Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (5): 54501   https://doi.org/10.1007/s11467-020-0966-4
  本期目录
Some optimizations on detecting gravitational wave using convolutional neural network
Xiang-Ru Li1(), Wo-Liang Yu2, Xi-Long Fan3(), G. Jogesh Babu4
1. School of Computer Science, South China Normal University, Guangzhou 510631, China
2. School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
3. School of Physics and Technology, Wuhan University, Wuhan 430072, China
4. Pennsylvania State University, University Park, PA 16802, USA
 全文: PDF(1233 KB)  
Abstract

This work investigates the problem of detecting gravitational wave (GW) events based on simulated damped sinusoid signals contaminated with white Gaussian noise. It is treated as a classification problem with one class for the interesting events. The proposed scheme consists of the following two successive steps: decomposing the data using a wavelet packet, representing the GW signal and noise using the derived decomposition coefficients; and determining the existence of any GW event using a convolutional neural network (CNN) with a logistic regression output layer. The characteristic of this work is its comprehensive investigations on CNN structure, detection window width, data resolution, wavelet packet decomposition and detection window overlap scheme. Extensive simulation experiments show excellent performances for reliable detection of signals with a range of GW model parameters and signal-to-noise ratios. While we use a simple waveform model in this study, we expect the method to be particularly valuable when the potential GW shapes are too complex to be characterized with a template bank.

Key wordsgravitational waves    algorithms    astrostatistics techniques
收稿日期: 2020-03-25      出版日期: 2020-06-17
Corresponding Author(s): Xiang-Ru Li,Xi-Long Fan   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(5): 54501.
Xiang-Ru Li, Wo-Liang Yu, Xi-Long Fan, G. Jogesh Babu. Some optimizations on detecting gravitational wave using convolutional neural network. Front. Phys. , 2020, 15(5): 54501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-0966-4
https://academic.hep.com.cn/fop/CN/Y2020/V15/I5/54501
1 B. P. Abbott, R. Abbott, T. D. Abbott, et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116(6), 061102 (2016)
2 B. P. Abbott, R. Abbott, and T. D. Abbott, Binary black hole mergers in the first advanced LIGO observing run, Phys. Rev. X 6(4), 041015 (2016)
3 B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2, Phys. Rev. Lett. 118, 221101 (2017)
4 B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119(16), 161101 (2017)
5 B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence, Phys. Rev. Lett. 119(14), 141101 (2017)
6 B. P. Abbott, R. Abbott, and R. X. Adhikari, et al., Multi-messenger observations of a binary neutron star merger, Astrophys. J. Lett. 848(2), L12 (2017)
7 B. P. Abbott, R. Abbott, T. D. Abbott, et al., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J. Lett. 848(2), L13 (2017)
8 B. P. Abbott, et al., A gravitational-wave standard siren measurement of the Hubble constant, Nature 551(7678), 85 (2017)
https://doi.org/10.1038/nature24471
9 S. Adrián-Martínez, M. G. Aartsen, B. Abbott, et al., High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube, Phys. Rev. D 93, 122010
10 B. Abbott, R. Abbott, T. D. Abbott, et al., All-sky search for short gravitational-wave bursts in the first advanced LIGO run, Phys. Rev. D 95, 042003 (2017)
11 B. P. Abbott, G. Cagnoli, J. Degallaix, et al., Observing gravitational-wave transient GW150914 with minimal assumptions, Phys. Rev. D 93, 122004 (2016)
https://doi.org/10.1103/PhysRevD.94.069903
12 C. Vishveshwara, Scattering of gravitational radiation by a Schwarzschild black-hole, Nature 227, 936 (1970)
https://doi.org/10.1038/227936a0
13 O. Benhar, V. Ferrari, and L. Gualtieri, Gravitational wave asteroseismology revisited, Phys. Rev. D 70, 124015 (2004)
https://doi.org/10.1103/PhysRevD.70.124015
14 J. Powell, D. Trifirò, E. Cuoco, et al., Classification methods for noise transients in advanced gravitational-wave detectors, Class. Quantum Grav. 32, 215012 (2015)
https://doi.org/10.1088/0264-9381/32/21/215012
15 M. Zevin, S. Couǵhlin, et al., Gravity spy: Integrating advanced LIGO detector characterization, machine learning, and citizen science, Class. Quantum Grav. 34, 064003 (2017)
https://doi.org/10.1088/1361-6382/aa5cea
16 J. Powell, A. Torres-Forné, et al., Classification methods for noise transients in advanced gravitational-wave detectors II: Performance tests on advanced LIGO data, Class. Quantum Grav. 34, 034002 (2017)
https://doi.org/10.1088/1361-6382/34/3/034002
17 B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. E. Creighton, FINDCHIRP: An algorithm for detection of gravitational waves from inspiraling compact binaries, Phys. Rev. D 85(12), 122006 (2012)
https://doi.org/10.1103/PhysRevD.85.122006
18 S. Babak, R. Biswas, et al., Searching for gravitational waves from binary coalescence, Phys. Rev. D 87, 024033 (2013)
https://doi.org/10.1103/PhysRevD.87.024033
19 K. Cannon, R. Cariou, A. Chapman, et al., Toward earlywarning detection of gravitational waves from compact binary coalescence, Astrophys. J. 748(2), 136 (2012)
https://doi.org/10.1088/0004-637X/748/2/136
20 S. A. Usman, A. H. Nitz, I. W. Harry, et al., The PyCBC search for gravitational waves from compact binary coalescence, Class. Quantum Grav. 33(21), 215004 (2016)
https://doi.org/10.1088/0264-9381/33/21/215004
21 H. Gabbard, M. Williams, F. Hayes, and C. Messenger, Matching matched filtering with deep networks for gravitational-wave astronomy, Phys. Rev. Lett. 120(14), 141103 (2018)
https://doi.org/10.1103/PhysRevLett.120.141103
22 D. George and E. A. Huerta, Deep learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data, Phys. Lett. B 778, 64 (2018)
https://doi.org/10.1016/j.physletb.2017.12.053
23 B. J. Lin, X. R. Li, and W. L. Yu, Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks, Front. Phys. 15(2), 24602 (2020)
https://doi.org/10.1007/s11467-019-0935-y
24 H. M. Luo, W. B. Lin, Z. C. Chen, and Q. G. Huang, Extraction of gravitational wave signals with optimized convolutional neural network, Front. Phys. 15(1), 14601 (2020)
https://doi.org/10.1007/s11467-019-0936-x
25 D. George and E. A. Huerta, Deep neural networks to enable real-time multimessenger astrophysics, Phys. Rev. D 97, 044039 (2018)
https://doi.org/10.1103/PhysRevD.97.044039
26 T. D. Gebhard, N. Kilbertus, G. Parascandolo, I. Harry, and B. Schlkopf, CONVWAVE: Searching for gravitational waves with fully convolutional Neural Nets, in: Workshop on Deep Learning for Physical Sciences (DLPS) at the 31st Conference on Neural Information Processing Systems (NIPS), 2017
27 T. D. Gebhard, N. Kilbertus, I. Harry, and B. Schlkopf, Convolutional neural networks: A magic bullet for gravitational-wave detection? Phys. Rev. D 100(6), 063015 (2019)
https://doi.org/10.1103/PhysRevD.100.063015
28 S. Chatterji, L. Blackburn, G. Martin, and E. Katsavounidis, Multiresolution techniques for the detection of gravitational-wave bursts, Class. Quantum Grav. 21(20), S1809 (2004)
https://doi.org/10.1088/0264-9381/21/20/024
29 P. J. Sutton, G. Jones, S. Chatterji, et al., X-Pipeline: An analysis package for autonomous gravitational-wave burst searches, New J. Phys. 12(5), 053034 (2010)
https://doi.org/10.1088/1367-2630/12/5/053034
30 S. Bahaadini, N. Rohani, S. Coughlin, M. Zevin, V. Kalogera, and A. K. Katsaggelos, Deep multi-view models for glitch classification, IEEE ICASSP, 2931–2935 (2017)
https://doi.org/10.1109/ICASSP.2017.7952693
31 S. Bahaadini, V. Noroozi, N. Rohani, S. Coughlin, M. Zevein, J. R. Smith, V. Kalogera, and A. Katsaggelos, Machine learning for Gravity Spy: Glitch classification and dataset, Information Sciences 444, pp 172–186 (2018)
https://doi.org/10.1016/j.ins.2018.02.068
32 D. George, H. Shen, and E. A. Huerta, Classification and unsupervised clustering of LIGO data with deep transfer learning, Phys. Rev. D 97, 101501 (2018)
https://doi.org/10.1103/PhysRevD.97.101501
33 N. Mukund, S. Abraham, S. Kandhasamy, and N. S. Philip, Transient classification in LIGO data using difference boosting neural network, Phys. Rev. D 95, 104059 (2017)
https://doi.org/10.1103/PhysRevD.95.104059
34 J. C. Brown, Calculation of a constant Q-spectral transform, J. Acoust. Soc. Am. 89(1), 425 (1991)
https://doi.org/10.1121/1.400476
35 S. Klimenko, I. Yakushin, A. Mercer, and G. Mitselmakher, Coherent method for detection of gravitational wave bursts, Class. Quantum Grav. 25, 114029 (2008)
https://doi.org/10.1088/0264-9381/25/11/114029
36 S. Klimenko, G. Vedovato, M. Drago, F. Salemi, V. Tiwari, G. A. Prodi, C. Lazzaro, S. Tiwari, F. Da Silva, and G. Mitselmakher, Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors, Phys. Rev. D 93, 042004 (2016)
https://doi.org/10.1103/PhysRevD.93.042004
37 R. S. Lynch, S. Vitale, R. C. Essick, E. Katsavounidis, and F. Robinet, An information-theoretic approach to the gravitational-wave burst detection problem, Phys. Rev. D 95, 104046 (2017)
https://doi.org/10.1103/PhysRevD.95.104046
38 N. J. Cornish and T. B. Littenberg, BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches, Class. Quantum Grav. 32, 135012 (2015)
https://doi.org/10.1088/0264-9381/32/13/135012
39 T. B. Littenberg and N. J. Cornish, Bayesian inference for spectral estimation of gravitational wave detector noise, Phys. Rev. D 91, 084034 (2015)
https://doi.org/10.1103/PhysRevD.91.084034
40 S. Chatterji, A. Lazzarini, L. Stein, P. Sutton, A. Searle, and M. Tinto, Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise, Phys. Rev. D 74, 082005 (2006)
https://doi.org/10.1103/PhysRevD.74.082005
41 S. Bose, S. Dhurandhar, et al., Towards mitigating the effect of sine-Gaussian noise transients on searches for gravitational waves from compact binary coalescences, Phys. Rev. D 94, 122004 (2016)
https://doi.org/10.1103/PhysRevD.94.122004
42 B. J. Owen and B. S. Sathyaprakash, Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement, Phys. Rev. D 60(2), 022002 (1999)
https://doi.org/10.1103/PhysRevD.60.022002
43 pwelch: Welch’s power spectral density estimate.
44 G. D. Meadors, K. Kawabe, and K. Riles, Increasing LIGO sensitivity by feedforward subtraction of auxiliary length control noise, Class. Quantum Grav. 31, 105014 (2014)
https://doi.org/10.1088/0264-9381/31/10/105014
45 P. D. Welch, The use of Fast Fourier Transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Transactions on Audio and Electroacoustics 15(2), 70 (1967)
https://doi.org/10.1109/TAU.1967.1161901
46 J. Abadie, B. P. Abbott, R. Abbott, et al., All-sky search for gravitational-wave bursts in the second joint LIGOVirgo run, Phys. Rev. D 85, 122007 (2012)
47 S. Mallat, A Wavelet Tour of Signal Processing, Boston: Academic Press, 2009
48 K. B. Howell, Principles of Fourier analysis, CRC Press, 2016
49 I. Daubechies, Ten Lectures on Wavelets, Philadelphia: Society for Industrial and Applied Mathematics, 1992
https://doi.org/10.1137/1.9781611970104
50 S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. on Pattern Analysis and Machine Intel. 11(7), 674 (1989)
https://doi.org/10.1109/34.192463
51 S. Rampone, V. Pierro, L. Troiano, et al., Neural network aided glitch-burst discrimination and glitch classification, Inter. J. Mod. Phys. 24(11), 1350084 (2013)
https://doi.org/10.1142/S0129183113500848
52 S. Vinciguerra, M. Drago, G. A. Prodi, et al., Enhancing the significance of gravitational wave bursts through signal classification, Class. Quantum Grav. 34, 094003 (2017)
https://doi.org/10.1088/1361-6382/aa6654
53 MATLAB and Wavelet Toolbox Release 2013b, The MathWorks, Inc., Natick, Massachusetts, United States
54 X. R. Li, Y. Lu, G. Comte, AL. Luo, Y. H. Zhao, and Y. J. Wang, Linearly Supporting feature extraction for automated estimation of stellar atmospheric parameters, Astrophys. J. Suppl. S. 218(1), 3(2015)
https://doi.org/10.1088/0067-0049/218/1/3
55 Y. LeCun, B. E. Boser, J. S. Denker, et al., Handwritten digit recognition with a back-propagation network, in Advances in Neural Information Processing Systems, 396 (1990)
56 Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86, pp 2278–2324 (1998)
https://doi.org/10.1109/5.726791
57 Y. LeCun, Y. Bengio, and G. E. Hinton, Deep learning, Nature 521(7553), 436(2015)
https://doi.org/10.1038/nature14539
58 D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Nature 323(6088), 533(1986)
https://doi.org/10.1038/323533a0
59 I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, Cambridge: MIT Press, 2016
60 H. Wang, Z. J. Cao, X. L. Liu, S. C. Wu, and J. Y. Zhu, Gravitational wave signal recognition of O1 data by deep learning, arXiv: 1909.13442 (2019)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed