Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (5): 54301   https://doi.org/10.1007/s11467-020-0961-9
  本期目录
Progress of quantum molecular dynamics model and its applications in heavy ion collisions
Ying-Xun Zhang1,2(), Ning Wang3,2(), Qing-Feng Li4,5(), Li Ou3,2(), Jun-Long Tian6,2(), Min Liu3,2(), Kai Zhao1(), Xi-Zhen Wu1,2(), Zhu-Xia Li1,2()
1. China Institute of Atomic Energy, Beijing 102413, China
2. Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, China
3. Guangxi Normal University, Guilin 541004, China
4. School of Science, Huzhou University, Huzhou 313000, China
5. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
6. School of Physics and Electrical Engineering, Anyang Normal University, Anyang 455002, China
 全文: PDF(11044 KB)  
Abstract

In this review article, we first briefly introduce the transport theory and quantum molecular dynamics model applied in the study of the heavy ion collisions from low to intermediate energies. The developments of improved quantum molecular dynamics model (ImQMD) and ultra-relativistic quantum molecular dynamics model (UrQMD), are reviewed. The reaction mechanism and phenomena related to the fusion, multinucleon transfer, fragmentation, collective flow and particle production are reviewed and discussed within the framework of the two models. The constraints on the isospin asymmetric nuclear equation of state and in-medium nucleon–nucleon cross sections by comparing the heavy ion collision data with transport models calculations in last decades are also discussed, and the uncertainties of these constraints are analyzed as well. Finally, we discuss the future direction of the development of the transport models for improving the understanding of the reaction mechanism, the descriptions of various observables, the constraint on the nuclear equation of state, as well as for the constraint on in-medium nucleon–nucleon cross sections.

Key wordsquantum molecular dynamics model    low energy heavy ion collisions    low-intermediate energy heavy ion collisions    fusion    multinucleon transfer reaction    multifragmentation    collective flow    isospin asymmetric equation of state    in-medium nucleon–nucleon cross sections
收稿日期: 2019-11-27      出版日期: 2020-06-02
Corresponding Author(s): Ying-Xun Zhang,Ning Wang,Qing-Feng Li,Li Ou,Jun-Long Tian,Min Liu,Kai Zhao,Xi-Zhen Wu,Zhu-Xia Li   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(5): 54301.
Ying-Xun Zhang, Ning Wang, Qing-Feng Li, Li Ou, Jun-Long Tian, Min Liu, Kai Zhao, Xi-Zhen Wu, Zhu-Xia Li. Progress of quantum molecular dynamics model and its applications in heavy ion collisions. Front. Phys. , 2020, 15(5): 54301.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-0961-9
https://academic.hep.com.cn/fop/CN/Y2020/V15/I5/54301
1 J. A. Gaidos, L. J. Gutay, A. S. Hirsch, R. Mitchell, T. V. Ragland, R. P. Scharenberg, F. Turkot, R. B. Willmann, and C. L. Wilson, Nuclear fragment emission in highenergy p–Xe and p–Kr collisions and a description of their production mechanism, Phys. Rev. Lett. 42(2), 82 (1979)
https://doi.org/10.1103/PhysRevLett.42.82
2 R. W. Minich, S. Agarwal, A. Bujak, J. Chuang, J. E. Finn, L. J. Gutay, A. S. Hirsch, N. T. Porile, R. P. Scharenberg, B. C. Stringfellow, and F. Turkot, Critical phenomena in hadronic matter and experimental isotopic yields in high energy proton–nucleus collisions, Phys. Lett. B 118(4–6), 458 (1982)
https://doi.org/10.1016/0370-2693(82)90224-6
3 J. E. Finn, S. Agarwal, A. Bujak, J. Chuang, L. J. Gutay, A. S. Hirsch, R. W. Minich, N. T. Porile, R. P. Scharenberg, B. C. Stringfellow, and F. Turkot, Nuclear fragment mass yields from high-energy proton–nucleus interactions, Phys. Rev. Lett. 49(18), 1321 (1982)
https://doi.org/10.1103/PhysRevLett.49.1321
4 L. D. Landau and E. M. Lifshitz, Fluid Mechanics, London: Pergamon Press, 1959
5 W. Scheid, R. Ligensa, and W. Greiner, Ion–ion potentials and the compressibility of nuclear matter, Phys. Rev. Lett. 21(21), 1479 (1968)
https://doi.org/10.1103/PhysRevLett.21.1479
6 J. Hofmann, H. Stöcker, U. Heinz, W. Scheid, and W. Greiner, Possibility of detecting density isomers in highdensity nuclear mach shock waves, Phys. Rev. Lett. 36(2), 88 (1976)
https://doi.org/10.1103/PhysRevLett.36.88
7 P. J. Siemens, Heavy ion collisions, Nucl. Phys. A 335(1– 2), 491 (1980)
https://doi.org/10.1016/0375-9474(80)90201-8
8 H. A. Gustafsson, H. H. Gutbrod, B. Kolb, H. Löhner, B. Ludewigt, A. M. Poskanzer, T. Renner, H. Riedesel, H. G. Ritter, A. Warwick, F. Weik, and H. Wieman, Collective flow observed in relativistic nuclear collisions, Phys. Rev. Lett. 52(18), 1590 (1984)
https://doi.org/10.1103/PhysRevLett.52.1590
9 H. Stöcker and W. Greiner, High energy heavy ion collisions — probing the equation of state of highly excited hardronic matter, Phys. Rep. 137(5–6), 277 (1986)
https://doi.org/10.1016/0370-1573(86)90131-6
10 R. B. Clare and D. Strottman, Relativistic hydrodynamics and heavy ion reactions, Phys. Rep. 141(4), 177 (1986)
https://doi.org/10.1016/0370-1573(86)90090-6
11 H. Stöcker, J. A. Maruhn, and W. Greiner, Collective sideward flow of nuclear matter in violent high-energy heavy-ion collisions, Phys. Rev. Lett. 44(11), 725 (1980)
https://doi.org/10.1103/PhysRevLett.44.725
12 R. E. Renfordt, D. Schall, R. Bock, R. Brockmann, J. W. Harris, A. Sandoval, R. Stock, H. Ströbele, D. Bangert, W. Rauch, G. Odyniec, H. G. Pugh, and L. S. Schroeder, Stopping power and collective flow of nuclear matter in the reaction Ar+Pb at 0.8 GeV/u, Phys. Rev. Lett. 53(8), 763 (1984)
https://doi.org/10.1103/PhysRevLett.53.763
13 H. Ströbele, R. Brockmann, J. W. Harris, F. Riess, A. Sandoval, R. Stock, K. L. Wolf, H. G. Pugh, L. S. Schroeder, R. E. Renfordt, K. Tittel, and M. Maier, Charged-particle exclusive analysis of central Ar+ KCl and Ar+ Pb reactions at 1.8 and 0.8 GeV/nucleon, Phys. Rev. C 27(3), 1349 (1983)
https://doi.org/10.1103/PhysRevC.27.1349
14 A. Baden, H. H. Gutbrod, H. Löhner, M. R. Maier, A. M. Poskanzer, T. Renner, H. Riedesel, H. G. Ritter, H. Spieler, A. Warwick, F. Weik, and H. Wieman, The plastic ball spectrometer: An electronic 4τ detector with particle identification, Nucl. Instrum. Methods 203(1–3), 189 (1982)
https://doi.org/10.1016/0167-5087(82)90628-7
15 G. Buchwald, G. Graebner, J. Theis, J. Maruhn, W. Greiner, and H. Stöcker, Kinetic energy flow in Nb(400 AMeV) + Nb: Evidence for hydrodynamic compression of nuclear matter, Phys. Rev. Lett. 52(18), 1594 (1984)
https://doi.org/10.1103/PhysRevLett.52.1594
16 W. Reisdorf and H. G. Ritter, Collective flow in heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 47(1), 663 (1997)
https://doi.org/10.1146/annurev.nucl.47.1.663
17 N. Herrmann, J. P. Wessels, and T. Wienold, Collective flow in heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 49(1), 581 (1999)
https://doi.org/10.1146/annurev.nucl.49.1.581
18 R. Wada, K. D. Hildenbrand, U. Lynen, W. F. J. Müller, H. J. Rabe, et al.., Isotopic-yield ratios of complex fragments from intermediate-energy heavy-ion reactions, Phys. Rev. Lett. 58(18), 1829 (1987)
https://doi.org/10.1103/PhysRevLett.58.1829
19 H. Johnston, T. White, J. Winger, D. Rowland, B. Hurst, F. Gimeno-Nogues, D. O’Kelly, and S. J. Yennello, Isospin equilibration in the reaction 40Ar, 40Ca+58Fe, 58Ni, Phys. Lett. B 371(3–4), 186 (1996)
https://doi.org/10.1016/0370-2693(96)00019-6
20 M. Veselsky, R. W. Ibbotson, R. Laforest, E. Ramakrishnan, D. J. Rowland, A. Ruangma, E. M. Winchester, E. Martin, and S. J. Yennello, Inhomogeneous isospin distribution in the reactions of 28Si+112Sn and 124Sn at 30 and 50 MeV/nucleon, Phys. Rev. C 62(4), 041605 (2000)
https://doi.org/10.1103/PhysRevC.62.041605
21 A. Z. Mekjian, Explosive nucleosynthesis, equilibrium thermodynamics, and relativistic heavy-ion collisions, Phys. Rev. C 17(3), 1051 (1978)
https://doi.org/10.1103/PhysRevC.17.1051
22 M. B. Tsang, W. A. Friedman, C. K. Gelbke, W. G. Lynch, G. Verde, and H. S. Xu, Isotopic scaling in nuclear reactions, Phys. Rev. Lett. 86(22), 5023 (2001)
https://doi.org/10.1103/PhysRevLett.86.5023
23 H. Xu, R. Alfaro, B. Davin, L. Beaulieu, Y. Larochelle, et al.., Fragment isospin as a probe of heavy-ion collisions, Phys. Rev. C 65, 061602(R) (2002)
https://doi.org/10.1103/PhysRevC.65.061602
24 P. Danielewicz, R. Lacey, and W. G. Lynch, Determination of the equation of state of dense matter, Science 298(5598), 1592 (2002)
https://doi.org/10.1126/science.1078070
25 G. G. Adamian, N. V. Antonenko, and W. Scheid, Model of competition between fusion and quasifission in reactions with heavy nuclei, Nucl. Phys. A 618(1–2), 176 (1997)
https://doi.org/10.1016/S0375-9474(97)88172-9
26 A. Diaz-Torres, G. G. Adamian, N. V. Antonenko, and W. Scheid, Quasifission process in a transport model for a dinuclear system, Phys. Rev. C 64(2), 024604 (2001)
https://doi.org/10.1103/PhysRevC.64.024604
27 N. Wang, E. G. Zhao, W. Scheid, and S.-G. Zhou, Theoretical study of the synthesis of superheavy nuclei with Z=119 and 120 in heavy-ion reactions with transuranium targets, Phys. Rev. C 85, 041601(R) (2012)
https://doi.org/10.1103/PhysRevC.85.041601
28 V. Zagrebaev and W. Greiner, Unified consideration of deep inelastic, quasi-fission and fusion-fission phenomena, J. Phys. G 31(7), 825 (2005)
https://doi.org/10.1088/0954-3899/31/7/024
29 A. K. Nasirov, G. Mandaglio, G. Giardina, A. Sobiczewski, and A. I. Muminov, Effects of the entrance channel and fission barrier in the synthesis of superheavy element Z=120, Phys. Rev. C 84(4), 044612 (2011)
https://doi.org/10.1103/PhysRevC.84.044612
30 S. Hofmann and G. Münzenberg, The discovery of the heaviest elements, Rev. Mod. Phys. 72(3), 733 (2000)
https://doi.org/10.1103/RevModPhys.72.733
31 Yu. Ts. Oganessian, F. S. Abdullin, P. D. Bailey, D. E. Benker, M. E. Bennett, et al.., Synthesis of a new element with atomic number Z=117, Phys. Rev. Lett. 104(14), 142502 (2010)
https://doi.org/10.1103/PhysRevLett.104.142502
32 R. K. Gupta, M. Manhas, G. Münzenberg, and W. Greiner, Theory of the compactness of the hot fusion reaction 48Ca+244Pu→292114*, Phys. Rev. C 72, 014607 (2005)
https://doi.org/10.1103/PhysRevC.72.014607
33 G. G. Adamian, N. V. Antonenko, A. Diaz-Torres, and W. Scheid, Dynamical restriction for a growing neck due to mass parameters in a dinuclear system, Nucl. Phys. A 671(1–4), 233 (2000)
https://doi.org/10.1016/S0375-9474(99)00852-0
34 B. N. Lu, E. G. Zhao, and S. G. Zhou, Potential energy surfaces of actinide nuclei from a multidimensional constrained covariant density functional theory: Barrier heights and saddle point shapes, Phys. Rev. C 85, 011301(R) (2012)
https://doi.org/10.1103/PhysRevC.85.011301
35 N. Wang, J. L. Tian and W. Scheid, Systematics of fusion probability in “hot” fusion reactions, Phys. Rev. C 84, 061601(R) (2011)
https://doi.org/10.1103/PhysRevC.84.061601
36 V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, W. Scheid, and H. Q. Zhang, Effects of nuclear deformation and neutron transfer in capture processes, and fusion hindrance at deep sub-barrier energies, Phys. Rev. C 84(6), 064614 (2011)
https://doi.org/10.1103/PhysRevC.84.064614
37 M. Dasgupta, D. J. Hinde, A. Diaz-Torres, B. Bouriquet, C. I. Low, G. J. Milburn, and J. O. Newton, Beyond the coherent coupled channels description of nuclear fusion, Phys. Rev. Lett. 99(19), 192701 (2007)
https://doi.org/10.1103/PhysRevLett.99.192701
38 J. R. Leigh, M. Dasgupta, D. J. Hinde, J. C. Mein, C. R. Morton, R. C. Lemmon, J. P. Lestone, J. O. Newton, H. Timmers, J. X. Wei, and N. Rowley, Barrier distributions from the fusion of oxygen ions with 144,148,154Sm and 186W, Phys. Rev. C 52(6), 3151 (1995)
https://doi.org/10.1103/PhysRevC.52.3151
39 H. Timmers, D. Ackermann, S. Beghini, L. Corradi, J. H. He, G. Montagnoli, F. Scarlassara, A. M. Stefanini, and N. Rowley, A case study of collectivity, transfer and fusion enhancement, Nucl. Phys. A 633 (3), 421 (1998)
https://doi.org/10.1016/S0375-9474(98)00121-3
40 H. Q. Zhang, C. J. Lin, F. Yang, H. M. Jia, X. X. Xu, Z. D. Wu, F. Jia, S. T. Zhang, Z. H. Liu, A. Richard, and C. Beck, Near-barrier fusion of 32S+90,96Zr: The effect of multi-neutron transfers in sub-barrier fusion reactions, Phys. Rev. C 82(5), 054609 (2010)
https://doi.org/10.1103/PhysRevC.82.054609
41 A. Sobiczewski and K. Pomorski, Description of structure and properties of superheavy nuclei, Prog. Part. Nucl. Phys. 58(1), 292 (2007)
https://doi.org/10.1016/j.ppnp.2006.05.001
42 W. D. Myers and W. J. Swiatecki, Nucleus–nucleus proximity potential and superheavy nuclei, Phys. Rev. C 62(4), 044610 (2000)
https://doi.org/10.1103/PhysRevC.62.044610
43 M. Liu, N. Wang, Z. Li, X. Wu, and E. Zhao, Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers, Nucl. Phys. A 768(1–2), 80 (2006)
https://doi.org/10.1016/j.nuclphysa.2006.01.011
44 N. Wang, M. Liu, and Y. X. Yang, Heavy-ion fusion and scattering with Skyrme energy density functional, Sci. China G: Phys. Mech. Astron. 52(10), 1554 (2009))
https://doi.org/10.1007/s11433-009-0205-z
45 N. Wang, K. Zhao, W. Scheid, and X. Wu, Fusion-fission reactions with a modified Woods–Saxon potential, Phys. Rev. C 77(1), 014603 (2008)
https://doi.org/10.1103/PhysRevC.77.014603
46 V. Zagrebaev and W. Greiner, Synthesis of superheavy nuclei: A search for new production reactions, Phys. Rev. C 78(3), 034610 (2008)
https://doi.org/10.1103/PhysRevC.78.034610
47 T. Cap, K. Siwek-Wilczyńska, and J. Wilczyński, Nucleus–nucleus cold fusion reactions analyzed with the l-dependent “fusion by diffusion” model, Phys. Rev. C 83(5), 054602 (2011)
https://doi.org/10.1103/PhysRevC.83.054602
48 K. Hagino, N. Rowley, and A. T. Kruppa, A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions, Comput. Phys. Commun. 123(1–3), 143 (1999)
https://doi.org/10.1016/S0010-4655(99)00243-X
49 C. Y. Wong, Interaction barrier in charged-particle nuclear reactions, Phys. Rev. Lett. 31(12), 766 (1973)
https://doi.org/10.1103/PhysRevLett.31.766
50 R. K. Puri and R. K. Gupta, Fusion barriers using the energy-density formalism: Simple analytical formula and the calculation of fusion cross sections, Phys. Rev. C 45(4), 1837 (1992)
https://doi.org/10.1103/PhysRevC.45.1837
51 B. Wang, K. Wen, W. J. Zhao, E. G. Zhao, and S. G. Zhou, Systematics of capture and fusion dynamics in heavy-ion collisions, At. Data Nucl. Data Tables 114, 281 (2017)
https://doi.org/10.1016/j.adt.2016.06.003
52 V. I. Zagrebaev, Yu. Ts. Oganessian, M. G. Itkis, and W. Greiner, Superheavy nuclei and quasi-atoms produced in collisions of transuranium ions, Phys. Rev. C 73, 031602(R) (2006)
https://doi.org/10.1103/PhysRevC.73.031602
53 V. Zagrebaev and W. Greiner, Low-energy collisions of heavy nuclei: Dynamics of sticking, mass transfer and fusion, J. Phys. G 34(1), 1 (2007)
https://doi.org/10.1088/0954-3899/34/1/001
54 V. Zagrebaev and W. Greiner, Shell effects in damped collisions: A new way to superheavies, J. Phys. G 34(11), 2265 (2007)
https://doi.org/10.1088/0954-3899/34/11/004
55 F. Zhang, C. Li, L. Zhu, and P. Wen, Production cross sections for exotic nuclei with multinucleon transfer reactions, Front. Phys. 13(6), 132113 (2018)
https://doi.org/10.1007/s11467-018-0843-6
56 A. S. Umar and V. E. Oberacker, Heavy-ion interaction potential deduced from density-constrained timedependent Hartree–Fock calculation, Phys. Rev. C 74, 021601(R) (2006)
https://doi.org/10.1103/PhysRevC.74.021601
57 A. S. Umar, V. E. Oberacker, J. A. Maruhn, and P. G. Reinhard, Microscopic composition of ion–ion interaction potentials, Phys. Rev. C 85(1), 017602 (2012)
https://doi.org/10.1103/PhysRevC.85.017602
58 T. Nakatsukasa and K. Yabana, Linear response theory in the continuum for deformed nuclei: Green’s function vs time-dependent Hartree–Fock with the absorbing boundary condition, Phys. Rev. C 71(2), 024301 (2005)
https://doi.org/10.1103/PhysRevC.71.024301
59 J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, and M. R. Strayer, Spin-excitation mechanisms in Skyrme-force time-dependent Hartree–Fock calculations, Phys. Rev. C 74(2), 027601 (2006)
https://doi.org/10.1103/PhysRevC.74.027601
60 L. Guo, J. A. Maruhn, and P. G. Reinhard, Boostinvariant mean field approximation and the nuclear Landau–Zener effect, Phys. Rev. C 76(1), 014601 (2007)
https://doi.org/10.1103/PhysRevC.76.014601
61 C. Simenel, Nuclear quantum many-body dynamics, Eur. Phys. J. A 48(11), 152 (2012)
https://doi.org/10.1140/epja/i2012-12152-0
62 B. A. Li, L. W. Chen, and C. M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions, Phys. Rep. 464 (4–6), 113 (2008)
https://doi.org/10.1016/j.physrep.2008.04.005
63 B. A. Li, C. M. Ko, and Z. Z. Ren, Equation of state of asymmetric nuclear matter and collisions of neutron-rich nuclei, Phys. Rev. Lett. 78(9), 1644 (1997)
https://doi.org/10.1103/PhysRevLett.78.1644
64 B. A. Li, C. M. Ko, and W. Bauer, Isospin physics in heavy-ion collisions at intermediate energies, Int. J. Mod. Phys. E 07(02), 147 (1998)
https://doi.org/10.1142/S0218301398000087
65 L. W. Chen, C. M. Ko, B. A. Li, C. Xu, and J. Xu, Probing isospin- and momentum-dependent nuclear effective interactions in neutron-rich matter, Eur. Phys. J. A 50(2), 29 (2014)
https://doi.org/10.1140/epja/i2014-14029-6
66 B. A. Li, Probing the high density behavior of the nuclear symmetry energy with high energy heavy-ion collisions, Phys. Rev. Lett. 88(19), 192701 (2002)
https://doi.org/10.1103/PhysRevLett.88.192701
67 B. A. Li, Isospin dependence of the π−/π+ ratio and density dependence of the nuclear symmetry energy, Phys. Rev. C 67(1), 017601 (2003)
https://doi.org/10.1103/PhysRevC.67.017601
68 V. Baran, M. Colonna, V. Greco, and M. Di Toro, Reaction dynamics with exotic nuclei, Phys. Rep. 410(5–6), 335 (2005)
https://doi.org/10.1016/j.physrep.2004.12.004
69 V. Greco, V. Baran, M. Colonna, M. Di Toro, T. Gaitanos, and H. H. Wolter, Relativistic effects in the search for high density symmetry energy, Phys. Lett. B 562(3–4), 215 (2003)
https://doi.org/10.1016/S0370-2693(03)00581-1
70 L. W. Chen, C. M. Ko, and B. A. Li, Determination of the stiffness of the nuclear symmetry energy from isospin diffusion, Phys. Rev. Lett. 94(3), 032701 (2005)
https://doi.org/10.1103/PhysRevLett.94.032701
71 L. W. Chen, V. Greco, C. M. Ko, and B. A. Li, Effects of symmetry energy on two-nucleon correlation functions in heavy-ion collisions induced by neutron-rich nuclei, Phys. Rev. Lett. 90(16), 162701 (2003)
https://doi.org/10.1103/PhysRevLett.90.162701
72 T. Gaitanos, M. Di Toro, S. Type, V. Baran, C. Fuchs, V. Greco, and H. H. Wolter, On the Lorentz structure of the symmetry energy, Nucl. Phys. A 732, 24 (2004)
https://doi.org/10.1016/j.nuclphysa.2003.12.001
73 Q. F. Li, Z. X. Li, S. Soff, R. K. Gupta, M. Bleicher, and H. Stöcker, Probing the density dependence of the symmetry potential at low and high densities, Phys. Rev. C 72(3), 034613 (2005)
https://doi.org/10.1103/PhysRevC.72.034613
74 Q. F. Li, Z. X. Li, S. Soff, R. K. Gupta, M. Bleicher, and H. Stöcker, Probing the equation of state with pions, J. Phys. G 32(2), 151 (2006)
https://doi.org/10.1088/0954-3899/32/2/007
75 Q. Li, Z. Li, S. Soff, R. K. Gupta, M. Bleicher, and H. Stöcker, Probing the density dependence of the symmetry potential in intermediate-energy heavy ion collisions, J. Phys. G 31(11), 1359 (2005)
https://doi.org/10.1088/0954-3899/31/11/016
76 Q. F. Li, Z. X. Li, E. G. Zhao, and R. K. Gupta, Σ−/Σ+ratio as a candidate for probing the density dependence of the symmetry potential at high nuclear densities, Phys. Rev. C 71(5), 054907 (2005)
https://doi.org/10.1103/PhysRevC.71.054907
77 Q. Li, Z. Li, S. Soff, M. Bleicher, and H. Stöcker, Medium modifications of the nucleon–nucleon elastic cross section in neutron-rich intermediate energy HICs, J. Phys. G 32(4), 407 (2006)
https://doi.org/10.1088/0954-3899/32/4/001
78 W. Reisdorf, et al.. (FOPI Collaboration), Systematics of pion emission in heavy ion collisions in the regime, Nucl. Phys. A 781(3–4), 459 (2007)
79 G. Ferini, M. Colonna, T. Gaitanos, M. Di Toro, and H. Wolter, Isospin effects on subthreshold Kaon production at intermediate energies, Phys. Rev. Lett. 97(20), 202301 (2006)
https://doi.org/10.1103/PhysRevLett.97.202301
80 M. Di Toro, M. Colonna, G. Ferini, T. Gaitanos, V. Greco, and H. H. Wolter, Heavy ion collisions at relativistic energies: Testing a nuclear matter at high baryon and isospin density, Nucl. Phys. A 782(1–4), 267 (2007)
https://doi.org/10.1016/j.nuclphysa.2006.10.028
81 G. C. Yong, B. A. Li, and L. W. Chen, Double neutronproton differential transverse flow as a probe for the high density behavior of the nuclear symmetry energy, Phys. Rev. C 74(6), 064617 (2006)
https://doi.org/10.1103/PhysRevC.74.064617
82 Y. Leifels, T. Blaich, T. W. Elze, H. Emling, H. Freiesleben, et al.., Exclusive studies of neutron and charged particle emission in collisions of 197Au+197Au at 400 MeV/nucleon, Phys. Rev. Lett. 71(7), 963 (1993)
https://doi.org/10.1103/PhysRevLett.71.963
83 D. Lambrecht, T. Blaich, T. W. Elze, H. Emling, H. Freiesleben, et al.., Energy dependence of collective flow of neutrons and protons in 197Au+197Au collisions, Z. Phys. A 350(2), 115 (1994)
https://doi.org/10.1007/BF01290679
84 H. Petersen, Q. Li, X. Zhu, and M. Bleicher, Directed and elliptic flow in heavy-ion collisions from E beam= 90 MeV/nucleon to E c.m. = 200 GeV/nucleon, Phys. Rev. C 74(6), 064908 (2006)
https://doi.org/10.1103/PhysRevC.74.064908
85 J. C. Yang, J. W. Xia, G. Q. Xiao, H. S. Xu, H. W. Zhao, et al.., High intensity heavy ion Accelerator Facility (HIAF) in China, Nucl. Instr. Method. B 317, 263 (2013)
https://doi.org/10.1016/j.nimb.2013.08.046
86 G. Q. Xiao, H. S. Xu, and S. C. Wang, HIAF and CiADS national research facilities: Progress and prospect, Nucl. Phys. Rev. 34, 275 (2017)
87 X. H. Zhou, Physics opportunities at the new facility HIAF, Nucl. Phys. Rev. 35, 339 (2018)
88 https://frib.msu.edu/
89 C.-B. Moon, Nuclear physics programs for the future rare isotope beams accelerator facility in Korea, arXiv: 1601.07271 (2016)
90 http://www.nishina.riken.jp/RIBF/
91 https://www.ganil-spiral2.eu/
92 https://fair-center.eu/
93 https://web.infn.it/epics/index.php
94 http://nica.jinr.ru/
95 W. P. Liu, The prospects for accelerator-basednuclear physics facilities, Physics (College Park Md.) 43, 150 (2014) (in Chinese)
96 G. G. Adamian, N. V. Antonenko, W. Scheid, and V. V. Volkov, Treatment of competition between complete fusion and quasifission in collisions of heavy nuclei, Nucl. Phys. A 627(2), 361 (1997)
https://doi.org/10.1016/S0375-9474(97)00605-2
97 M. H. Huang, Z. G. Gan, X. H. Zhou, J. Q. Li, and W. Scheid, Competing fusion and quasifission reaction mechanisms in the production of superheavy nuclei, Phys. Rev. C 82(4), 044614 (2010)
https://doi.org/10.1103/PhysRevC.82.044614
98 G. G. Adamian, N. V. Antonenko, and W. Scheid, Characteristics of quasifission products within the dinuclear system model, Phys. Rev. C 68(3), 034601 (2003)
https://doi.org/10.1103/PhysRevC.68.034601
99 G. G. Adamian, N. V. Antonenko, and W. Scheid, Isotopic trends in the production of superheavy nuclei in cold fusion reactions, Phys. Rev. C 69, 011601(R) (2004)
https://doi.org/10.1103/PhysRevC.69.011601
100 Z. Q. Feng, G. M. Jin, F. Fu, and J. Q. Li, Production cross sections of superheavy nuclei based on dinuclear system model, Nucl. Phys. A 771, 50 (2006)
https://doi.org/10.1016/j.nuclphysa.2006.03.002
101 G. G. Adamian, N. V. Antonenko, and A. S. Zubov, Production of unknown transactinides in asymmetry-exitchannel quasifission reactions, Phys. Rev. C 71(3), 034603 (2005)
https://doi.org/10.1103/PhysRevC.71.034603
102 Q. Li, W. Zuo, W. Li, N. Wang, E. Zhao, J. Li, and W. Scheid, Deformation and orientation effects in the driving potential of the dinuclear model, Eur. Phys. J. A 24(2), 223 (2005)
https://doi.org/10.1140/epja/i2004-10138-1
103 G. G. Adamian, N. V. Antonenko, and D. Lacroix, Production of neutron-rich Ca, Sn, and Xe isotopes in transfer-type reactions with radioactive beams, Phys. Rev. C 82(6), 064611 (2010)
https://doi.org/10.1103/PhysRevC.82.064611
104 M.-H. Mun, G. G. Adamian, N. V. Antonenko, Y. Oh, and Y. Kim, Production cross section of neutron-rich isotopes with radioactive and stable beams, Phys. Rev. C 89, 034622 (2014)
https://doi.org/10.1103/PhysRevC.89.034622
105 L. Zhu, Z. Q. Feng, and F. S. Zhang, Production of heavy neutron-rich nuclei in transfer reactions within the dinuclear system model, J. Phys. G 42(8), 085102 (2015)
https://doi.org/10.1088/0954-3899/42/8/085102
106 L. Zhu, J. Su, W. J. Xie, and F. S. Zhang, Production of neutron-rich transcalifornium nuclei in 238U-induced transfer reactions, Phys. Rev. C 94(5), 054606 (2016)
https://doi.org/10.1103/PhysRevC.94.054606
107 Z. Q. Feng, Production of neutron-rich isotopes around N= 126 in multinucleon transfer reactions, Phys. Rev. C 95(2), 024615 (2017)
https://doi.org/10.1103/PhysRevC.95.024615
108 V. Zagrebaev and W. Greiner, New way for the production of heavy neutron-rich nuclei, J. Phys. G 35(12), 125103 (2008)
https://doi.org/10.1088/0954-3899/35/12/125103
109 V. I. Zagrebaev and W. Greiner, New ideas on the production of heavy and superheavy neutron rich nuclei, Nucl. Phys. A 834(1–4), 366c (2010)
https://doi.org/10.1016/j.nuclphysa.2010.01.041
110 V. I. Zagrebaev and W. Greiner, Production of heavy trans-target nuclei in multinucleon transfer reactions, Phys. Rev. C 87(3), 034608 (2013)
https://doi.org/10.1103/PhysRevC.87.034608
111 V. Zagrebaev and W. Greiner, Production of new heavy isotopes in low-energy multinucleon transfer reactions, Phys. Rev. Lett. 101(12), 122701 (2008)
https://doi.org/10.1103/PhysRevLett.101.122701
112 V. I. Zagrebaev, B. Fornal, S. Leoni, and W. Greiner, Formation of light exotic nuclei in low-energy multinucleon transfer reactions, Phys. Rev. C 89(5), 054608 (2014)
https://doi.org/10.1103/PhysRevC.89.054608
113 Y. Aritomo, T. Wada, M. Ohta, and Y. Abe, Fluctuationdissipation model for synthesis of superheavy elements, Phys. Rev. C 59(2), 796 (1999)
https://doi.org/10.1103/PhysRevC.59.796
114 Y. Aritomo, T. Wada, M. Ohta, and Y. Abe, Diffusion mechanism for synthesis of superheavy elements, Phys. Rev. C 55, R1011(R) (1997)
https://doi.org/10.1103/PhysRevC.55.R1011
115 C. Shen, G. Kosenko, and Y. Abe, Two-step model of fusion for the synthesis of superheavy elements, Phys. Rev. C 66, 061602(R) (2002)
https://doi.org/10.1103/PhysRevC.66.061602
116 Z. Q. Feng, G. M. Jin, and J. Q. Li, Production of heavy isotopes in transfer reactions by collisions of 238U+238U, Phys. Rev. C 80(6), 067601 (2009)
https://doi.org/10.1103/PhysRevC.80.067601
117 X. J. Bao, S. Q. Guo, H. F. Zhang, and J. Q. Li, Influence of entrance channel on production cross sections of superheavy nuclei, Phys. Rev. C 96(2), 024610 (2017)
https://doi.org/10.1103/PhysRevC.96.024610
118 J. Tõke, D. K. Agnihotri, S. P. Baldwin, B. Djerroud, B. Lott, B. M. Quednau, W. Skulski, W. U. Schröder, L. G. Sobotka, R. J. Charity, D. G. Sarantites, and R. T. de Souza, Dynamical fragment production as a mode of energy dissipation in heavy-ion reactions, Phys. Rev. Lett. 77(17), 3514 (1996)
https://doi.org/10.1103/PhysRevLett.77.3514
119 J. P. Bondorf, R. Donangelo, I. N. Mishustin, C. J. Pethick, H. Schulz, and K. Sneppen, Statistical multifragmentation of nuclei, Nucl. Phys. A 443(2), 321 (1985)
https://doi.org/10.1016/0375-9474(85)90266-0
120 J. Bondorf, R. Donangelo, I. N. Mishustin, and H. Schulz, Statistical multifragmentation of nuclei, Nucl. Phys. A 444(3), 460 (1985)
https://doi.org/10.1016/0375-9474(85)90463-4
121 H. W. Barz, J. P. Bondorf, R. Donangelo, and H. Schulz, Connection between the thermodynamical and the percolation models of nuclear fragmentation, Phys. Lett. B 169(4), 318 (1986)
https://doi.org/10.1016/0370-2693(86)90364-3
122 B. H. Sa, Y. M. Zheng, and X. Z. Zhang, Disassembly of hot nuclei and relevant phase transition, Int. J. Mod. Phys. A 05(05), 843 (1990)
https://doi.org/10.1142/S0217751X90000398
123 J. P. Bondorf, A. S. Botvina, A. S. Iljinov, I. N. Mishustin, and K. Sneppen, Statistical multifragmentation of nuclei, Phys. Rep. 257(3), 133 (1995)
https://doi.org/10.1016/0370-1573(94)00097-M
124 A. S. Botvina and I. N. Mishustin, Statistical evolution of isotope composition of nuclear fragments, Phys. Rev. C 63(6), 061601 (2001)
https://doi.org/10.1103/PhysRevC.63.061601
125 N. Buyukcizmeci, R. Ogul, and A. S. Botvina, Isospin and symmetry energy effects on nuclear fragment production in liquid-gas-type phase transition region, Eur. Phys. J. A 25(1), 57 (2005)
https://doi.org/10.1140/epja/i2004-10281-7
126 P. Napolitani and M. Colonna, Bifurcations in Boltzmann–Langevin one body dynamics for fermionic systems, Phys. Lett. B 726(1–3), 382 (2013)
https://doi.org/10.1016/j.physletb.2013.08.005
127 P. Napolitani and M. Colonna, Frustrated fragmentation and re-aggregation in nuclei: A non-equilibrium description in spallation, Phys. Rev. C 92(3), 034607 (2015)
https://doi.org/10.1103/PhysRevC.92.034607
128 T. Gaitanos, A. B. Larionov, H. Lenske, and U. Mosel, Breathing mode in an improved transport approach, Phys. Rev. C 81(5), 054316 (2010)
https://doi.org/10.1103/PhysRevC.81.054316
129 A. B. Larionov, T. Gaitanos, and U. Mosel, Kaon and hyperon production in antiproton-induced reactions on nuclei, Phys. Rev. C 85(2), 024614 (2012)
https://doi.org/10.1103/PhysRevC.85.024614
130 O. Buss, T. Gaitanos, K. Gallmeister, H. van Hees, M. Kaskulov, O. Lalakulich, A. B. Larionov, T. Leitner, J. Weil, and U. Mosel, Transport-theoretical description of nuclear reactions, Phys. Rep. 512(1–2), 1 (2012); see also
https://doi.org/10.1016/j.physrep.2011.12.001
131 F. S. Zhang and E. Suraud, Analysis of multifragmentation in a Boltzmann–Langevin approach, Phys. Rev. C 51(6), 3201 (1995)
https://doi.org/10.1103/PhysRevC.51.3201
132 W.-J. Xie, J. Su, L. Zhu, and F.-S. Zhang, Neutronproton effective mass splitting in a Boltzmann–Langevin approach, Phys. Rev. C 88, 061601(R) (2013)
https://doi.org/10.1103/PhysRevC.88.061601
133 P. Danielewicz, Determination of the mean-field momentum-dependence using elliptic flow, Nucl. Phys. A 673(1–4), 375 (2000)
https://doi.org/10.1016/S0375-9474(00)00083-X
134 P. Danielewicz and G. F. Bertsch, Production of deuterons and pions in a transport model of energetic heavy-ion reactions, Nucl. Phys. A 533(4), 712 (1991)
https://doi.org/10.1016/0375-9474(91)90541-D
135 C. Fuchs and H. H. Wolter, The relativistic Landau- Vlasov method in heavy-ion collisions, Nucl. Phys. A 589(4), 732 (1995)
https://doi.org/10.1016/0375-9474(95)00180-9
136 T. Gaitanos, M. Di Toro, S. Typel, V. Baran, C. Fuchs, V. Greco, and H. H. Wolter, On the Lorentz structure of the symmetry energy, Nucl. Phys. A 732, 24 (2004)
https://doi.org/10.1016/j.nuclphysa.2003.12.001
137 C. M. Ko and Q. Li, Relativistic Vlasov–Uehling- Uhlenbeck model for heavy-ion collisions, Phys. Rev. C 37(5), 2270 (1988)
https://doi.org/10.1103/PhysRevC.37.2270
138 C. M. Ko and Q. Li, Medium effects in high energy heavyion collisions, J. Phys. G 22(12), 1673 (1996)
https://doi.org/10.1088/0954-3899/22/12/002
139 T. Song and C. M. Ko, Modifications of the pionproduction threshold in the nuclear medium in heavy ion collisions and the nuclear symmetry energy, Phys. Rev. C 91(1), 014901 (2015)
https://doi.org/10.1103/PhysRevC.91.014901
140 M. Colonna, M. Di Toro, A. Guarnera, S. Maccarone, M. Zielinska-Pfabé, and H. H. Wolter, Fluctuations and dynamical instabilities in heavy-ion reactions, Nucl. Phys. A 642(3–4), 449 (1998)
https://doi.org/10.1016/S0375-9474(98)00542-9
141 A. Guarnera, M. Colonna, and Ph. Chomaz, 3D stochastic mean-field simulations of the spinodal fragmentation of dilute nuclei, Phys. Lett. B 373(4), 267 (1996)
https://doi.org/10.1016/0370-2693(96)00152-9
142 M. Colonna, Fluctuations and symmetry energy in nuclear fragmentation dynamics, Phys. Rev. Lett. 110(4), 042701 (2013)
https://doi.org/10.1103/PhysRevLett.110.042701
143 A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Antisymmetrized version of molecular dynamics with twonucleon collisions and its application to heavy ion reactions, Prog. Theor. Phys. 87(5), 1185 (1992)
https://doi.org/10.1143/ptp/87.5.1185
144 A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Momentum distribution of fragments in heavy-ion reactions: Dependence on the stochastic collision process, Phys. Rev. C 47(6), 2652 (1993)
https://doi.org/10.1103/PhysRevC.47.2652
145 J. Su, F. S. Zhang, and B. A. Bian, Odd-even effect in heavy-ion collisions at intermediate energies, Phys. Rev. C 83(1), 014608 (2011)
https://doi.org/10.1103/PhysRevC.83.014608
146 J. Su and F. S. Zhang, Non-equilibrium and residual memory in momentum space of fragmenting sources in central heavy-ion collisions, Phys. Rev. C 87(1), 017602 (2013)
https://doi.org/10.1103/PhysRevC.87.017602
147 J. Su, K. Cherevko, W. J. Xie, and F. S. Zhang, Nonisotropic and nonsingle explosion in central 129Xe+120Sn collisions at 50–125 MeV/nucleon, Phys. Rev. C 89(1), 014619 (2014)
https://doi.org/10.1103/PhysRevC.89.014619
148 J. Aichelin and G. Bertsch, Numerical simulation of medium energy heavy ion reactions, Phys. Rev. C 31(5), 1730 (1985)
https://doi.org/10.1103/PhysRevC.31.1730
149 C. Hartnack, L. Zhuxia, L. Neise, G. Peilert, A. Rosenhauer, H. Sorge, J. Aichelin, H. Stöcker, and W. Greiner, Quantum molecular dynamics a microscopic model from UNILAC to CERN energies, Nucl. Phys. A 495(1–2), 303 (1989)
https://doi.org/10.1016/0375-9474(89)90328-X
150 J. Aichelin, “Quantum” molecular dynamics — a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions, Phys. Rep. 202(5–6), 233 (1991)
https://doi.org/10.1016/0370-1573(91)90094-3
151 C. Hartnack, R. K. Puri, J. Aichelin, J. Konopka, S. A. Bass, H. Stöcker, and W. Greiner, Modelling the manybody dynamics of heavy ion collisions: Present status and future perspective, Eur. Phys. J. A 1(2), 151 (1998)
https://doi.org/10.1007/s100500050045
152 M. Papa, T. Maruyama, and A. Bonasera, Constrained molecular dynamics approach to fermionic systems, Phys. Rev. C 64(2), 024612 (2001)
https://doi.org/10.1103/PhysRevC.64.024612
153 M. Papa, Many-body correlations in semiclassical molecular dynamics and Skyrme interaction, Phys. Rev. C 87(1), 014001 (2013)
https://doi.org/10.1103/PhysRevC.87.014001
154 M. Papa, G. Giuliani, and A. Bonasera, Constrained molecular dynamics II: An N-body approach to nuclear systems, J. Comput. Phys. 208(2), 403 (2005)
https://doi.org/10.1016/j.jcp.2005.02.032
155 N. Wang, Z. Li, and X. Wu, Improved quantum molecular dynamics model and its applications to fusion reaction near barrier, Phys. Rev. C 65(6), 064608 (2002)
https://doi.org/10.1103/PhysRevC.65.064608
156 Y. X. Zhang and Z. X. Li, Elliptic flow and system size dependence of transition energies at intermediate energies, Phys. Rev. C 74(1), 014602 (2006)
https://doi.org/10.1103/PhysRevC.74.014602
157 Y. X. Zhang, Z. X. Li, and P. Danielewicz, In-medium NN cross sections determined from the nuclear stopping and collective flow in heavy-ion collisions at intermediate energies, Phys. Rev. C 75(3), 034615 (2007)
https://doi.org/10.1103/PhysRevC.75.034615
158 Y. X. Zhang, P. Danielewicz, M. Famiano, Z. Li, W. G. Lynch, and M. B. Tsang, The influence of cluster emission and the symmetry energy on neutron–proton spectral double ratios, Phys. Lett. B 664(1–2), 145 (2008)
https://doi.org/10.1016/j.physletb.2008.03.075
159 Y. X. Zhang, Z. X. Li, C. S. Zhou, and M. B. Tsang, Effect of isospin-dependent cluster recognition on the observables in heavy ion collisions, Phys. Rev. C 85, 051602(R) (2012)
https://doi.org/10.1103/PhysRevC.85.051602
160 Y. Zhang, D. D. S. Coupland, P. Danielewicz, Z. Li, H. Liu, F. Lu, W. G. Lynch, and M. B. Tsang, Influence of in-medium NNcross sections, symmetry potential, and impact parameter on isospin observables, Phys. Rev. C 85(2), 024602 (2012)
https://doi.org/10.1103/PhysRevC.85.024602
161 Y. Zhang, M. Tsang, and Z. Li, Covariance analysis of symmetry energy observables from heavy ion collision, Phys. Lett. B 749, 262 (2015)
https://doi.org/10.1016/j.physletb.2015.07.064
162 N. Wang, Z. Li, X. Wu, J. Tian, Y. Zhang, and M. Liu, Further development of the improved quantum molecular dynamics model and its application to fusion reactions near the barrier, Phys. Rev. C 69(3), 034608 (2004)
https://doi.org/10.1103/PhysRevC.69.034608
163 Z. Q. Feng, Momentum dependence of the symmetry potential and its influence on nuclear reactions, Phys. Rev. C 84(2), 024610 (2011)
https://doi.org/10.1103/PhysRevC.84.024610
164 Z. Q. Feng, Nuclear in-medium effects and collective flows in heavy-ion collisions at intermediate energies, Phys. Rev. C 85(1), 014604 (2012)
https://doi.org/10.1103/PhysRevC.85.014604
165 X. G. Cao, G. Q. Zhang, X. Z. Cai, Y. G. Ma, W. Guo, J. G. Chen, W. D. Tian, D. Q. Fang, and H. W. Wang, Roles of deformation and orientation in heavy-ion collisions induced by light deformed nuclei at intermediate energy, Phys. Rev. C 81(6), 061603 (2010)
https://doi.org/10.1103/PhysRevC.81.061603
166 G. Q. Zhang, Y. G. Ma, X. G. Cao, C. L. Zhou, X. Z. Cai, D. Q. Fang, W. D. Tian, and H. W. Wang, Unified description of nuclear stopping in central heavy-ion collisions from 10AMeV to 1.2AGeV, Phys. Rev. C 84, 034612 (2011)
https://doi.org/10.1103/PhysRevC.84.034612
167 W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai, and G. Q. Zhang, Giant dipole resonance as a fingerprint of α clustering configurations in 12C and 16O, Phys. Rev. Lett. 113(3), 032506 (2014)
https://doi.org/10.1103/PhysRevLett.113.032506
168 D. T. Khoa, N. Ohtsuka, M. A. Matin, A. Faessler, S. W. Huang, E. Lehmann, and R. K. Puri, In-medium effects in the description of heavy-ion collisions with realistic NN interactions, Nucl. Phys. A 548(1), 102 (1992)
https://doi.org/10.1016/0375-9474(92)90079-Y
169 V. Uma Maheswari, C. Fuchs, A. Faessler, L. Sehn, D. S. Kosov, and Z. Wang, In-medium dependence and Coulomb effects of the pion production in heavy ion collisions, Nucl. Phys. A 628(4), 669 (1998)
https://doi.org/10.1016/S0375-9474(97)00646-5
170 K. Shekhter, C. Fuchs, A. Faessler, M. Krivoruchenko, and B. Martemyanov, Dilepton production in heavy-ion collisions at intermediate energies, Phys. Rev. C 68(1), 014904 (2003)
https://doi.org/10.1103/PhysRevC.68.014904
171 M. D. Cozma, Y. Leifels, W. Trautmann, Q. Li, and P. Russotto, Toward a model-independent constraint of the high-density dependence of the symmetry energy, Phys. Rev. C 88(4), 044912 (2013)
https://doi.org/10.1103/PhysRevC.88.044912
172 Q. Li, C. Shen, C. Guo, Y. Wang, Z. Li, J. Lukasik, and W. Trautmann, Nonequilibrium dynamics in heavy-ion collisions at low energies available at the GSI Schwerionen Synchrotron, Phys. Rev. C 83(4), 044617 (2011)
https://doi.org/10.1103/PhysRevC.83.044617
173 S. A. Bass, M. Belkacem, M. Bleicher, et al.., Microscopic models for ultrarelativistic heavy ion collisions, Prog. Part. Nucl. Phys. 41, 255 (1998)
https://doi.org/10.1016/S0146-6410(98)00058-1
174 H. Sorge, H. Stocker, and W. Greiner, Poincaré invariant Hamiltonian dynamics: Modelling multi-hadronic interactions in a phase space approach, Ann. Phys. 192(2), 266 (1989)
https://doi.org/10.1016/0003-4916(89)90136-X
175 C.-Y. Wong, Dynamics of nuclear fluid (VIII): Timedependent Hartree–Fock approximation from a classical point of view, Phys. Rev. C 25, 1460 (1982)
https://doi.org/10.1103/PhysRevC.25.1460
176 Ph. Chomaz, G. F. Burgio, and J. Randrup, Inclusion of fluctuations in nuclear dynamics, Phys. Lett. B 254(3–4), 340 (1991)
https://doi.org/10.1016/0370-2693(91)91166-S
177 F. Chapelle, G. F. Burgio, Ph. Chomaz, and J. Randrup, Fluctuations in nuclear dynamics: Comparison of different methods, Nucl. Phys. A 540(1–2), 227 (1992)
https://doi.org/10.1016/0375-9474(92)90202-U
178 F. S. Zhang and E. Suraud, Boltzmann-Langevin equation, dynamical instability and multifragmentation, Phys. Lett. B 319(1–3), 35 (1993)
https://doi.org/10.1016/0370-2693(93)90777-F
179 Y. Abe, S. Ayik, P. G. Reinhard, and E. Suraud, On stochastic approaches of nuclear dynamics, Phys. Rep. 275(2–3), 49 (1996)
https://doi.org/10.1016/0370-1573(96)00003-8
180 A. Guarnera, M. Colonna, and Ph. Chomaz, 3D stochastic mean-field simulations of the spinodal fragmentation of dilute nuclei, Phys. Lett. B 373(4), 267 (1996)
https://doi.org/10.1016/0370-2693(96)00152-9
181 M. Colonna, Fluctuations and symmetry energy in nuclear fragmentation dynamics, Phys. Rev. Lett. 10(4), 042701 (2013)
https://doi.org/10.1103/PhysRevLett.110.042701
182 S. Gavin, G. Moschelli, and C. Zin, Boltzmann–Langevin approach to pre-equilibrium correlations in nuclear collisions, Phys. Rev. C 95(6), 064901 (2017)
https://doi.org/10.1103/PhysRevC.95.064901
183 P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964)
https://doi.org/10.1103/PhysRev.136.B864
184 W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. A 140, 1133 (1965)
https://doi.org/10.1103/PhysRev.140.A1133
185 R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem, Springer-Verlag, Berlin, 1990
186 R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Clarendon, Oxford, 1989
187 W. Kohn, Electronic structure of matter — wave functions and density functionals, Rev. Mod. Phys. 71(5), 1253 (1999)
https://doi.org/10.1103/RevModPhys.71.1253
188 E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40(5), 749 (1932)
https://doi.org/10.1103/PhysRev.40.749
189 P. Carruthers and F. Zachariasen, Relativistic quantum transport theory approach to multiparticle production, Phys. Rev. D 13(4), 950 (1976)
https://doi.org/10.1103/PhysRevD.13.950
190 L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin, New York, 1962
191 P. C. Martin and J. Schwinger, Theory of many-particle systems (I), Phys. Rev. 115(6), 1342 (1959)
https://doi.org/10.1103/PhysRev.115.1342
192 J. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. (N.Y.) 2(3), 407 (1961)
https://doi.org/10.1063/1.1703727
193 P. Danielewicz, Quantum theory of nonequilibrium processes (I), Ann. Phys. 152(2), 239 (1984)
https://doi.org/10.1016/0003-4916(84)90092-7
194 G. J. Mao, Z. X. Li, Y. Z. Zhuo, and Y. L. Han, Medium effects on the NNinelastic cross section in relativistic heavy-ion collisions, Phys. Lett. B 327(3-4), 183 (1994)
https://doi.org/10.1016/0370-2693(94)90715-3
195 G. Mao, Z. Li, Y. Zhuo, and Z. Yu, Medium effects on the NNinelastic cross section in relativistic heavy-ion collisions, Phys. Lett. B 327(3–4), 183 (1994)
https://doi.org/10.1016/0370-2693(94)90715-3
196 Y. Han, G. Mao, Z. Li, and Y. Zhuo, Effective nucleonnucleon cross sections based on Skyrme interactions, Phys. Rev. C 50(2), 961 (1994)
https://doi.org/10.1103/PhysRevC.50.961
197 G. Mao, Z. Li, and Y. Zhuo, Self-consistent relativistic Boltzmann–Uehling–Uhlenbeck equation for the Δ distribution function, Phys. Rev. C 53 (6), 2933 (1996)
https://doi.org/10.1103/PhysRevC.53.2933
198 G. Mao, L. Neise, H. Stoecker, W. Greiner, and Z. Li, Relativistic transport theory of N,Δ, and N ∗ (1440) interacting through σ, ω, and π mesons, Phys. Rev. C 57(4), 1938 (1998)
https://doi.org/10.1103/PhysRevC.57.1938
199 Q. Li, Z. Li, and G. Mao, Isospin dependence of nucleonnucleon elastic cross section, Phys. Rev. C 62(1), 014606 (2000)
https://doi.org/10.1103/PhysRevC.62.014606
200 Q. Li, Z. Li, and E. Zhao, Density and temperature dependence of nucleon-nucleon elastic cross section, Phys. Rev. C 69(1), 017601 (2004)
https://doi.org/10.1103/PhysRevC.69.017601
201 W. Cassing and S. Juchem, Semiclassical transport of particles with dynamical spectral functions, Nucl. Phys. A 665(3–4), 377 (2000)
https://doi.org/10.1016/S0375-9474(99)00393-0
202 G. F. Bertsch and S. Das Gupta, A guide to microscopic models for intermediate energy heavy ion collisions, Phys. Rep. 160(4), 189 (1988)
https://doi.org/10.1016/0370-1573(88)90170-6
203 J. Aichelin, A. Rosenhauer, G. Peilert, H. Stoecker, and W. Greiner, Importance of momentum-dependent interactions for the extraction of the nuclear equation of state from high-energy heavy-ion collisions, Phys. Rev. Lett. 58(19), 1926 (1987)
https://doi.org/10.1103/PhysRevLett.58.1926
204 C. Hartnack and J. Aichelin, New parametrization of the optical potential, Phys. Rev. C 49(5), 2801 (1994)
https://doi.org/10.1103/PhysRevC.49.2801
205 C. Gale, G. Bertsch, and S. Das Gupta, Heavy-ion collision theory with momentum-dependent interactions, Phys. Rev. C 35(5), 1666 (1987)
https://doi.org/10.1103/PhysRevC.35.1666
206 M. Isse, A. Ohnishi, N. Otuka, P. K. Sahu, and Y. Nara, Mean-field effects on collective flow in high-energy heavyion collisions at 2–158A GeV energies, Phys. Rev. C 72(6), 064908 (2005)
https://doi.org/10.1103/PhysRevC.72.064908
207 S. Hama, B. C. Clark, E. D. Cooper, H. S. Sherif, and R. L. Mercer, Global Dirac optical potentials for elastic proton scattering from heavy nuclei, Phys. Rev. C 41(6), 2737 (1990)
https://doi.org/10.1103/PhysRevC.41.2737
208 J. Cugnon, Monte Carlo calculation of high-energy heavyion interactions, Phys. Rev. C 22(5), 1885 (1980)
https://doi.org/10.1103/PhysRevC.22.1885
209 J. J. Molitoris, J. B. Hoffer, H. Kruse, and H. Stöcker, Microscopic calculations of collective flow probing the shortrange nature of the nuclear force, Phys. Rev. Lett. 53(9), 899 (1984)
https://doi.org/10.1103/PhysRevLett.53.899
210 H. Kruse, B. V. Jacak, J. J. Molitoris, G. D. Westfall, and H. Stöcker, Vlasov–Uehling–Uhlenbeck theory of medium energy heavy ion reactions: Role of mean field dynamics and two body collisions, Phys. Rev. C 31(5), 1770 (1985)
https://doi.org/10.1103/PhysRevC.31.1770
211 G. F. Bertsch, H. Kruse, and S. D. Gupta, Boltzmann equation for heavy ion collisions, Phys. Rev. C 29(2), 673 (1984)
https://doi.org/10.1103/PhysRevC.29.673
212 C. Grégoire, B. Remaud, F. Sebille, L. Vinet, and Y. Raffray, Semi-classical dynamics of heavy-ion reactions, Nucl. Phys. A 465(2), 317 (1987)
https://doi.org/10.1016/0375-9474(87)90437-4
213 J. Aichelin, C. Hartnack, A. Bohnet, L. Zhuxia, G. Peilert, H. Stöcker, and W. Greiner, QMD versus BUU/VUU: Same results from different theories, Phys. Lett. B 224(1– 2), 34 (1989)
https://doi.org/10.1016/0370-2693(89)91045-9
214 H. Feldmeier, Fermionic molecular dynamics, Nucl. Phys. A 515(1), 147 (1990)
https://doi.org/10.1016/0375-9474(90)90328-J
215 H. Feldmeier and J. Schnack, Fermionic molecular dynamics SCV252SCV133 V2, Prog. Part. Nucl. Phys. 39, 393 (1997)
https://doi.org/10.1016/S0146-6410(97)00047-1
216 T. Maruyama, K. Niita, and A. Iwamoto, Extension of quantum molecular dynamics and its application to heavy-ion collisions, Phys. Rev. C 53(1), 297 (1996)
https://doi.org/10.1103/PhysRevC.53.297
217 L. Wilets, E. M. Henley, M. Kraft, and A. D. Mackellar, Classical many-body model for heavy-ion collisions incorporating the Pauli principle, Nucl. Phys. A 282(2), 341 (1977)
https://doi.org/10.1016/0375-9474(77)90220-2
218 L. Wilets, Y. Yariv, and R. Chestnut, Classical manybody model for heavy-ion collisions (II), Nucl. Phys. A 301(2), 359 (1978)
https://doi.org/10.1016/0375-9474(78)90268-3
219 J. C. Dorso and J. Randrup, Classical simulation of nuclear systems, Phys. Lett. B 215(4), 611 (1988)
https://doi.org/10.1016/0370-2693(88)90030-5
220 Z. X. Li, C. Hartnack, H. Stoeker, and W. Greiner, Transition from binary processes to multifragmentation in quantum molecular dynamics for intermediate energy heavy ion collisions, Phys. Rev. C 44, 824 (1990)
https://doi.org/10.1103/PhysRevC.44.824
221 N. Wang, L. Ou, Y. Zhang, and Z. Li, Microscopic dynamics simulations of heavy-ion fusion reactions induced by neutron-rich nuclei, Phys. Rev. C 89(6), 064601 (2014)
https://doi.org/10.1103/PhysRevC.89.064601
222 H. Yao and N. Wang, Microscopic dynamics simulations of multinucleon transfer in 86Kr+64Ni at 25 MeV/nucleon, Phys. Rev. C 95(1), 014607 (2017)
https://doi.org/10.1103/PhysRevC.95.014607
223 Y. Y. Jiang, N. Wang, Z. X. Li, and W. Scheid, Dynamical nucleus–nucleus potential at short distances, Phys. Rev. C 81(4), 044602 (2010)
https://doi.org/10.1103/PhysRevC.81.044602
224 N. Wang, K. Zhao, and Z. X. Li, Systematic study of 16O-induced fusion with the improved quantum molecular dynamics model, Phys. Rev. C 90(5), 054610 (2014)
https://doi.org/10.1103/PhysRevC.90.054610
225 J. Tian, X. Wu, K. Zhao, Y. Zhang, and Z. Li, Properties of the composite systems formed in the reactions of 238U+238U and 232Th+250Cf, Phys. Rev. C 77(6), 064603 (2008)
https://doi.org/10.1103/PhysRevC.77.064603
226 K. Zhao, X. Wu, and Z. Li, Quantum molecular dynamics study of the mass distribution of products in 7.0AMeV 238U+238U collisions, Phys. Rev. C 80(5), 054607 (2009)
https://doi.org/10.1103/PhysRevC.80.054607
227 Y. X. Zhang, M. B. Tsang, Z. X. Li, and H. Liu, Constraints on nucleon effective mass splitting with heavy ion collisions, Phys. Lett. B 732, 186 (2014)
https://doi.org/10.1016/j.physletb.2014.03.030
228 J. J. Cugnon, D. L’Hôte, and J. Vandermeulen, Simple parametrization of cross-sections for nuclear transport studies up to the GeV range, Nucl. Instrum. Methods B 111(3–4), 215 (1996)
https://doi.org/10.1016/0168-583X(95)01384-9
229 A. Ono, J. Xu, M. Colonna, P. Danielewicz, C. M. Ko, et al.., Comparison of heavy-ion transport simulations: Collision integral with pions and Δ resonances in a box, Phys. Rev. C 100(4), 044617 (2019)
https://doi.org/10.1103/PhysRevC.100.044617
230 N. Wang and T. Li, Shell and isospin effects in nuclear charge radii, Phys. Rev. C 88, 011301(R) (2013)
https://doi.org/10.1103/PhysRevC.88.011301
231 A. Trzcińska, J. Jastrzebski, P. Lubiński, F. J. Hartmann, R. Schmidt, T. von Egidy, and B. Kłos, Neutron density distributions deduced from antiprotonic atoms, Phys. Rev. Lett. 87(8), 082501 (2001)
https://doi.org/10.1103/PhysRevLett.87.082501
232 J. Bartel, P. Quentin, M. Brack, C. Guet, and H. B. Håkansson, Towards a better parametrisation of Skyrmelike effective forces: A critical study of the SkM force, Nucl. Phys. A 386 (1), 79 (1982)
https://doi.org/10.1016/0375-9474(82)90403-1
233 K. Wen, F. Sakata, Z. X. Li, X. Z. Wu, Y. X. Zhang, and S. G. Zhou, Non-Gaussian fluctuations and non- Markovian effects in the nuclear fusion process: Langevin dynamics emerging from quantum molecular dynamics simulations, Phys. Rev. Lett. 111(1), 012501 (2013)
https://doi.org/10.1103/PhysRevLett.111.012501
234 R. Nebauer, J. Aichelin, M. Assenard, G. Auger, C. O. Bacri, et al.., Multifragmentation in Xe(50AMeV) + Sn: Confrontation of theory and data, Nucl. Phys. A 658(1), 67 (1999)
https://doi.org/10.1007/978-94-011-4556-5_34
235 T. X. Liu, M. J. van Goethem, X. D. Liu, W. G. Lynch, R. Shomin, et al.., Isotope yields from central 112,124Sn+112,124Sn collisions: Dynamical emission? Phys. Rev. C 69(1), 014603 (2004)
https://doi.org/10.1103/PhysRevC.69.014603
236 P. Russotto, E. De Filippo, A. Pagano, E. Piasecki, F. Amorini, et al.., Strong enhancement of dynamical emission of heavy fragments in the neutron-rich 124Sn+64Ni reaction at 35AMeV, Phys. Rev. C 81(6), 064605 (2010)
237 Z. Kohley, L. W. May, S. Wuenschel, M. Colonna, M. Di Toro, et al.., Transverse collective flow and midrapidity emission of isotopically identified light charged particles, Phys. Rev. C 83(4), 044601 (2011)
https://doi.org/10.1103/PhysRevC.83.044601
238 S. Hudan, A. Chbihi, J. D. Frankland, A. Mignon, J. P. Wieleczko, et al.., Characteristics of the fragments produced in central collisions of 129Xe+natSn from 32Ato 50AMeV, Phys. Rev. C 67(6), 064613 (2003)
239 C. O. Dorso and J. Randrup, Early recognition of clusters in molecular dynamics, Phys. Lett. B 301(4), 328 (1993)
https://doi.org/10.1016/0370-2693(93)91158-J
240 R. K. Puri and J. Aichelin, Simulated annealing clusterization algorithm for studying the multifragmentation, J. Comput. Phys. 162(1), 245 (2000)
https://doi.org/10.1006/jcph.2000.6534
241 P. B. Gossiaux, R. K. Puri, C. Hartnack, and J. Aichelin, The multifragmentation of spectator matter, Nucl. Phys. A 619(3–4), 379 (1997)
https://doi.org/10.1016/S0375-9474(97)00175-9
242 S. Goyal and R. K. Puri, Formation of fragments in heavy-ion collisions using a modified clusterization method, Phys. Rev. C 83(4), 047601 (2011)
https://doi.org/10.1103/PhysRevC.83.047601
243 M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ernst, S. Soff, L. Bravina, M. Belkacem, H. Weber, H. Stöcker, and W. Greiner, Relativistic hadron–hadron collisions inthe ultra-relativistic quantum molecular dynamics model, J. Phys. G 25(9), 1859 (1999)
https://doi.org/10.1088/0954-3899/25/9/308
244 Q. Li, G. Graf, and M. Bleicher, Ultrarelativistic quantum molecular dynamics calculations of two-pion Hanbury–Brown–Twiss correlations in central Pb–Pb collisions at s N N= 2.76 TeV, Phys. Rev. C 85(3), 034908 (2012)
https://doi.org/10.1103/PhysRevC.85.034908
245 /
246 Q. Li, M. Bleicher, and H. Stöcker, The effect of “preformed” hadron potentials on the dynamics of heavy ion collisions and the HBT puzzle, Phys. Lett. B 659(3), 525 (2008)
https://doi.org/10.1016/j.physletb.2007.11.080
247 H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, and H. Stocker, Fully integrated transport approach to heavy ion reactions with an intermediate hydrodynamic stage, Phys. Rev. C 78(4), 044901 (2008)
https://doi.org/10.1103/PhysRevC.78.044901
248 Q. Li, J. Steinheimer, H. Petersen, M. Bleicher, and H. Stocker, Effects of a phase transition on HBT correlations in an integrated Boltzmann+hydrodynamics approach, Phys. Lett. B 674(2), 111 (2009)
https://doi.org/10.1016/j.physletb.2009.03.012
249 P. Russotto, S. Gannon, S. Kupny, P. Lasko, L. Acosta, et al.., Results of the ASY-EOS experiment at GSI: The symmetry energy at suprasaturation density, Phys. Rev. C 94(3), 034608 (2016)
250 C. Guo, Y. Wang, Q. Li, and F. S. Zhang, Effect of the spin–orbit interaction on flows in heavy-ion collisions at intermediate energies, Phys. Rev. C 90(3), 034606 (2014)
https://doi.org/10.1103/PhysRevC.90.034606
251 Y. Sun, Y. Wang, Q. Li, and F. Wang, Effect of internal magnetic field on collective flow in heavy ion collisions at intermediate energies, Phys. Rev. C 99(6), 064607 (2019)
https://doi.org/10.1103/PhysRevC.99.064607
252 Y. Liu, Y. Wang, Q. Li, and L. Liu, Collective flows of pions in Au+Au collisions at energies 1.0 and 1.5 GeV/nucleon, Phys. Rev. C 97, 034602 (2018)
https://doi.org/10.1103/PhysRevC.97.034602
253 Y. Du, Y. Wang, Q. Li, and L. Liu, The effect of Lorentzlike force on collective flows of K+ in Au+Au collisions at 1.5 GeV/nucleon, Sci. China Phys. Mech. Astron. 61(6), 062011 (2018)
https://doi.org/10.1007/s11433-017-9148-0
254 Y. Wang, Q. Li, Y. Leifels, and A. Le Fevre, Study of the nuclear symmetry energy from the rapidity-dependent elliptic flow in heavy-ion collisions around 1 GeV/nucleon regime, Phys. Lett. B 802, 135249 (2020)
https://doi.org/10.1016/j.physletb.2020.135249
255 Y. Wang, C. Guo, Q. Li, H. Zhang, Z. Li, and W. Trautmann, Collective flow of light particles in Au+Au collisions at intermediate energies, Phys. Rev. C 89(3), 034606 (2014)
https://doi.org/10.1103/PhysRevC.89.034606
256 P. C. Li, Y. J. Wang, Q. F. Li, and H. F. Zhang, Effects of the in-medium nucleon–nucleon cross section on collective flow and nuclear stopping in heavy-ion collisions in the Fermi-energy domain, Phys. Rev. C 97(4), 044620 (2018)
https://doi.org/10.1103/PhysRevC.97.044620
257 X. Wu, J. Tian, W. Ning, Z. Kai, and Z. Li, Microscopic study on dynamic barrier in fusion reactions, Chin. Phys. C 12, 1317 (2004)
258 V. Yu. Denisov and W. Nörenberg, Entrance channel potentials in the synthesis of the heaviest nuclei, Eur. Phys. J. A 15(3), 375 (2002)
https://doi.org/10.1140/epja/i2002-10039-3
259 V. Zanganeh, N. Wang, and O. N. Ghodsi, Dynamical nucleus–nucleus potential and incompressibility of nuclear matter, Phys. Rev. C 85(3), 034601 (2012)
https://doi.org/10.1103/PhysRevC.85.034601
260 E. F. Aguilera, J. J. Kolata, and R. J. Tighe, Nuclear structure effects in the sub-barrier fusion of 16O+70,72,73,74,76Ge, Phys. Rev. C 52(6), 3103 (1995)
https://doi.org/10.1103/PhysRevC.52.3103
261 T. Kurtukian-Nieto, J. Benlliure, K. H. Schmidt, L. Audouin, F. Becker, et al.., Production cross sections of heavy neutron-rich nuclei approaching the nucleosynthesis r-process path around A= 195, Phys. Rev. C 89(2), 024616 (2014)
https://doi.org/10.1103/PhysRevC.89.024616
262 K. D. Hildenbrand, H. Freiesleben, F. Pühlhofer, W. F. W. Schneider, R. Bock, D. Harrach, and H. J. Specht, Reaction between 238U and 238U at 7.42 MeV/nucleon, Phys. Rev. Lett. 39(17), 1065 (1977)
https://doi.org/10.1103/PhysRevLett.39.1065
263 M. Schädel, J. V. Kratz, H. Ahrens, W. Brächle, G. Franz, H. Gäggeler, I. Warnecke, G. Wirth, G. Herrmann, N. Trautmann, and M. Weis, Isotope distributions in the reaction of 238U with 238U, Phys. Rev. Lett. 41(7), 469 (1978)
https://doi.org/10.1103/PhysRevLett.41.469
264 H. Essel, K. Hartel, W. Henning, P. Kienle, et al.., Charge and mass transfer in the reaction 136Xe+208Pb at energies close to the coulomb barrier, Z. Phys. A At. Nucl. 289(3), 265 (1979)
https://doi.org/10.1007/BF01415787
265 H. Freiesleben, K. D. Hildenbrand, F. Pühlhofer, W. F. W. Schneider, R. Bock, D. Harrach, and H. J. Specht, The reaction 238U+238U at 7.42 MeV/u, Z. Phys. A At. Nucl. 292(2), 171 (1979)
266 M. Schädel, W. Brüchle, H. Güggeler, J. V. Kratz, K. Sümmerer, et al.., Actinide production in collisions of 238U with 248Cm, Phys. Rev. Lett.48(13), 852 (1982)
https://doi.org/10.1103/PhysRevLett.48.852
267 K. J. Moody, D. Lee, R. B. Welch, K. E. Gregorich, G. T. Seaborg, R. W. Lougheed, and E. K. Hulet, Actinide production in reactions of heavy ions with 248Cm, Phys. Rev. C 33(4), 1315 (1986)
https://doi.org/10.1103/PhysRevC.33.1315
268 J. V. Kratz, M. Schädel, and H. W. Gäggeler, Reexamining the heavy-ion reactions 238U+238U and 238U+248Cm and actinide production close to the barrier, Phys. Rev. C 88(5), 054615 (2013)
https://doi.org/10.1103/PhysRevC.88.054615
269 C. Golabek, A. C. C. Villari, S. Heinz, W. Mittig, S. Bhattacharyya, et al.., Search for a long living giant system in 238U+238U collisions near the coulomb barrier, Int. J. Mod. Phys. E 17(10), 2235 (2008)
https://doi.org/10.1142/S0218301308011409
270 T. Mijatović, S. Szilner, L. Corradi, D. Montanari, G. Pollarolo, et al.., Multinucleon transfer reactions in the 40Ar+208Pb system, Phys. Rev. C 94, 064616 (2016)
https://doi.org/10.1103/PhysRevC.94.064616
271 J. S. Barrett, W. Loveland, R. Yanez, S. Zhu, A. D. Ayangeakaa, et al.., 136Xe+208Pb reaction: A test of models of multinucleon transfer reactions, Phys. Rev. C 91(6), 064615 (2015)
https://doi.org/10.1103/PhysRevC.91.064615
272 W. Loveland, Synthesis of transactinide nuclei using radioactive beams, Phys. Rev. C 76(1), 014612 (2007)
https://doi.org/10.1103/PhysRevC.76.014612
273 R. Yanez and W. Loveland, Predicting the production of neutron-rich heavy nuclei in multinucleon transfer reactions using a semi-classical model including evaporation and fission competition, GRAZING-F, Phys. Rev. C 91(4), 044608 (2015)
https://doi.org/10.1103/PhysRevC.91.044608
274 C. Golabek and C. Simenel, Collision dynamics of two 238U atomic nuclei, Phys. Rev. Lett. 103(4), 042701 (2009)
https://doi.org/10.1103/PhysRevLett.103.042701
275 D. J. Kedziora and C. Simenel, New inverse quasifission mechanism to produce neutron-rich transfermium nuclei, Phys. Rev. C 81(4), 044613 (2010)
https://doi.org/10.1103/PhysRevC.81.044613
276 N. Wang, Z. Li, X. Wu, and E. Zhao, Search for possible way of producing super-heavy elements: Dynamic study on damped reactions of 244Pu+244Pu, 238U+238U and 197Au+197Au, Mod. Phys. Lett. A 20(34), 2619 (2005)
https://doi.org/10.1142/S0217732305018232
277 K. Zhao, Z. Li, X. Wu, and Y. Zhang, Production probability of superheavy fragments at various initial deformations and orientations in the 238U+238U reaction, Phys. Rev. C 88(4), 044605 (2013)
https://doi.org/10.1103/PhysRevC.88.044605
278 K. Zhao, Z. Li, N. Wang, Y. Zhang, Q. Li, Y. Wang, and X. Wu, Production mechanism of neutron-rich transuranium nuclei in 238U+238U collisions at near-barrier energies, Phys. Rev. C 92(2), 024613 (2015)
https://doi.org/10.1103/PhysRevC.92.024613
279 K. Zhao, Z. Li, Y. Zhang, N. Wang, Q. Li, C. Shen, Y. Wang, and X. Wu, Production of unknown neutron-rich isotopes in 238U+238U collisions at near-barrier energy, Phys. Rev. C 94(2), 024601 (2016)
https://doi.org/10.1103/PhysRevC.94.024601
280 S. Ayik, B. Yilmaz, O. Yilmaz, A. S. Umar, and G. Turan, Multinucleon transfer in central collisions of 238U+238U, Phys. Rev. C 96(2), 024611 (2017)
https://doi.org/10.1103/PhysRevC.96.024611
281 K. Sekizawa, and K. Yabana, Time-dependent Hartree- Fock calculations for multinucleon transfer processes in 40,48Ca+124Sn, 40Ca+208Pb, and 58Ni+208Pb reactions, Phys. Rev. C 88(1), 014614 (2013)
https://doi.org/10.1103/PhysRevC.88.014614
282 A. Ghiorso, D. Lee, L. P. Somerville, W. Loveland, J. M. Nitschke, et al.., Evidence for the synthesis of 267110 produced by the 59Co+209Bi reaction, Nucl. Phys. A 583, 861 (1995)
https://doi.org/10.1016/0375-9474(94)00775-I
283 Yu. A. Lazarev, Y. V. Lobanov, Y. T. Oganessian, V. K. Utyonkov, F. S. Abdullin, et al.., α decay of 273110: Shell closure at N= 162, Phys. Rev. C 54(2), 620 (1996)
https://doi.org/10.1103/PhysRevC.54.620
284 V. Ninov, K. E. Gregorich, W. Loveland, A. Ghiorso, D. C. Hoffman, et al.., Observation of superheavy nuclei produced in the reaction of 86Kr with 208Pb, Phys. Rev. Lett. 83(6), 1104 (1999)
285 Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. S. Abdullin, A. N. Polyakov, et al.., Synthesis of superheavy nuclei in the 48Ca+244Pu reaction, Phys. Rev. Lett. 83(16), 3154 (1999)
286 Yu. Ts. Oganessian, et al.., Observation of the decay of 292116, Phys. Rev. C 63, 011301(R) (2000)
287 Yu. Ts. Oganessian, V. K. Utyonkoy, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, et al.., Experiments on the synthesis of element 115 in the reaction 243Am (48Ca, xn)291−x115, Phys. Rev. C 69(2), 021601 (2004)
https://doi.org/10.1103/PhysRevC.69.029902
288 Yu. Ts. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, et al.., Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U, 242Pu, and 248Cm+48Ca, Phys. Rev. C 70(6), 064609 (2004)
289 Yu. Ts. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, et al.., Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions, Phys. Rev. C 74 (4), 044602 (2006)
290 Yu. Ts. Oganessian, V. K. Utyonkov, S. N. Dmitriev, Y. V. Lobanov, M. G. Itkis, et al.., Synthesis of elements 115 and 113 in the reaction 243Am+48Ca, Phys. Rev. C 72(3), 034611 (2005)
291 P. A. Ellison, K. E. Gregorich, J. S. Berryman, D. L. Bleuel, R. M. Clark, et al.., New superheavy element isotopes: 242Pu (48Ca, 5n)285114, Phys. Rev. Lett. 105(18), 182701 (2010)
https://doi.org/10.1103/PhysRevLett.105.182701
292 Yu. Ts. Oganessian, F. Sh. Abdullin, S. N. Dmitriev, J. M. Gostic, J. H. Hamilton, et al.., New insights into the 243Am+48Ca reaction products previously observed in the experiments on elements 113, 115, and 117, Phys. Rev. Lett. 108(2), 022502 (2012)
https://doi.org/10.1103/PhysRevLett.108.022502
293 Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander, J. Binder, R. A. Boll, et al.., Production and decay of the heaviest nuclei 293,294117 and 294118, Phys. Rev. Lett. 109(16), 162501 (2012)
https://doi.org/10.1103/PhysRevLett.109.162501
294 W. Reisdorf, F. P. Hessberger, K. D. Hildenbrand, S. Hofmann, G. Münzenberg, et al.., Fusability and fissionability in 86Kr-induced reactions near and below the fusion barrier, Nucl. Phys. A 444(1), 154 (1985)
https://doi.org/10.1016/0375-9474(85)90296-9
295 R. Charity, M. A. McMahan, G. J. Wozniak, R. J. Mc-Donald, L. G. Moretto, et al.., Systematics of complex fragment emission in niobium-induced reactions, Nucl. Phys. A 483(2), 371 (1988)
https://doi.org/10.1016/0375-9474(88)90542-8
296 N. Wang, T. Wu, J. Zeng, Y. X. Yang, and L. Ou, Improvement on fermionic properties and new isotope production in molecular dynamics simulations, J. Phys. G 43(6), 065101 (2016)
https://doi.org/10.1088/0954-3899/43/6/065101
297 N. Wang and L. Guo, New neutron-rich isotope production in 154Sm+160Gd, Phys. Lett. B 760, 236 (2016)
https://doi.org/10.1016/j.physletb.2016.06.073
298 G. Audi, F. G. Kondev, M. Wang, B. Pfeiffer, X. Sun, J. Blachot, and M. MacCormick, The Nubase2012 evaluation of nuclear properties, Chin. Phys. C 36(12), 1157 (2012)
https://doi.org/10.1088/1674-1137/36/12/001
299 I. Skwira-Chalot, K. Siwek-Wilczynska, J. Wilczynski, F. Amorini, A. Anzalone, et al.., Dynamical evolution of the 197Au+197Au system at 15 MeV/nucleon, Int. J. Mod. Phys. E 15(02), 495 (2006)
https://doi.org/10.1142/S0218301306004429
300 I. Skwira-Chalot, K. Siwek-Wilczynska, J. Wilczynski, F. Amorini, A. Anzalone, et al.., Ternary reactions in 197Au+197Au collisions revisited, Int. J. Mod. Phys. E 16(02), 511 (2007)
https://doi.org/10.1142/S0218301307005946
301 I. Skwira-Chalot, K. Siwek-Wilczynska, J. Wilczynski, F. Amorini, A. Anzalone, et al.., Fast ternary and quaternary breakup of the 197Au+197Au system in collisions at 15 MeV/nucleon, Phys. Rev. Lett. 101(26), 262701 (2008)
302 J. Wilczynski, I. Skwira-Chalot, K. Siwek-Wilczynska, J. Wilczynski, et al.., Observation of fast collinear partitioning of the 197Au+197Au system into three and four fragments of comparable size, Phys. Rev. C 81(2), 024605 (2010)
303 J. L. Tian, X. Z. Wu, Z. X. Li, K. Zhao, Y. Zhang, X. Li, and S. Yan, Mechanism of ternary breakup in the reaction 197Au+197Au at 15AMeV, Phys. Rev. C 82(5), 054608 (2010)
https://doi.org/10.1103/PhysRevC.82.054608
304 X. Li, J. L. Tian, S. W. Yan, J. X. Cheng, and X. Jiang, Angular distributions of fragments produced in ternary reaction of 197Au+197Au at 15AMeV, Mod. Phys. Lett. A 26(06), 449 (2011)
https://doi.org/10.1142/S0217732311034876
305 Y. Zhang, C. Zhou, J. Chen, N. Wang, K. Zhao, and Z. X. Li, Correlation between the fragmentation modes and light charged particles emission in heavy ion collisions, Sci. China Phys. Astro. Mech. 58(11), 112002 (2015)
https://doi.org/10.1007/s11433-015-5723-2
306 J. B. Natowitz, R. Wada, K. Hagel, T. Keutgen, M. Murray, A. Makeev, L. Qin, P. Smith, and C. Hamilton, Caloric curves and critical behavior in nuclei, Phys. Rev. C 65(3), 034618 (2002)
https://doi.org/10.1103/PhysRevC.65.034618
307 M. D’Agostino, M. Bruno, F. Gulminelli, R. Bougault, F. Cannata, P. Chomaz, F. Gramegna, N. Le Neidre, A. Moroni, and G. Vannini, Experimental signals of phase transition, Nucl. Phys. A 734, 512 (2004)
https://doi.org/10.1016/j.nuclphysa.2004.01.094
308 J. Richert and P. Wagner, Microscopic model approaches to fragmentation of nuclei and phase transitions in nuclear matter, Phys. Rep. 350(1), 1 (2001)
https://doi.org/10.1016/S0370-1573(00)00120-4
309 P. Chomaz, M. Colonna, and J. Randrup, Nuclear spinodal fragmentation, Phys. Rep. 389(5–6), 263 (2004)
https://doi.org/10.1016/j.physrep.2003.09.006
310 A. M. Poskanzer, G. W. Butler, and E. K. Hyde, Fragment production in the interaction of 5.5 GeV protons with uranium, Phys. Rev. C 3(2), 882 (1971)
https://doi.org/10.1103/PhysRevC.3.882
311 G. D. Westfall, R. G. Sextro, A. M. Poskanzer, A. M. Zebelman, G. W. Butler, and E. K. Hyde, Energy spectra of nuclear fragments produced by high energy protons, Phys. Rev. C 17(4), l368 (1978)
https://doi.org/10.1103/PhysRevC.17.1368
312 J. Pochodzalla, T. Möhlenkamp, T. Rubehn, A. Schüttauf, A. Wörner, et al.., Probing the nuclear liquid-gas phase transition, Phys. Rev. Lett. 75(6), 1040 (1995)
https://doi.org/10.1103/PhysRevLett.75.1040
313 M. Baldo, G. F. Burgio, and A. Rapisarda, Dynamics of fragment formation in the nuclear spinodal region, Phys. Rev. C 51(1), 198 (1995)
https://doi.org/10.1103/PhysRevC.51.198
314 S. K. Nayak, R. Ramaswamy, and C. Chakravarty, Maximal Lyapunov exponent in small atomic clusters, Phys. Rev. E 51(4), 3376 (1995)
https://doi.org/10.1103/PhysRevE.51.3376
315 Y. Zhang, X. Wu, and Z. Li, Connection between the largest Lyapunov exponent, density fluctuation, and multifragmentation in excited nuclear systems, Phys. Rev. C 69(4), 044609 (2004)
https://doi.org/10.1103/PhysRevC.69.044609
316 J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57(3), 617 (1985)
https://doi.org/10.1103/RevModPhys.57.617
317 Y. Gu, Evidences of classical and quantum chaos in the time evolution of nonequilibrium ensembles, Phys. Lett. A 149(2–3), 95 (1990)
https://doi.org/10.1016/0375-9601(90)90532-S
318 J. Łukasik, G. Auger, M. L. Begemann-Blaich, N. Bellaize, R. Bittiger, et al.., Directed and elliptic flow in 197Au+197Au at intermediate energies, Phys. Lett. B 608(3–4), 223 (2005)
https://doi.org/10.1016/j.physletb.2004.12.076
319 C. Pinkenburg, et al.. (E895 Collaboration), Prepared for Centennial Celebration and Meeting of the American Physical Society (Combining Annual APS General Meeting and the Joint Meeting of the APS and the AAPT), Atlanta, Georgia, Mar. 20–26 1999
320 P. Chung, et al.. (E895 Collaboration),Centrality and momentum-selected elliptic flow: Tighter constraints for the nuclear equation of state, Phys. Rev. C 66(2), 021901 (2002)
https://doi.org/10.1103/PhysRevC.66.021901
321 C. Alt, et al.. (NA49 Collaboration), Directed and elliptic flow of charged pions and protons in Pb+Pb collisions at 40Aand 158AGeV, Phys. Rev. C 68(3), 034903 (2003)
322 A. Andronic, et al.. (FOPI Collaboration), Excitation function of elliptic flow in Au+Au collisions and the nuclear matter equation of state, Phys. Lett. B 612(3–4), 173 (2005)
323 Y. J. Wang, C. C. Guo, Q. F. Li, H. F. Zhang, Y. Leifels, and W. Trautmann, Constraining the high-density nuclear symmetry energy with the transverse-momentumdependent elliptic flow, Phys. Rev. C 89(4), 044603 (2014)
https://doi.org/10.1103/PhysRevC.89.044603
324 Y. J. Wang, C. C. Guo, Q. F. Li, Z. X. Li, J. Su, and H. F. Zhang, Influence of differential elastic nucleon–nucleon cross section on stopping and collective flow in heavy-ion collisions at intermediate energies, Phys. Rev. C 94(2), 024608 (2016)
https://doi.org/10.1103/PhysRevC.94.024608
325 P. C. Li, Y. J. Wang, Q. F. Li, and H. F. Zhang, Collective flow and nuclear stopping in heavy ion collisions in Fermi energy domain, Nucl. Sci. Tech. 29(12), 177 (2018)
https://doi.org/10.1007/s41365-018-0510-1
326 Y. J. Wang, C. C. Guo, Q. F. Li, A. Le F’evre, Y. Leifels, and W. Trautmann, Determination of the nuclear incompressibility from the rapidity-dependent elliptic flow in heavy-ion collisions at beam energies 0.4A–1.0AGeV, Phys. Lett. B 778, 207 (2018)
https://doi.org/10.1016/j.physletb.2018.01.035
327 W. Gudowski, Accelerator-driven transmutation projects. The importance of nuclear physics research for waste transmutation, Nucl. Phys. A 654(1–2), c436 (1999)
https://doi.org/10.1016/S0375-9474(99)00269-9
328 M. Casolino, V. Bidoli, A. Morselli, L. Narici, M. P. De Pascale, et al.., Dual origins of light flashes seen in space, Nature 422(6933), 680 (2003)
https://doi.org/10.1038/422680a
329 B. Larsson, PhD thesis, Uppsala University, 1962
330 J. H. Trainor, Instrument and spacecraft faults associated with nuclear radiation in space, Adv. Space Res. 14(10), 685 (1994)
https://doi.org/10.1016/0273-1177(94)90527-4
331 M. S. Smith and K. E. Rehm, Nuclear astrophysics measurements with radioactive beams, Annu. Rev. Nucl. Part. Sci. 51(1), 91 (2001)
https://doi.org/10.1146/annurev.nucl.51.101701.132430
332 G. S. Bauer, Proceedings of the 2nd International Conference on Accelerator Driven Transmutation Technologies, p.159, Kalmar, Uppsala University, 1996
333 Tech. Rep. No. DOE/Er-0705, Department of Energy, 1997
334 J. M. Carpenter, Pulsed spallation neutron sources for slow neutron scattering, Nucl. Instrum. Methods 145(1), 91 (1977)
https://doi.org/10.1016/0029-554X(77)90560-2
335 C. D. Bowman, E. D. Arthur, P. W. Lisowski, G. P. Lawrence, R. J. Jensen, et al.., Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source, Nucl. Instrum. Methods Phys. Res. Sect. A 320(1–2), 336 (1992)
https://doi.org/10.1016/0168-9002(92)90795-6
336 T. Takizuka, Proceedings of the International Conference on Accelerator-driven Transmutation Technologies and Application, p. 64, AIP Press, Woodbury, NY, 1995
337 F. Rejmund, B. Mustapha, P. Armbruster, J. Benlliure, M. Bernas, et al.., Measurement of isotopic cross sections of spallation residues in 800AMeV 197Au+pcollisions, Nucl. Phys. A 683(1–4), 540 (2001)
https://doi.org/10.1016/S0375-9474(00)00468-1
338 B. Fernández-Dominguez, P. Armbruster, L. Audouin, J. Benlliure, M. Bernas, et al.., Nuclide cross–sections of fission fragments in the reaction 208Pb+pat 500AMeV, Nucl. Phys. A 747(2–4), 227 (2005)
https://doi.org/10.1016/j.nuclphysa.2004.10.013
339 L. Audouin, L. Tassan-Got, P. Armbruster, J. Benlliure, M. Bernas, et al.., Evaporation residues produced in spallation of 208Pb by protons at 500AMeV, Nucl. Phys. A 768(1–2), 1 (2006)
https://doi.org/10.1016/j.nuclphysa.2006.01.006
340 J. Benlliure, P. Armbruster, M. Bernas, A. Boudard, J. P. Dufour, et al.., Isotopic production cross sections of fission residues in 197Au-on-proton collisions at 800AMeV, Nucl. Phys. A 683(1-4), 513 (2001)
https://doi.org/10.1016/S0375-9474(00)00472-3
341 H. Iwase, K. Niita, and T. Nakamura, Development of general-purpose particle and heavy ion transport Monte Carlo code, J. Nucl. Sci. Technol. 39(11), 1142 (2002)
https://doi.org/10.1080/18811248.2002.9715305
342 Y. Nara, N. Otuka, A. Ohnishi, K. Niita, and S. Chiba, Relativistic nuclear collisions at 10AGeV energies from p+Be to Au+Au with the hadronic cascade model, Phys. Rev. C 61(2), 024901 (2000)
https://doi.org/10.1103/PhysRevC.61.024901
343 K. Niita, S. Chiba, T. Maruyama, T. Maruyama, H. Takada, T. Fukahori, Y. Nakahara, and A. Iwamoto, Analysis of the (N,xN′) reactions by quantum molecular dynamics plus statistical decay model, Phys. Rev. C 52(5), 2620 (1995)
https://doi.org/10.1103/PhysRevC.52.2620
344 A. Boudard, J. Cugnon, S. Leray, and C. Volant, Intranuclear cascade model for a comprehensive description of spallation reaction data, Phys. Rev. C 66(4), 044615 (2002)
https://doi.org/10.1103/PhysRevC.66.044615
345 L. Ou, Z. Li, X. Wu, J. Tian, and W. Sun, A study of proton-induced spallation reactions by the improved quantum molecular dynamics model plus statistical decay models, J. Phys. G 36(12), 125104 (2009)
https://doi.org/10.1088/0954-3899/36/12/125104
346 L. Ou, Y. Zhang, J. Tian, and Z. Li, Analysis of intermediate energy proton-induced spallation reactions by an improved quantum molecular dynamics plus statistical decay model, J. Phys. G 34(5), 827 (2007)
https://doi.org/10.1088/0954-3899/34/5/004
347 L. Ou, Y. Zhang, and Z. Li, Mechanism of proton-induced reactions on targets 16O, 27Al, 56Fe, 112Cd, 184W and 208Pb at Ep= 800 MeV, Chin. Phys. Lett. 24 (1), 72 (2007)
https://doi.org/10.1088/0256-307X/24/1/020
348 D. Wei, L. Mao, N. Wang, M. Liu, and L. Ou, Further study on mechanism of production of light complex particles in nucleon-induced reactions, Nucl. Phys. A 933, 114 (2015)
https://doi.org/10.1016/j.nuclphysa.2014.10.020
349 D. Wei, N. Wang, and L. Ou, Mechanism of the production of light complex particles in nucleon-induced reactions, J. Phys. G 41(3), 035104 (2014)
https://doi.org/10.1088/0954-3899/41/3/035104
350 M. M. Meier, W. B. Amian, C. A. Goulding, G. L. Morgan, and C. E. Moss, Differential neutron production cross sections for 256-MeV protons, Nucl. Sci. Eng. 110(3), 289 (1992)
https://doi.org/10.13182/NSE92-A23901
351 Y. V. Trebukhovsky, Y. E. Titarenko, et al.., LANL Report LA-UR-03-6071; Los Alamos, 2003; ITEP Print 03-03, Moscow, 2003
352 Y. V. Trebukhovsky, Y. E. Titarenko, V. F. Batyaev, R. D. Mulambetov, S. V. Mulambetova, et al.., Doubledifferential cross sections for the production of neutrons from Pb, W, Zr, Cu, and Al targets irradiated with 0.8-, 1.0-, and 1.6-GeV protons, Phys. At. Nucl. 68(1), 3 (2005)
https://doi.org/10.1134/1.1858552
353 R. E. Chrien, T. J. Krieger, R. J. Sutter, M. May, H. Palevsky, R. L. Stearns, T. Kozlowski, and T. Bauer, Proton spectra from 800 MeV protons on selected nuclides, Phys. Rev. C 21 (3), 1014 (1980)
https://doi.org/10.1103/PhysRevC.21.1014
354 C. Villagrasa-Canton, A. Boudard, J. E. Ducret, B. Fernandez, S. Leray, et al.., Spallation residues in the reaction 56Fe+pat 0.3A, 0.5A, 0.75A, 1.0A, and 1.5AGeV, Phys. Rev. C 75(4), 044603 (2007)
https://doi.org/10.1103/PhysRevC.75.044603
355 H. Machner, D. G. Aschman, K. Baruth-Ram, J. Carter, A. A. Cowley, et al.., Isotopic production cross sections in proton–nucleus collisions at 200 MeV, Phys. Rev. C 73(4), 044606 (2006)
https://doi.org/10.1103/PhysRevC.73.044606
356 Y. Uozumi, P. Evtoukhovitch, H. Fukuda, M. Imamura, H. Iwamoto, et al.., Magnitude factor systematics of Kalbach phenomenology for reactions emitting helium and lithium ions, Nucl. Instrum. Methods Phys. Res. A 571(3), 743 (2007)
https://doi.org/10.1016/j.nima.2006.11.022
357 A. Bohnet, N. Ohtsuka, J. Aichelin, R. Linden, and A. Faessler, Quantum molecular-dynamics approach to heavy-ion collisions with Brueckner G-matrix cross sections, Nucl. Phys. A 494(2), 349 (1989)
https://doi.org/10.1016/0375-9474(89)90028-6
358 H. J. Schulze, A. Schnell, G. Röpke, and U. Lombardo, Nucleon–nucleon cross sections in nuclear matter, Phys. Rev. C 55(6), 3006 (1997)
https://doi.org/10.1103/PhysRevC.55.3006
359 G. Q. Li and R. Machleidt, Microscopic calculation of inmedium nucleon–nucleon cross sections, Phys. Rev. C 48, 1702 (1993)
https://doi.org/10.1103/PhysRevC.48.1702
360 G. Q. Li and R. Machleidt, Microscopic calculation of inmedium proton–proton cross sections, Phys. Rev. C 49, 566 (1994)
https://doi.org/10.1103/PhysRevC.49.566
361 C. Fuchs, A. Faessler, and M. El-Shabshiry, Off-shell behavior of the in-medium nucleon–nucleon cross section, Phys. Rev. C 64(2), 024003 (2001)
https://doi.org/10.1103/PhysRevC.64.024003
362 Y. H. Cai, H. Q. Song, and U. Lombardo, In-medium nucleon–nucleon cross section, Chin. Phys. Lett. 13(6), 420 (1996)
https://doi.org/10.1088/0256-307X/13/6/006
363 H. F. Zhang, U. Lombardo, and W. Zuo, Transport parameters in neutron stars from in-medium NN cross sections, Phys. Rev. C 82(1), 015805 (2010)
https://doi.org/10.1103/PhysRevC.82.015805
364 S. Huber and J. Aichelin, Production of Δ- and N ∗- resonances in the one-boson exchange model, Nucl. Phys. A 573(4), 587 (1994)
https://doi.org/10.1016/0375-9474(94)90232-1
365 R. Machleidt, K. Holinde, and C. Elster, The bonn meson-exchange model for the nucleon–nucleon interaction, Phys. Rep. 149(1), 1 (1987)
https://doi.org/10.1016/S0370-1573(87)80002-9
366 A. Larionov and U. Mosel, The NNNΔ cross section in nuclear matter, Nucl. Phys. A 728(1–2), 135 (2003)
https://doi.org/10.1016/j.nuclphysa.2003.08.005
367 G. Mao, Z. Li, Y. Zhuo, Y. Han, and Z. Yu, Study of in-medium NN inelastic cross section from relativistic Boltzmann–Uehling–Uhlenbeck approach, Phys. Rev. C 49(6), 3137 (1994)
https://doi.org/10.1103/PhysRevC.49.3137
368 G. J. Mao, Z. X. Li, Y. Z. Zhuo, and Z. Q. Yu, Medium effects on the NNinelastic cross section in relativistic heavy-ion collisions, Phys. Lett. B 327(3–4), 183 (1994)
https://doi.org/10.1016/0370-2693(94)90715-3
369 Q. Li, Z. Li, and G. Mao, Isospin dependence of nucleonnucleon elastic cross section, Phys. Rev. C 62(1), 014606 (2000)
https://doi.org/10.1103/PhysRevC.62.014606
370 G. Mao, Relativistic Microscopic Quantum Transport Equation, NOVA, 2005
371 Q. Li and Z. Li, The isospin dependent nucleon–nucleon inelastic cross section in the nuclear medium, Phys. Lett. B 773, 557 (2017)
https://doi.org/10.1016/j.physletb.2017.09.013
372 Y. Cui, Y. Zhang, and Z. Li, Effect of energy conservation on the in-medium NN NΔ cross section in isospinasymmetric nuclear matter, Phys. Rev. C 98(5), 054605 (2018)
https://doi.org/10.1103/PhysRevC.98.054605
373 Q. Pan and P. Danielewicz, From sideward flow to nuclear compressibility, Phys. Rev. Lett. 70, 2062 (1993) [Erratum Phys. Rev. Lett. 70, 3523 (1993)]
https://doi.org/10.1103/PhysRevLett.70.2062
374 L. Shi and P. Danielewicz, Nuclear isospin diffusivity, Phys. Rev. C 68(6), 064604 (2003)
https://doi.org/10.1103/PhysRevC.68.064604
375 W. Reisdorf, et al.. (FOPI Collaboration), Nuclear stopping from 0.09Ato 1.93AGeV and its correlation to flow, Phys. Rev. Lett. 92(23), 232301 (2004)
376 D. Persram and C. Gale, Elliptic flow in intermediate energy heavy ion collisions and in-medium effects, Phys. Rev. C 65(6), 064611 (2002)
https://doi.org/10.1103/PhysRevC.65.064611
377 O. Lopez, D. Durand, G. Lehaut, B. Borderie, J. D. Frankland, et al.., In-medium effects for nuclear matter in the Fermi-energy domain, Phys. Rev. C 90(6), 064602 (2014)
https://doi.org/10.1103/PhysRevC.90.069903
378 Y. X. Zhang, Y. J. Wang, M. Colonna, P. Danielewicz, A. Ono, et al.., Comparison of heavy-ion transport simulations: Collision integral in a box, Phys. Rev. C 97(3), 034625 (2018)
https://doi.org/10.1103/PhysRevC.97.034625
379 L. Ou and X. He, In-medium nucleon-nucleon elastic cross-sections determined from the nucleon induced reaction cross-section data, Chin. Phys. C 43(4), 044103 (2019)
https://doi.org/10.1088/1674-1137/43/4/044103
380 D. Vretenar, T. Niksic, and P. Ring, Relativistic nuclear energy density functionals, Int. J. Mod. Phys. E 19(04), 548 (2010)
https://doi.org/10.1142/S0218301310014960
381 P. Ring, Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys. 73, 193 (1996)
https://doi.org/10.1016/0146-6410(96)00054-3
382 P. Ring, Covariant density functional theory and applications to finite nuclei, in: G. A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 175 (2004)
https://doi.org/10.1007/978-3-540-39911-7_6
383 R. Brockmann, Relativistic Hartree–Fock description of nuclei, Phys. Rev. C 18(3), 1510 (1978)
https://doi.org/10.1103/PhysRevC.18.1510
384 C. J. Horowitz and B. D. Serot, Properties of nuclear and neutron matter in a relativistic Hartree–Fock theory, Nucl. Phys. A 399(2), 529 (1983)
https://doi.org/10.1016/0375-9474(83)90262-2
385 A. Bouyssy, J. F. Mathiot, N. Van Giai, and S. Marcos, Relativistic description of nuclear systems in the Hartree– Fock approximation, Phys. Rev. C 36(1), 380 (1987)
https://doi.org/10.1103/PhysRevC.36.380
386 W. H. Long, N. V. Giai, and J. Meng, Density-dependent relativistic Hartree–Fock approach, Phys. Lett. B 640(4), 150 (2006)
https://doi.org/10.1016/j.physletb.2006.07.064
387 T. Nikšić, D. Vretenar, and P. Ring, Relativistic nuclear energy density functionals: Adjusting parameters to binding energies, Phys. Rev. C 78(3), 034318 (2008)
https://doi.org/10.1103/PhysRevC.78.034318
388 G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, New relativistic mean-field interaction with density-dependent meson-nucleon couplings, Phys. Rev. C 71(2), 024312 (2005)
https://doi.org/10.1103/PhysRevC.71.024312
389 P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Phys. Rev. C 82(5), 054319 (2010)
https://doi.org/10.1103/PhysRevC.82.054319
390 T. H. R. Skyrme, CVII. The nuclear surface, Philos. Mag. 1(11), 1043 (1956)
https://doi.org/10.1080/14786435608238186
391 D. Vautherin and D. M. Brink, Hartree–Fock calculations with Skyrme’s interaction (I): Spherical nuclei, Phys. Rev. C 5(3), 626 (1972)
https://doi.org/10.1103/PhysRevC.5.626
392 E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities, Nucl. Phys. A 627(4), 710 (1997)
https://doi.org/10.1016/S0375-9474(97)00596-4
393 J. Dechargé and D. Gogny, Hartree–Fock–Bogolyubov calculations with the D1 effective interaction on spherical nuclei, Phys. Rev. C 21(4), 1568 (1980)
https://doi.org/10.1103/PhysRevC.21.1568
394 M. Kleban, B. Nerlo-Pomorska, J. F. Berger, J. Decharge, M. Girod, and S. Hilaire, Global properties of spherical nuclei obtained from Hartree–Fock–Bogoliubov calculations with the Gogny force, Phys. Rev. C 65(2), 024309 (2002)
https://doi.org/10.1103/PhysRevC.65.024309
395 B. Cochet, K. Bennaceur, J. Meyer, P. Bonche, and T. Duguet, Skyrme forces with extended density dependence, Int. J. Mod. Phys. E 13(01), 187 (2004)
https://doi.org/10.1142/S021830130400193X
396 P. G. Reinhard and M. Bender, Mean field: Relativistic versus non-relativistic, in: G. A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 249 (2004)
https://doi.org/10.1007/978-3-540-39911-7_9
397 B. D. Serot and J. D. Walecka, Recent progress in quantum hadrodynamics, Int. J. Mod. Phys. E 6(04), 515 (1997)
https://doi.org/10.1142/S0218301397000299
398 R. J. Furnstahl, Next generation relativistic models, in: A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 1 (2004)
https://doi.org/10.1007/978-3-540-39911-7_1
399 M. Lutz, B. Friman, and Ch. Appel, Saturation from nuclear pion dynamics, Phys. Lett. B 474(1–2), 7 (2000)
https://doi.org/10.1016/S0370-2693(99)01494-X
400 P. Finelli, N. Kaiser, D. Vretenar, and W. Weise, Nuclear many-body dynamics constrained by QCD and chiral symmetry, Eur. Phys. J. A 17(4), 573 (2003)
https://doi.org/10.1140/epja/i2003-10004-8
401 P. Finelli, N. Kaiser, D. Vretenar, and W. Weise, Relativistic nuclear model with point-couplings constrained by QCD and chiral symmetry, Nucl. Phys. A 735(3–4), 449 (2004)
https://doi.org/10.1016/j.nuclphysa.2004.02.001
402 D. Vretenar and W. Weise, Exploring the nucleus in the context of low-energy QCD, in: G. A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 65 (2004)
https://doi.org/10.1007/978-3-540-39911-7_3
403 J. Dobaczewski, Ab initioderivation of model energy density functionals, J. Phys. G 43(4), 04LT01 (2016)
https://doi.org/10.1088/0954-3899/43/4/04LT01
404 J. Bonnard, M. Grasso, and D. Lacroix, Energy-density functionals inspired by effective-field theories: Applications to neutron drops, Phys. Rev. C 98(3), 034319 (2018)
https://doi.org/10.1103/PhysRevC.98.034319
405 V. R. Pandharipande and R. B. Wiringa, Variations on a theme of nuclear matter, Rev. Mod. Phys. 51(4), 821 (1979)
https://doi.org/10.1103/RevModPhys.51.821
406 A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Equation of state of nucleon matter and neutron star structure, Phys. Rev. C 58 (3), 1804 (1998)
https://doi.org/10.1103/PhysRevC.58.1804
407 K. A. Brueckner and J. L. Gammel, Properties of nuclear matter, Phys. Rev. 109(4), 1023 (1958)
https://doi.org/10.1103/PhysRev.109.1023
408 M. Jaminon and C. Mahaux, Effective masses in relativistic approaches to the nucleon–nucleus mean field, Phys. Rev. C 40(1), 354 (1989)
https://doi.org/10.1103/PhysRevC.40.354
409 W. Zuo, A. Lejeune, U. Lombardo, and J. F. Mathiot, Interplay of three-body interactions in the EOS of nuclear matter, Nucl. Phys. A 706(3–4), 418 (2002)
https://doi.org/10.1016/S0375-9474(02)00750-9
410 X. R. Zhou, G. F. Burgio, U. Lombardo, H. J. Schulze, and W. Zuo, Three-body forces and neutron star structure, Phys. Rev. C 69(1), 018801 (2004)
https://doi.org/10.1103/PhysRevC.69.018801
411 B. Haar and R. Malfliet, Nucleons, mesons and deltas in nuclear matter a relativistic Dirac–Brueckner approach, Phys. Rep. 149(4), 207 (1987)
https://doi.org/10.1016/0370-1573(87)90085-8
412 R. Brockmann and R. Machleidt, Relativistic nuclear structure (I): Nuclear matter, Phys. Rev. C 42(5), 1965 (1990)
https://doi.org/10.1103/PhysRevC.42.1965
413 F. de Jong and H. Lenske, Relativistic Brueckner–Hartree–Fock calculations with explicit intermediate negative energy states, Phys. Rev. C 58(2), 890 (1998)
https://doi.org/10.1103/PhysRevC.58.890
414 T. Gross-Boelting, C. Fuchs, and A. Faessler, Covariant representations of the relativistic Brueckner T-matrix and the nuclear matter problem, Nucl. Phys. A 648(1–2), 105 (1999)
https://doi.org/10.1016/S0375-9474(99)00022-6
415 E. Schiller and H. Müther, Correlations and the Dirac structure of the nucleon self-energy, Eur. Phys. J. A 11(1), 15 (2001)
https://doi.org/10.1007/s100500170092
416 C. Fuchs, The Relativistic Dirac-Brueckner Approach to Nuclear Matter, in: G. A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 119 (2004)
https://doi.org/10.1007/978-3-540-39911-7_4
417 E. van Dalen, C. Fuchs, and A. Faessler, The relativistic Dirac–Brueckner approach to asymmetric nuclear matter, Nucl. Phys. A 744, 227 (2004)
https://doi.org/10.1016/j.nuclphysa.2004.08.019
418 E. N. E. Dalen, C. Fuchs, and A. Faessler, Momentum, density, and isospin dependence of symmetric and asymmetric nuclear matter properties, Phys. Rev. C 72(6), 065803 (2005)
https://doi.org/10.1103/PhysRevC.72.065803
419 H. Müther and A. Polls, Two-body correlations in nuclear systems, Prog. Part. Nucl. Phys. 45(1), 243 (2000)
https://doi.org/10.1016/S0146-6410(00)00105-8
420 W. H. Dickhoff and C. Barbieri, Self-consistent Green’s function method for nuclei and nuclear matter, Prog. Part. Nucl. Phys. 52(2), 377 (2004)
https://doi.org/10.1016/j.ppnp.2004.02.038
421 J. Carlson, J. Morales, V. R. Pandharipande, and D. G. Ravenhall, Quantum Monte Carlo calculations of neutron matter, Phys. Rev. C 68(2), 025802 (2003)
https://doi.org/10.1103/PhysRevC.68.025802
422 B. A. Li, L. W. Chen, G. C. Yong, and W. Zuo, Double neutron/proton ratio of nucleon emissions in isotopic reaction systems as a robust probe of nuclear symmetry energy, Phys. Lett. B 634(4), 378 (2006)
https://doi.org/10.1016/j.physletb.2006.02.003
423 M. A. Famiano, T. Liu, W. G. Lynch, M. Mocko, A. M. Rogers, et al.., Neutron and proton transverse emission ratio measurements and the density dependence of the asymmetry term of the nuclear equation of state, Phys. Rev. Lett. 97(5), 052701 (2006)
https://doi.org/10.1103/PhysRevLett.97.052701
424 M. B. Tsang, T. X. Liu, L. Shi, P. Danielewicz, C. K. Gelbke, et al.., Isospin diffusion and the nuclear symmetry energy in heavy ion reactions, Phys. Rev. Lett. 92(6), 062701 (2004)
https://doi.org/10.1103/PhysRevLett.92.062701
425 T. X. Liu, W. G. Lynch, M. B. Tsang, X. D. Liu, R. Shomin, et al.., Isospin diffusion observables in heavy-ion reactions, Phys. Rev. C 76(3), 034603 (2007)
https://doi.org/10.1103/PhysRevC.76.034603
426 Z. Kohley, L. W. May, S. Wuenschel, A. Bonasera, K. Hagel, et al.., Investigation of transverse collective flow of intermediate mass fragments, Phys. Rev. C 82(6), 064601 (2010)
https://doi.org/10.1103/PhysRevC.82.064601
427 Y. Zhang, J. Tian, W. Cheng, F. Guan, Y. Huang, et al.., Long-time drift of the isospin degree of freedom in heavy ion collisions, Phys. Rev. C 95, 041602(R) (2017)
https://doi.org/10.1103/PhysRevC.95.041602
428 P. Russotto, M. D. Cozma, A. Le Fèvre, Y. Leifels, R. Lemmon, Q. Li, J. Łukasik, and W. Trautmann, Flow probe of symmetry energy in relativistic heavy-ion reactions, Eur. Phys. J. A 50(2), 38 (2014)
https://doi.org/10.1140/epja/i2014-14038-5
429 P. Russotto, P. Z. Wu, M. Zoric, M. Chartier, Y. Leifels, R. C. Lemmon, Q. Li, J. Łukasik, A. Pagano, P. Pawłowski, and W. Trautmann, Symmetry energy from elliptic flow in 197Au+197Au, Phys. Lett. B 697(5), 471 (2011)
https://doi.org/10.1016/j.physletb.2011.02.033
430 M. B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li, W. G. Lynch, and A. W. Steiner, Constraints on the density dependence of the symmetry energy, Phys. Rev. Lett. 102(12), 122701 (2009)
https://doi.org/10.1103/PhysRevLett.102.122701
431 P. Danielewicz and J. Lee, Symmetry energy (I): Semiinfinite matter, Nucl. Phys. A 818(1–2), 36 (2009)
https://doi.org/10.1016/j.nuclphysa.2008.11.007
432 C. J. Horowitz and J. Piekarewicz, Neutron star structure and the neutron radius of 208Pb, Phys. Rev. Lett. 86(25), 5647 (2001)
https://doi.org/10.1103/PhysRevLett.86.5647
433 J. Piekarewicz, Unmasking the nuclear matter equation of state, Phys. Rev. C 69(4), 041301 (2004)
https://doi.org/10.1103/PhysRevC.69.041301
434 S. Yoshida and H. Sagawa, Isovector nuclear matter properties and neutron skin thickness, Phys. Rev. C 73(4), 044320 (2006)
https://doi.org/10.1103/PhysRevC.73.044320
435 E. Galichet, et al.. (INDRA Collaboration), Isospin diffusion in 58Ni-induced reactions at intermediate energies (I): Experimental results, Phys. Rev. C 79(6), 064614 (2009)
https://doi.org/10.1103/PhysRevC.79.064615
436 R. S. Wang, Y. Zhang, Z. G. Xiao, J. L. Tian, Y. X. Zhang, et al.., Time-dependent isospin composition of particles emitted in fission events following 40Ar+197Au at 35 MeV/u, Phys. Rev. C 89(6), 064613 (2014)
https://doi.org/10.1103/PhysRevC.89.064613
437 M. B. Tsang, J. R. Stone, F. Camera, P. Danielewicz, S. Gandolfi, et al.., Constraints on the symmetry energy and neutron skins from experiments and theory, Phys. Rev. C 86(1), 015803 (2012)
https://doi.org/10.1103/PhysRevC.86.015803
438 J. M. Lattimer and A. W. Steiner, Constraints on the symmetry energy using the mass-radius relation of neutron stars, Eur. Phys. J. A 50(2), 40 (2014)
https://doi.org/10.1140/epja/i2014-14040-y
439 B. A. Li and L. W. Chen, Nucleon–nucleon cross sections in neutron-rich matter and isospin transport in heavy-ion reactions at intermediate energies, Phys. Rev. C 72(6), 064611 (2005)
https://doi.org/10.1103/PhysRevC.72.064611
440 A. Klimkiewicz, N. Paar, P. Adrich, M. Fallot, K. Boretzky, et al.., Nuclear symmetry energy and neutron skins derived from pygmy dipole resonances, Phys. Rev. C 76(5), 051603 (2007)
https://doi.org/10.1103/PhysRevC.76.051603
441 G. Colò and P. Danielewicz, Constraints, limits and extensions for nuclear energy functionals, AIP Conf. Proc. 1128, 59 (2009)
https://doi.org/10.1063/1.3146221
442 L. Trippa, G. Colò, and E. Vigezzi, Giant dipole resonance as a quantitative constraint on the symmetry energy, Phys. Rev. C 77, 061304(R)
https://doi.org/10.1103/PhysRevC.77.061304
443 L. Ou, Z. G. Xiao, H. Yi, N. Wang, M. Liu, and J. Tian, Dynamic isovector reorientation of deuteron as a probe to nuclear symmetry energy, Phys. Rev. Lett. 115(21), 212501 (2015)
https://doi.org/10.1103/PhysRevLett.115.212501
444 S. Köhler, Skyrme force and the mass formula, Nucl. Phys. A 258(2), 301 (1976)
https://doi.org/10.1016/0375-9474(76)90008-7
445 F. Tondeur, M. Brack, M. Farine, and J. M. Pearson, Static nuclear properties and the parametrisation of Skyrme forces, Nucl. Phys. A 420(2), 297 (1984)
https://doi.org/10.1016/0375-9474(84)90444-5
446 J. Margueron, J. Navarro, and N. Van Giai, Instabilities of infinite matter with effective Skyrme-type interactions, Phys. Rev. C 66(1), 014303 (2002)
https://doi.org/10.1103/PhysRevC.66.014303
447 Q. Wu, Y. Zhang, Z. Xiao, R. Wang, Y. Zhang, Z. Li, N. Wang, and R. H. Showalter, Competition between Coulomb and symmetry potential in semi-peripheral heavy ion collisions, Phys. Rev. C 91(1), 014617 (2015)
https://doi.org/10.1103/PhysRevC.91.014617
448 T. Gaitanos, M. Di Toro, G. Ferini, M. Colonna, and H. H. Wolter, Isospin effects in intermediate energy heavy ion collisions, arXiv: nucl-th/0402041 (2004)
449 S. A. Bass, C. Hartnack, H. Stöcker, and W. Greiner, High p t pions as probes of the dense phase of relativistic heavy ion collisions, Phys. Rev. C 50(4), 2167 (1994)
https://doi.org/10.1103/PhysRevC.50.2167
450 Z. Xiao, B. A. Li, L. W. Chen, G. C. Yong, and M. Zhang, Circumstantial evidence for a soft nuclear symmetry energy at suprasaturation densities, Phys. Rev. Lett. 102(6), 062502 (2009)
https://doi.org/10.1103/PhysRevLett.102.062502
451 W. J. Xie, J. Su, L. Zhu, and F. S. Zhang, Symmetry energy and pion production in the Boltzmann–Langevin approach, Phys. Lett. B 718 (4–5), 1510 (2013)
https://doi.org/10.1016/j.physletb.2012.12.021
452 Z. Q. Feng and G. M. Jin, Probing high-density behavior of symmetry energy from pion emission in heavy-ion collisions, Phys. Lett. B 683(2–3), 140 (2010)
https://doi.org/10.1016/j.physletb.2009.12.006
453 T. Song and C. M. Ko, Modifications of the pionproduction threshold in the nuclear medium in heavy ion collisions and the nuclear symmetry energy, Phys. Rev. C 91(1), 014901 (2015)
https://doi.org/10.1103/PhysRevC.91.014901
454 M. D. Cozma, Constraining the density dependence of the symmetry energy using the multiplicity and average p T ratios of charged pions, Phys. Rev. C 95(1), 014601 (2017)
https://doi.org/10.1103/PhysRevC.95.014601
455 Z. Zhang and C. M. Ko, Medium effects on pion production in heavy ion collisions, Phys. Rev. C 95(6), 064604 (2017)
https://doi.org/10.1103/PhysRevC.95.064604
456 J. Hong and P. Danielewicz, Subthreshold pion production within a transport description of central Au+Au collisions, Phys. Rev. C 90(2), 024605 (2014)
https://doi.org/10.1103/PhysRevC.90.024605
457 L. Ou, Z. Li, Y. Zhang, and M. Liu, Effect of the splitting of the neutron and proton effective masses on the nuclear symmetry energy at finite temperatures, Phys. Lett. B 697(3), 246 (2011)
https://doi.org/10.1016/j.physletb.2011.01.062
458 J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Temperature effects on the nuclear symmetry energy and symmetry free energy with an isospin and momentum dependent interaction, Phys. Rev. C 75(1), 014607 (2007)
https://doi.org/10.1103/PhysRevC.75.014607
459 J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Effects of isospin and momentum dependent interactions on thermal properties of asymmetric nuclear matter, Phys. Rev. C 77(1), 014302 (2008)
https://doi.org/10.1103/PhysRevC.77.014302
460 W. J. Xie and B. A. Li, Bayesian inference of high-density nuclear symmetry energy from radii of canonical neutron stars, Astrophys. J. 883(2), 174 (2019)
https://doi.org/10.3847/1538-4357/ab3f37
461 J. Margueron, R. Hoffmann Casali, and F. Gulminelli, Equation of state for dense nucleonic matter from metamodeling (I): Foundational aspects, Phys. Rev. C 97(2), 025805 (2018)
https://doi.org/10.1103/PhysRevC.97.025805
462 J. Margueron and F. Gulminelli, Effect of high-order empirical parameters on the nuclear equation of state, Phys. Rev. C 99(2), 025806 (2019)
https://doi.org/10.1103/PhysRevC.99.025806
463 N. B. Zhang and B. A. Li, Delineating effects of nuclear symmetry energy on the radii and tidal polarizabilities of neutron stars, J. Phys. G 46(1), 014002 (2019)
https://doi.org/10.1088/1361-6471/aaef54
464 B. K. Agrawal, S. Shlomo, and V. K. Au, Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach, Phys. Rev. C 72(1), 014310 (2005)
https://doi.org/10.1103/PhysRevC.72.014310
465 L. W. Chen, B. J. Cai, C. M. Ko, B. A. Li, C. Shen, and J. Xu, Higher-order effects on the incompressibility of isospin asymmetric nuclear matter, Phys. Rev. C 80(1), 014322 (2009)
https://doi.org/10.1103/PhysRevC.80.014322
466 C. Mondal, B. K. Agrawal, J. N. De, S. K. Samaddar, M. Centelles, and X. Viñas, Interdependence of different symmetry energy elements, Phys. Rev. C 96, 021302(R) (2017)
https://doi.org/10.1103/PhysRevC.96.021302
467 M. Dutra, O. Lourenco, J. S. Sa Martins, A. Delfino, J. R. Stone, and P. D. Stevenson, Skyrme interaction and nuclear matter constraints, Phys. Rev. C 85(3), 035201 (2012)
https://doi.org/10.1103/PhysRevC.85.035201
468 P. A. M. Guichon and A. W. Thomas, Quark structure and nuclear effective forces, Phys. Rev. Lett. 93(13), 132502 (2004)
https://doi.org/10.1103/PhysRevLett.93.132502
469 J. R. Stone, N. J. Stone, and S. A. Moszkowski, Incompressibility in finite nuclei and nuclear matter, Phys. Rev. C 89(4), 044316 (2014)
https://doi.org/10.1103/PhysRevC.89.044316
470 Y. Zhang, M. Liu, C. J. Xia, Z. Li, and S. K. Biswal, Constraints on the symmetry energy and its associated parameters from nuclei to neutron stars, Phys. Rev. C 101(3), 034303 (2020)
https://doi.org/10.1103/PhysRevC.101.034303
471 J. Rizzo, M. Colonna, V. Baran, M. Di Toro, H. H. Wolter, and M. Zielinska-Pfabe, Isospin dynamics in peripheral heavy ion collisions at Fermi energies, Nucl. Phys. A 806(1–4), 79 (2008)
https://doi.org/10.1016/j.nuclphysa.2008.02.307
472 B. A. Li, C. B. Das, S. Das Gupta, and C. Gale, Momentum dependence of the symmetry potential and nuclear reactions induced by neutron-rich nuclei at RIA, Phys. Rev. C 69(1), 011603 (2004)
https://doi.org/10.1103/PhysRevC.69.011603
473 V. Giordano, M. Colonna, M. DiToro, V. Greco, and J. Rizzo, Isospin emission and flow at high baryon density: A test of the symmetry potential, Phys. Rev. C 81(4), 044611 (2010)
https://doi.org/10.1103/PhysRevC.81.044611
474 P. G. Reinhard and H. Flocard, Nuclear effective forces and isotope shifts, Nucl. Phys. A 584(3), 467 (1995)
https://doi.org/10.1016/0375-9474(94)00770-N
475 J. Friedrich and P. G. Reinhard, Skyrme-force parametrization: Least-squares fit to nuclear groundstate properties, Phys. Rev. C 33(1), 335 (1986)
https://doi.org/10.1103/PhysRevC.33.335
476 D. D. S. Coupland, W. G. Lynch, M. B. Tsang, P. Danielewicz, and Y. Zhang, Influence of transport variables on isospin transport ratios, Phys. Rev. C 84(5), 054603 (2011)
https://doi.org/10.1103/PhysRevC.84.054603
477 D. D. S. Coupland, PhD thesis, Michigan State University, 2013
478 D. D. S. Coupland, M. Youngs, Z. Chajecki, W. G. Lynch, M. B. Tsang, et al.., Probing effective nucleon masses with heavy-ion collisions, Phys. Rev. C 94(1), 011601 (2016)
https://doi.org/10.1103/PhysRevC.94.011601
479 S. Brandt, Data Analysis: Statistical and Computational Methods for Scientists and Engineers, 4th Ed., Springer, 2014
480 P. Morfouace, C. Y. Tsang, Y. Zhang, W. G. Lynch, M. B. Tsang, et al.., Constraining the symmetry energy with heavy-ion collisions and Bayesian analyses, Phys. Lett. B 799, 135045 (2019)
https://doi.org/10.1016/j.physletb.2019.135045
481 L. Li, Y. Zhang, Z. Li, N. Wang, Y. Cui, and J. Winkelbauer, Impact parameter smearing effects on isospin sensitive observables in heavy ion collisions, Phys. Rev. C 97(4), 044606 (2018)
https://doi.org/10.1103/PhysRevC.97.044606
482 Z. Y. Sun, M. B. Tsang, W. G. Lynch, G. Verde, F. Amorini, et al.., Isospin diffusion and equilibration for Sn+Sn collisions at E/A= 35 MeV, Phys. Rev. C 82, 051603(R) (2010)
https://doi.org/10.1103/PhysRevC.82.051603
483 E. E. Kolomeitsev, C. Hartnack, H. W. Barz, M. Bleicher, E. Bratkovskaya, et al.., Transport theories for heavy-ion collisions in the 1AGeV regime, J. Phys. G 31(6), S741 (2005)
https://doi.org/10.1088/0954-3899/31/6/015
484 J. Xu, L. W. Chen, M. B. Tsang, H. Wolter, Y. X. Zhang, et al.., Understanding transport simulations of heavy-ion collisions at 100Aand 400AMeV: Comparison of heavyion transport codes under controlled conditions, Phys. Rev. C 93(4), 044609 (2016)
https://doi.org/10.1103/PhysRevC.93.044609
485 V. V. Desai, W. Loveland, K. McCaleb, R. Yanez, G. Lane, et al. ., The 136Xe+198Pt reaction: A test of models of multi-nucleon transfer reactions, Phys. Rev. C 99(4), 044604 (2019)
https://doi.org/10.1103/PhysRevC.99.044604
486 A. Ono, Dynamics of clusters and fragments in heavy-ion collisions, Prog. Part. Nucl. Phys. 105, 139 (2019)
https://doi.org/10.1016/j.ppnp.2018.11.001
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed