, D. Huang, X. H. Wu, and Y. Guo, Balancing four-state continuous-variable quantum key distribution with linear optics cloning machine, Chin. Phys. B 26(11), 110304 (2017)
https://doi.org/10.1088/1674-1056/26/11/110304
19 W. Liu, P. Huang, J. Peng, J. Fan, and G. Zeng, Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution, Phys. Rev. A 97(2), 022316 (2018)
https://doi.org/10.1103/PhysRevA.97.022316
20 T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, Practical performance of real-time shot-noise measurement in continuous-variable quantum key distribution, Quantum Inform. Process. 17(1), 11 (2018)
https://doi.org/10.1007/s11128-017-1783-8
21 R. García-Patrón and N. J. Cerf, Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution, Phys. Rev. Lett. 97, 190503 (2006)
https://doi.org/10.1103/PhysRevLett.97.190503
22 P. Huang, J. Fang, and G. Zeng, State-discrimination attack on discretely modulated continuous-variable quantum key distribution, Phys. Rev. A 89(4), 042330 (2014)
https://doi.org/10.1103/PhysRevA.89.042330
23 X. D. Wu, Y. J. Wang, H. Zhong, Q. Liao, and Y. Guo, Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction, Front. Phys. 14(4), 41501 (2019)
https://doi.org/10.1007/s11467-019-0881-8
24 C. Xie, J. Zhang, Q. Pan, X. Jia, and K. Peng, Continuous variable quantum communication with bright entangled optical beams, Front. Phys. China 1(4), 383 (2006)
https://doi.org/10.1007/s11467-006-0049-1
25 S. Pirandola, S. L. Braunstein, and S. Lloyd, Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography, Phys. Rev. Lett. 101(20), 200504 (2008)
https://doi.org/10.1103/PhysRevLett.101.200504
26 R. Renner and J. I. Cirac, de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography, Phys. Rev. Lett. 102(11), 110504 (2009)
https://doi.org/10.1103/PhysRevLett.102.110504
27 A. Leverrier, F. Grosshans, and P. Grangier, Finite-size analysis of a continuous-variable quantum key distribution, Phys. Rev. A 81(6), 062343 (2010)
https://doi.org/10.1103/PhysRevA.81.062343
28 F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks, Phys. Rev. Lett. 109(10), 100502 (2012)
https://doi.org/10.1103/PhysRevLett.109.100502
29 A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, Security of continuous-variable quantum key distribution against general attacks, Phys. Rev. Lett. 110(3), 030502 (2013)
https://doi.org/10.1103/PhysRevLett.110.030502
30 A. Leverrier, Composable security proof for continuousvariable quantum key distribution with coherent states, Phys. Rev. Lett. 114(7), 070501 (2015)
https://doi.org/10.1103/PhysRevLett.114.070501
31 D. Huang, P. Huang, D. Lin, and G. Zeng, Long-distance continuous-variable quantum key distribution by controlling excess noise, Sci. Rep. 6(1), 19201 (2016)
https://doi.org/10.1038/srep19201
32 D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, and G. Zeng, Field demonstration of a continuous-variable quantum\ key distribution network, Opt. Lett. 41(15), 3511 (2016)
https://doi.org/10.1364/OL.41.003511
33 P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, Experimental demonstration of longdistance continuous-variable quantum key distribution, Nat. Photonics 7(5), 378 (2013)
https://doi.org/10.1038/nphoton.2013.63
34 C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel, Sci. Rep. 5(1), 14607 (2015)
https://doi.org/10.1038/srep14607
35 G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, Limitations on practical quantum cryptography, Phys. Rev. Lett. 85(6), 1330 (2000)
https://doi.org/10.1103/PhysRevLett.85.1330
36 Z. Yuan, J. Dynes, and A. Shields, Avoiding the blinding attack in QKD, Nat. Photonics 4(12), 800 (2010)
https://doi.org/10.1038/nphoton.2010.269
37 J. Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, Quantum hacking on quantum key distribution using homodyne detection, Phys. Rev. A 89(3), 032304 (2014)
https://doi.org/10.1103/PhysRevA.89.032304
38 P. Jouguet, S. Kunz-Jacques, and E. Diamanti, Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution, Phys. Rev. A 87(6), 062313 (2013)
https://doi.org/10.1103/PhysRevA.87.062313
39 X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems, Phys. Rev. A 88(2), 022339 (2013)
https://doi.org/10.1103/PhysRevA.88.022339
40 X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Wavelength attack on practical continuous-variable quantumkey-distribution system with a heterodyne protocol, Phys. Rev. A 87(5), 052309 (2013)
https://doi.org/10.1103/PhysRevA.87.052309
41 H. Qin, R. Kumar, V. Makarov, and R. Alléaume, Homodyne-detector-blinding attack in continuousvariable quantum key distribution, Phys. Rev. A 98(1), 012312 (2018)
https://doi.org/10.1103/PhysRevA.98.012312
42 H. Qin, R. Kumar, and R. Alléaume, Saturation attack on continuous-variable quantum key distribution system, Proc. SPIE 8899, 88990N (2013)
https://doi.org/10.1117/12.2028543
43 S. L. Braunstein and S. Pirandola, Side-channel-free quantum key distribution, Phys. Rev. Lett. 108(13), 130502 (2012)
https://doi.org/10.1103/PhysRevLett.108.130502
44 H. K. Lo, M. Curty, and B. Qi, Measurement-deviceindependent quantum key distribution, Phys. Rev. Lett. 108(13), 130503 (2012)
https://doi.org/10.1103/PhysRevLett.108.130503
45 F. Xu, M. Curty, B. Qi, and H. K. Lo, Practical aspects of measurement-device-independent quantum key distribution, New J. Phys. 15(11), 113007 (2013)
https://doi.org/10.1088/1367-2630/15/11/113007
46 X. B. Wang, Three-intensity decoy-state method for device-independent quantum key distribution with basisdependent errors, Phys. Rev. A 87(1), 012320 (2013)
https://doi.org/10.1103/PhysRevA.87.012320
47 M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, Finite-key analysis for measurement-deviceindependent quantum key distribution, Nat. Commun. 5(1), 3732 (2014)
https://doi.org/10.1038/ncomms4732
48 C. Ottaviani, G. Spedalieri, S. L. Braunstein, and S. Pirandola, Continuous-variable quantum cryptography with an untrusted relay: Detailed security analysis of the symmetric configuration, Phys. Rev. A 91(2), 022320 (2015)
https://doi.org/10.1103/PhysRevA.91.022320
49 P. Papanastasiou, C. Ottaviani, and S. Pirandola, Finitesize analysis of measurement-device-independent quantum cryptography with continuous variables, Phys. Rev. A 96(4), 042332 (2017)
https://doi.org/10.1103/PhysRevA.96.042332
50 Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, Experimental measurement-device-independent quantum key distribution, Phys. Rev. Lett. 111(13), 130502 (2013)
https://doi.org/10.1103/PhysRevLett.111.130502
51 T. Ferreira da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral, G. P. Temporão, and J. P. von der Weid, Proof-of-principle demonstration of measurement-deviceindependent quantum key distribution using polarization qubits, Phys. Rev. A 88(5), 052303 (2013)
https://doi.org/10.1103/PhysRevA.88.052303
52 Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H. K. Lo, Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution, Phys. Rev. Lett. 112(19), 190503 (2014)
https://doi.org/10.1103/PhysRevLett.112.190503
53 H. W. Li, Z. Q. Yin, W. Chen, S. Wang, G. C. Guo, and Z. F. Han, Quantum key distribution based on quantum dimension and independent devices, Phys. Rev. A 89(3), 032302 (2014)
https://doi.org/10.1103/PhysRevA.89.032302
54 F. Xu, B. Qi, Z. Liao, and H. K. Lo, Long distance measurement-device-independent quantum key distribution with entangled photon sources, Appl. Phys. Lett. 103(6), 061101 (2013)
https://doi.org/10.1063/1.4817672
55 X. C. Ma, S. H. Sun, M. S. Jiang, M. Gui, and L. M. Liang, Gaussian-modulated coherent-state measurementdevice- independent quantum key distribution, Phys. Rev. A 89(4), 042335 (2014)
https://doi.org/10.1103/PhysRevA.89.042335
56 S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, High-rate measurement-deviceindependent quantum cryptography, Nat. Photonics 9(6), 397 (2015)
https://doi.org/10.1038/nphoton.2015.83
57 Z. Li, Y. C. Zhang, F. Xu, X. Peng, and H. Guo, Continuous-variable measurement-device-independent quantum key distribution, Phys. Rev. A 89(5), 052301 (2014)
https://doi.org/10.1103/PhysRevA.89.052301
58 B. Qi, Simultaneous classical communication and quantum key distribution using continuous variables, Phys. Rev. A 94(4), 042340 (2016)
https://doi.org/10.1103/PhysRevA.94.042340
59 B. Qi and C. C. W. Lim, Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator, Phys. Rev. Appl. 9(5), 054008 (2018)
https://doi.org/10.1103/PhysRevApplied.9.054008
60 X. Wu, Y. Wang, Q. Liao, H. Zhong, and Y. Guo, Simultaneous classical communication and quantum key distribution based on plug-and-play configuration with an optical amplifier, Entropy 21(4), 333 (2019)
https://doi.org/10.3390/e21040333
61 T. Wang, P. Huang, S. Wang, and G. Zeng, Carrierphase estimation for simultaneous quantum key distribution and classical communication using a real local oscillator, Phys. Rev. A 99(2), 022318 (2019)
https://doi.org/10.1103/PhysRevA.99.022318
62 W. A. Hofer, Solving the Einstein-Podolsky-Rosen puzzle: The origin of non-locality in Aspect-type experiments, Front. Phys. 7(5), 504 (2012)
https://doi.org/10.1007/s11467-012-0256-x
63 M. Navascués and A. Acín, Security bounds for continuous variables quantum key distribution, Phys. Rev. Lett. 94(2), 020505 (2005)
https://doi.org/10.1103/PhysRevLett.94.020505
64 S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Fundamental limits of repeaterless quantum communications, Nat. Commun. 8(1), 15043 (2017)
https://doi.org/10.1038/ncomms15043
65 S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, Improvement of continuousvariable quantum key distribution systems by using optical preamplifiers, J. Phys. At. Mol. Opt. Phys. 42(11), 114014 (2009)
https://doi.org/10.1088/0953-4075/42/11/114014
66 X. Zhang, Y. Zhang, Y. Zhao, X. Wang, S. Yu, and H. Guo, Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution, Phys. Rev. A 96(4), 042334 (2017)
https://doi.org/10.1103/PhysRevA.96.042334
67 C. Lupo, C. Ottaviani, P. Papanastasiou, and S. Pirandola, Parameter estimation with almost no public communication for continuous-variable quantum key distribution, Phys. Rev. Lett. 120(22), 220505 (2018)
https://doi.org/10.1103/PhysRevLett.120.220505
68 Q. Liao, Y. Wang, D. Huang, and Y. Guo, Dualphase-modulated plug-and-play measurement-deviceindependent continuous-variable quantum key distribution, Opt. Express 26(16), 19907 (2018)
https://doi.org/10.1364/OE.26.019907
69 X. Wu, Y. Wang, S. Li, W. Zhang, D. Huang, and Y. Guo, Security analysis of passive measurement-deviceindependent continuous-variable quantum key distribution with almost no public communication, Quantum Inform. Process. 18(12), 372 (2019)
https://doi.org/10.1007/s11128-019-2486-0
70 C. Lupo, C. Ottaviani, P. Papanastasiou, and S. Pirandola, Continuous-variable measurement-deviceindependent quantum key distribution: Composable security against coherent attacks, Phys. Rev. A 97(5), 052327 (2018)
https://doi.org/10.1103/PhysRevA.97.052327
71 B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, Generating the local oscillator “locally” in continuousvariable quantum key distribution based on coherent detection, Phys. Rev. X 5(4), 041009 (2015)
https://doi.org/10.1103/PhysRevX.5.041009
72 D. B. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, Self-referenced continuous-variable quantum key distribution protocol, Phys. Rev. X 5(4), 041010 (2015)
https://doi.org/10.1103/PhysRevX.5.041010
73 D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, High-speed continuous-variable quantum key distribution without sending a local oscillator, Opt. Lett. 40(16), 3695 (2015)
https://doi.org/10.1364/OL.40.003695
74 X. Zhang, Y. Zhang, Z. Li, S. Yu, and H. Guo,IEEE Photonics J. 10, 1 (2018)
https://doi.org/10.1109/JPHOT.2018.2838324
75 G.-P. Sanchez, Universite Libre de Bruxelles, 2007
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed