Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (2): 23604   https://doi.org/10.1007/s11467-020-0958-4
  本期目录
ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production
Xin Li1,2, Peng Wang1(), Ya-Qiang Wu1, Zhen-Hua Liu1, Qian-Qian Zhang1, Ting-Ting Zhang3, Ze-Yan Wang1, Yuan-Yuan Liu1, Zhao-Ke Zheng1, Bai-Biao Huang1
1. State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
2. Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
3. Comprehensive Technical Service Center, Linyi Customs, Linyi 276034, China
 全文: PDF(4208 KB)  
Abstract

In this work, we prepared ZnGeP2 (ZGP) photocatalyst using single flat temperature zone (SFT) method in a vacuum quartz ampoule. The XRD, SEM, EDS, DRS and XPS were used to characterize the crystal structure, morphology, elemental content, optical absorption and band gap structure of ZGP. The results of photocatalytic hydrogen evolution and apparent quantum efficiency show that ZGP is a promising photocatalyst for hydrogen production both under visible and near-infrared light irradiation. In addition, it is also found that adding the common stabilizer H3PO2 and ultrasonic treatment can efficiently improve the photocatalytic activity and stability of ZGP.

Key wordsZnGeP2    near-infrared-activated photocatalyst    H2 production
收稿日期: 2019-12-27      出版日期: 2020-04-10
Corresponding Author(s): Peng Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(2): 23604.
Xin Li, Peng Wang, Ya-Qiang Wu, Zhen-Hua Liu, Qian-Qian Zhang, Ting-Ting Zhang, Ze-Yan Wang, Yuan-Yuan Liu, Zhao-Ke Zheng, Bai-Biao Huang. ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production. Front. Phys. , 2020, 15(2): 23604.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-0958-4
https://academic.hep.com.cn/fop/CN/Y2020/V15/I2/23604
1 A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)
https://doi.org/10.1038/238037a0
2 Q. T. Liu, D. Y. Liu, J. M. Li, and Y. B. Kuang, The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting, Front. Phys. 14(5), 53403 (2019)
https://doi.org/10.1007/s11467-019-0905-4
3 S. Q. Luo, J. F. Wang, B. Yang, and Y. B. Yuan, Recent advances in controlling the crystallization of twodimensional perovskites for optoelectronic device, Front. Phys. 14(5), 53401 (2019)
https://doi.org/10.1007/s11467-019-0901-8
4 Y. H. Lui, B. W. Zhang, and S. Hu, Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction, Front. Phys. 14(5), 53402 (2019)
https://doi.org/10.1007/s11467-019-0903-6
5 J. Mao, Y. Wang, Z. L. Zheng, and D. H. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
https://doi.org/10.1007/s11467-018-0812-0
6 J. Q. Pan, Z. J. Dong, B. B. Wang, Z. Y. Jiang, C. Zhao, J. J. Wang, C. S. Song, Y. Y. Zheng, and C. R. Li, The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction, Appl. Catal. B 242, 92 (2019)
https://doi.org/10.1016/j.apcatb.2018.09.079
7 X. Li, X. S. Lv, Q. Q. Zhang, B. B. Huang, P. Wang, X. Y. Qin, X. Y. Zhang, and Y. Dai, Self-assembled supramolecular system PDINH on TiO2 surface enhances hydrogen production, J. Colloid Interface Sci. 525, 136 (2018)
https://doi.org/10.1016/j.jcis.2018.04.041
8 H. Q. Zhuang, Z. P. Cai, W. T. Xu, X. Y. Zhang, M. L. Huang, and X. X. Wang, Constructing 1D CdS nanorod composites with high photocatalytic hydrogen production by introducing the Ni-based cocatalysts, Catal. Commun. 120, 51 (2019)
https://doi.org/10.1016/j.catcom.2018.11.010
9 L. L. Zhang, H. W. Zhang, B. Wang, X. Y. Huang, Y. Ye, R. Lei, W. H. Feng, and P. Liu, A facile method for regulating the charge transfer route of WO3/CdS in highefficiency hydrogen production, Appl. Catal. B 244, 529 (2019)
https://doi.org/10.1016/j.apcatb.2018.11.055
10 P. Zhou, Y. Y. Liu, Z. Y. Wang, P. Wang, X. Y. Qin, X. Y. Zhang, B. B. Huang, and Y. Dai, Efficient photocatalytic hydrogen generation from water over CdS nanoparticles confined within an alumina matrix, ChemPhotoChem 1(11), 518 (2017)
https://doi.org/10.1002/cptc.201700087
11 X. Z. Liang, P. Wang, M. M. Li, Q. Q. Zhang, Z. Y. Wang, Y. Dai, X. Y. Zhang, Y. Y. Liu, M. H. Whangbo, and B. B. Huang, Adsorption of gaseous ethylene via induced polarization on plasmonic photocatalyst Ag/AgCl/TiO2 and subsequent photodegradation, Appl. Catal. B 220, 356 (2018)
https://doi.org/10.1016/j.apcatb.2017.07.075
12 K. C. Christoforidis, Z. Syrgiannis, V. La Parola, T. Montini, C. Petit, E. Stathatos, R. Godin, J. R. Durrant, M. Prato, and P. Fornasiero, Metal-free dual-phase full organic carbon nanotubes/g-C3N4 heteroarchitectures for photocatalytic hydrogen production, Nano Energy 50, 468 (2018)
https://doi.org/10.1016/j.nanoen.2018.05.070
13 J. Y. Chu, X. J. Han, Z. Yu, Y. C. Du, B. Song, and P. Xu, Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures, ACS Appl. Mater. Interfaces 10(24), 20404 (2018)
https://doi.org/10.1021/acsami.8b02984
14 Y. Q. Wu, P. Wang, X. L. Zhu, Q. Q. Zhang, Z. Y. Wang, Y. Y. Liu, G. Z. Zou, Y. Dai, M. H. Whangbo, and B. B. Huang, Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visiblelight photocatalyst for hydrogen evolution in aqueous HI solution, Adv. Mater. 30(7), 1704342 (2018)
https://doi.org/10.1002/adma.201704342
15 Z. H. Guan, Y. Q. Wu, P. Wang, Q. Q. Zhang, Z. Y. Wang, Z. K. Zheng, Y. Y. Liu, Y. Dai, M. H. Whangbo, and B. B. Huang, Perovskite photocatalyst CsPbBr3–xIx with a bandgap funnel structure for H2 evolution under visible light, Appl. Catal. B 245, 522 (2019)
https://doi.org/10.1016/j.apcatb.2019.01.019
16 T. Jing, Y. Dai, W. Wei, X. D. Ma, and B. B. Huang, Near-infrared photocatalytic activity induced by intrinsic defects in Bi2MO6 (M=W, Mo), Phys. Chem. Chem. Phys. 16(34), 18596 (2014)
https://doi.org/10.1039/C4CP01846J
17 J. Li, X. Y. Wu, W. F. Pan, G. K. Zhang, and H. Chen, Vacancy-rich monolayer BiO2–x as a highly efficient UV, visible, and near-infrared responsive photocatalyst, Angew. Chem. Int. Ed. 57(2), 491 (2018)
https://doi.org/10.1002/anie.201708709
18 J. Tian, Y. H. Sang, G. W. Yu, H. D. Jiang, X. N. Mu, and H. Liu, A Bi2WO6-based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation, Adv. Mater. 25(36), 5075 (2013)
https://doi.org/10.1002/adma.201302014
19 Q. H. Liang, Z. Li, Z. H. Huang, F. Kang, and Q. H. Yang, Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production, Adv. Funct. Mater. 25(44), 6885 (2015)
https://doi.org/10.1002/adfm.201503221
20 X. Y. Kong, Y. Y. Choo, S. P. Chai, A. K. Soh, and A. R. Mohamed, Oxygen vacancy induced Bi2WO6 for the realization of photocatalytic CO2 reduction over the full solar spectrum: From the UV to the NIR region, Chem. Commun. 52(99), 14242 (2016)
https://doi.org/10.1039/C6CC07750A
21 N. Manfredi, M. Monai, T. Montini, F. Peri, F. De Angelis, P. Fornasiero, and A. Abbotto, Dye-sensitized photocatalytic hydrogen generation: Efficiency enhancement by organic photosensitizer–coadsorbent intermolecular interaction, ACS Energy Lett. 3(1), 85 (2018)
https://doi.org/10.1021/acsenergylett.7b00896
22 Q. Y. Tian, W. J. Yao, W. Wu, J. Liu, Z. H. Wu, L. Liu, Z. G. Dai, and C. Z. Jiang, Efficient UV–Vis-NIR responsive upconversion and plasmonic-enhanced photocatalyst based on lanthanide-doped NaYF4/SnO2/Ag, ACS Sustain. Chem. & Eng. 5(11), 10889 (2017)
https://doi.org/10.1021/acssuschemeng.7b02806
23 A. Kumar, K. L. Reddy, S. Kumar, A. Kumar, V. Sharma, and V. Krishnan, Rational design and development of lanthanide-doped NaYF4 @CdS–Au–RGO as quaternary plasmonic photocatalysts for harnessing visible– near-infrared broadband spectrum, ACS Appl. Mater. Interfaces 10(18), 15565 (2018)
https://doi.org/10.1021/acsami.7b17822
24 W. N. Wang, C. X. Huang, C. Y. Zhang, M. L. Zhao, J. Zhang, H. J. Chen, Z. B. Zha, T. T. Zhao, and H. S. Qian, Controlled synthesis of upconverting nanoparticles/ ZnxCd1–xS yolk-shell nanoparticles for efficient photocatalysis driven by NIR light, Appl. Catal. B 224, 854 (2018)
https://doi.org/10.1016/j.apcatb.2017.11.037
25 K. L. Reddy, S. Kumar, A. Kumar, and V. Krishnan, Wide spectrum photocatalytic activity in lanthanidedoped upconversion nanophosphors coated with porous TiO2 and Ag-Cu bimetallic nanoparticles,J. Hazard. Mater. 367, 694 (2019)
https://doi.org/10.1016/j.jhazmat.2019.01.004
26 Tian Q. Y. , W. J. Yao, W. Wu, and C. Z. Jiang, NIR light-activated upconversion semiconductor photocatalysts, Nanoscale Horiz. 4(1), 10 (2019)
https://doi.org/10.1039/C8NH00154E
27 M. S. Zhu, Y. Osakada, S. Kim, M. Fujitsuka, and T. Majima, Black phosphorus: A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution, Appl. Catal. B 217, 285 (2017)
https://doi.org/10.1016/j.apcatb.2017.06.002
28 Z. J. Zhang and W. Z. Wang, Infrared-light-induced photocatalysis on BiErWO6, Dalton Trans. 42(34), 12072 (2013)
https://doi.org/10.1039/c3dt50470k
29 G. C. Xi, S. X. Ouyang, P. Li, J. H. Ye, Q. Ma, N. Su, H. Bai, and C. Wang, Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide, Angew. Chem. Int. Ed. 51(10), 2395 (2012)
https://doi.org/10.1002/anie.201107681
30 L. Wei, X. S. Lv, Y. G. Yang, J. H. Xu, H. J. Yu, H. D. Zhang, X. P. Wang, B. Liu, C. Zhang, and J. X. Zhou, Theoretical investigation on the microscopic mechanism of lattice thermal conductivity of ZnXP2 (X=Si, Ge, and Sn), Inorg. Chem. 58(7), 4320 (2019)
https://doi.org/10.1021/acs.inorgchem.8b03421
31 K. S. Rao, D. Ganesh, and A. K. Chaudhary, Generation of terahertz from ZnGeP2 crystal and its application to record the time-resolved photoacoustic spectra of nitromethane, Opt. Laser Technol. 103, 126 (2018)
https://doi.org/10.1016/j.optlastec.2018.01.009
32 A. D. Martinez, A. N. Fioretti, E. S. Toberer, and A. C. Tamboli, Synthesis, structure, and optoelectronic properties of II–IV–V2 materials, J. Mater. Chem. A 5(23), 11418 (2017)
https://doi.org/10.1039/C7TA00406K
33 M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, ZnGeP2 parametric oscillator pumped by a linewidth-narrowed parametric 2 μm source, Opt. Lett. 31(12), 1878 (2006)
https://doi.org/10.1364/OL.31.001878
34 M. Gebhardt, C. Gaida, P. Kadwani, A. Sincore, N. Gehlich, C. Jeon, L. Shah, and M. Richardson, High peak-power mid-infrared ZnGeP2 optical parametric oscillator pumped by a Tm:fiber master oscillator power amplifier system, Opt. Lett. 39(5), 1212 (2014)
https://doi.org/10.1364/OL.39.001212
35 M. W. Haakestad, H. Fonnum, and E. Lippert, Midinfrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2, Opt. Express 22(7), 8556 (2014)
https://doi.org/10.1364/OE.22.008556
36 Z. X. Qin, F. Xue, Y. B. Chen, S. H. Shen, and L. J. Guo, Spatial charge separation of one-dimensional Ni2PCd0.9Zn0.1S/g-C3N4 heterostructure for high-quantumyield photocatalytic hydrogen production, Appl. Catal. B 217, 551 (2017)
https://doi.org/10.1016/j.apcatb.2017.06.018
37 J. Zeng, H. Wang, Y. C. Zhang, M. K. Zhu, and H. Yan, Hydrothermal synthesis and photocatalytic properties of pyrochlore La2Sn2O7 nanocubes, J. Phys. Chem. C 111(32), 11879 (2007)
https://doi.org/10.1021/jp0684628
38 S. R. Zhang, D. P. Zeng, H. J. Hou, and Y. Yu, Firstprinciples prediction on elastic anisotropic, optical, lattice dynamical properties of ZnGeP2, Indian J. Phys. (2019), doi:10.1007/s12648-019-01575-8
https://doi.org/10.1007/s12648-019-01575-8
39 F. Herman and S. Skillman, Atomic Structure Calculations, Prentice Hall, Englewood Cliffs, New Jersey,1966
40 R. R. Reddy, K. R. Gopal, K. Narasimhulu, L. S. S. Reddy, K. R. Kumar, G. Balakrishnaiah, and M. R. Kumar, Interrelationship between structural, optical, electronic and elastic properties of materials, J. Alloys Compd. 473(1-2), 28 (2009)
https://doi.org/10.1016/j.jallcom.2008.06.037
41 S. K. Tripathy and V. Kumar, Electronic, elastic and optical properties of ZnGeP2 semiconductor under hydrostatic pressures, Mater. Sci. Eng. B 182, 52 (2014)
https://doi.org/10.1016/j.mseb.2013.11.020
42 S. N. Rashkeev, S. Limpijumnong, and W. R. L. Lambrecht, Second-harmonic generation and birefringence of some ternary pnictide semiconductors, Phys. Rev. B 59(4), 2737 (1999)
https://doi.org/10.1103/PhysRevB.59.2737
43 F. Chiker, B. Abbar, S. Bresson, B. Khelifa, C. Mathieu, and A. Tadjer, The reflectivity spectra of ZnXP2 (X=Si, Ge, and Sn) compounds, J. Solid State Chem. 177(11), 3859 (2004)
https://doi.org/10.1016/j.jssc.2004.07.020
44 J. E. Jaffe and A. Zunger, Electronic structure of the ternary pnictide semiconductors ZnSiP2, ZnGeP2, Zn-SnP2, ZnSiAs2, and MgSiP2, Phys. Rev. B 30(2), 741 (1984)
https://doi.org/10.1103/PhysRevB.30.741
45 G. Kalpana, B. Palanivel, R. M. Thomas, and M. Rajagopalan, Electronic and structural properties of MgS and MgSe, Physica B 222(1-3), 223 (1996)
https://doi.org/10.1016/0921-4526(96)00014-2
46 R. W. Godby, M. Schlüter, and L. J. Sham, Self-energy operators and exchange-correlation potentials in semiconductors, Phys. Rev. B 37(17), 10159 (1988)
https://doi.org/10.1103/PhysRevB.37.10159
47 X. Zhang, L. Z. Zhang, T. F. Xie, and D. J. Wang, Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures, J. Phys. Chem. C 113(17), 7371 (2009)
https://doi.org/10.1021/jp900812d
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed