Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (5): 52501   https://doi.org/10.1007/s11467-020-0967-3
  本期目录
Multi-variable special polynomials using an operator ordering method
Xiang-Guo Meng1(), Kai-Cai Li2,3(), Ji-Suo Wang3(), Zhen-Shan Yang1, Xiao-Yan Zhang1, Zhen-Tao Zhang1, Bao-Long Liang1
1. Shandong Provincial Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252059, China
2. School of Physics and Electronic Engineering, Linyi University, Linyi 276000, China
3. Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
 全文: PDF(1182 KB)  
Abstract

Using an operator ordering method for some commutative superposition operators, we introduce two new multi-variable special polynomials and their generating functions, and present some new operator identities and integral formulas involving the two special polynomials. Instead of calculating complicated partial differential, we use the special polynomials and their generating functions to concisely address the normalization, photocount distributions and Wigner distributions of several quantum states that can be realized physically, the results of which provide real convenience for further investigating the properties and applications of these states.

Key wordsmulti-variable special polynomial    generating function    operator ordering method    new operator identity and integral formula    Wigner function
收稿日期: 2020-03-14      出版日期: 2020-07-08
Corresponding Author(s): Xiang-Guo Meng,Kai-Cai Li,Ji-Suo Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(5): 52501.
Xiang-Guo Meng, Kai-Cai Li, Ji-Suo Wang, Zhen-Shan Yang, Xiao-Yan Zhang, Zhen-Tao Zhang, Bao-Long Liang. Multi-variable special polynomials using an operator ordering method. Front. Phys. , 2020, 15(5): 52501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-0967-3
https://academic.hep.com.cn/fop/CN/Y2020/V15/I5/52501
1 S. E. Hoffmann, V. Hussin, I. Marquette, and Y. Z. Zhang, Nonclassical behaviour of coherent states for systems constructed using exceptional orthogonal polynomials, J. Phys. A Math. Theor. 51(8), 085202 (2018)
https://doi.org/10.1088/1751-8121/aaa553
2 K. W. Hwang and C. S. Ryoo, Differential equations associated with two variable degenerate Hermite polynomial, Mathematics 8(2), 228 (2020)
https://doi.org/10.3390/math8020228
3 H. Y. Fan and Y. Fan, New eigenmodes of propagation in quadratic graded index media and complex fractional fourier transform, Commum. Theor. Phys. 39(1), 97 (2003)
https://doi.org/10.1088/0253-6102/39/1/97
4 H. Y. Fan and J. R. Klauder, Weyl correspondence and Prepresentation as operator Fredholm equations and their solutions,J. Phys. Math. Gen. 39(34), 10849 (2006)
https://doi.org/10.1088/0305-4470/39/34/016
5 H. Y. Fan and J. Chen, Atomic coherent states studied by virtue of the EPR entangled state and their Wigner functions, Eur. Phys. J. D 23(3), 437 (2003)
https://doi.org/10.1140/epjd/e2003-00070-4
6 X. G. Meng, J. S. Wang, and H. Y. Fan, Atomic coherent state as the eigenstates of a two-dimensional anisotropic harmonic oscillator in a uniform magnetic field, Mod. Phys. Lett. A 24(38), 3129 (2009)
https://doi.org/10.1142/S021773230903120X
7 H. Y. Fan, Z. L. Wan, Z. Wu, and P. F. Zhang, A new kind of special function and its application, Chin. Phys. B 24(10), 100302 (2015)
https://doi.org/10.1088/1674-1056/24/10/100302
8 J. S. Wang, X. G. Meng, and H. Y. Fan, Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem, Chin. Phys. B 28(10), 100301 (2019)
https://doi.org/10.1088/1674-1056/ab3a90
9 X. G. Meng, J. M. Liu, J. S. Wang, and H. Y. Fan, New generalized binomial theorems involving twovariable Hermite polynomials via quantum optics approach and their applications, Eur. Phys. J. D 73(2), 32 (2019)
https://doi.org/10.1140/epjd/e2018-90224-6
10 H. Y. Fan and T. F. Jiang, Two-variable Hermite polynomials as time-evolutional transition amplitude for driven harmonic oscillator, Mod. Phys. Lett. B 21(08), 475 (2007)
https://doi.org/10.1142/S0217984907012943
11 H. Y. Fan and Y. Fan, New eigenmodes of propagation in quadratic graded index media and complex fractional Fourier transform, Commun. Theor. Phys. 39(1), 97 (2003)
https://doi.org/10.1088/0253-6102/39/1/97
12 H. Y. Fan and X. F. Xu, Talbot effect in a quadraticindex medium studied with two-variable Hermite polynomials and entangled states, Opt. Lett. 29(10), 1048 (2004)
https://doi.org/10.1364/OL.29.001048
13 V. V. Dodonov, Asymptotic formulae for two-variable Hermite polynomials, J. Phys. Math. Gen. 27(18), 6191 (1994)
https://doi.org/10.1088/0305-4470/27/18/027
14 H. Y. Fan and Y. Fan, New bosonic operator ordering identities gained by the entangled state representation and two-variable Hermite polynomials, Commum. Theor. Phys. 38(3), 297 (2002)
https://doi.org/10.1088/0253-6102/38/3/297
15 X. G. Meng, J. S. Wang, Z. S. Yang, X. Y. Zhang, Z. T. Zhang, B. L. Liang, and K. C. Li, Squeezed Hermite polynomial state: Nonclassical features and decoherence behavior, J. Opt. 22(1), 015201 (2020)
https://doi.org/10.1088/2040-8986/ab5693
16 H. Y. Fan and X. Ye, Hermite polynomial states in twomode Fock space, Phys. Lett. A 175(6), 387 (1993)
https://doi.org/10.1016/0375-9601(93)90987-B
17 J. A. Bergou, M. Hillery, and D. Q. Yu, Minimum uncertainty states for amplitude-squared squeezing: Hermite polynomial states, Phys. Rev. A 43(1), 515 (1991)
https://doi.org/10.1103/PhysRevA.43.515
18 H. L. Zhang, H. C. Yuan, L. Y. Hu, and X. X. Xu, Synthesis of Hermite polynomial excited squeezed vacuum states from two separate single-mode squeezed vacuum states, Opt. Commun. 356(23), 223 (2015)
https://doi.org/10.1016/j.optcom.2015.07.083
19 K. Górska, A. Horzela, and F. H. Szafraniec, Holomorphic Hermite polynomials in two variables, J. Math. Anal. Appl. 470(2), 750 (2019)
https://doi.org/10.1016/j.jmaa.2018.10.024
20 W. R. Casper, S. Kolb, and M. Yakimov, Bivariate continuous q-Hermite polynomials and deformed quantum Serre relations, arXiv: 2002.07895 (2020)
21 H. Y. Fan, H. L. Lu, and Y. Fan, Newton–Leibniz integration for ket–bra operators in quantum mechanics and derivation of entangled state representations, Ann. Phys. 321(2), 480 (2006)
https://doi.org/10.1016/j.aop.2005.09.011
22 H. Y. Fan, Entanged states, squeezed states gained via the route of developing Dirac’s sybmolic method and their applications, Int. J. Mod. Phys. B 18 (10n11), 1387 (2004)
https://doi.org/10.1142/S0217979204024835
23 X. G. Meng, J. S. Wang, B. L. Liang, and C. X. Han, Evolution of a two-mode squeezed vacuum for amplitude decay via continuous-variable entangled state approach, Front. Phys. 13(5), 130322 (2018)
https://doi.org/10.1007/s11467-018-0856-1
24 X. G. Meng, Z. Wang, H. Y. Fan, and J. S. Wang, Nonclassicality and decoherence of photon-subtracted squeezed vacuum states, J. Opt. Soc. Am. B 29(11), 3141 (2012)
https://doi.org/10.1364/JOSAB.29.003141
25 X. G. Meng, J. S. Wang, B. L. Liang, and C. X. Du, Optical tomograms of multiple-photon-added Gaussian states via the intermediate state representation theory, J. Exp. Theor. Phys. 127(3), 383 (2018)
https://doi.org/10.1134/S1063776118080113
26 H. Y. Fan and J. R. Klauder, Eigenvectors of two particles’ relative position and total momentum, Phys. Rev. A 49(2), 704 (1994)
https://doi.org/10.1103/PhysRevA.49.704
27 H. Y. Fan, H. R. Zaidi, and J. R. Klauder, New approach for calculating the normally ordered form of squeeze operators, Phys. Rev. D 35(6), 1831 (1987)
https://doi.org/10.1103/PhysRevD.35.1831
28 J. S. Wang, X. G. Meng, and H. Y. Fan, s-parameterized Weyl transformation and the corresponding quantization scheme, Chin. Phys. B 24(1), 014203 (2015)
https://doi.org/10.1088/1674-1056/24/1/014203
29 C. X. Du, X. G. Meng, R. Zhang, and J. S. Wang, Analytical and numerical investigations of displaced thermal state evolutions in a laser process, Chin. Phys. B 26(12), 120301 (2017)
https://doi.org/10.1088/1674-1056/26/12/120301
30 J. H. Liu, Y. B. Zhang, Y. F. Yu, and Z. M. Zhang, Photon–phonon squeezing and entanglement in a cavity optomechanical system with a flying atom, Front. Phys. 14(1), 12601 (2019)
https://doi.org/10.1007/s11467-018-0861-4
31 C. J. Liu, W. Ye, W. D. Zhou, H. L. Zhang, J. H. Huang, and L. Y. Hu, Entanglement of coherent superposition of photon-subtraction squeezed vacuum, Front. Phys. 12(5), 120307 (2017)
https://doi.org/10.1007/s11467-017-0694-6
32 V. V. Dodonov, “Nonclassical” states in quantum optics: A “squeezed” review of the first 75 years, J. Opt. B: Quantum Semiclass. Opt. 4(1), R1 (2002)
https://doi.org/10.1088/1464-4266/4/1/201
33 J. Wenger, R. Tualle-Brouri, and P. Grangier, Non-Gaussian statistics from individual pulses of squeezed light, Phys. Rev. Lett. 92(15), 153601 (2004)
https://doi.org/10.1103/PhysRevLett.92.153601
34 K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, Photon subtracted squeezed states generated with periodically poled KTiOPO4, Opt. Express 15(6), 3568 (2007)
https://doi.org/10.1364/OE.15.003568
35 H. Y. Fan, New antinormal ordering expansion for density operators, Phys. Lett. A 161(1), 1 (1991)
https://doi.org/10.1016/0375-9601(91)90533-E
36 J. R. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131(6), 2766 (1963)
https://doi.org/10.1103/PhysRev.131.2766
37 L. Y. Hu and H. Y. Fan, Statistical properties of photonsubtracted squeezed vacuum in thermal environment,J. Opt. Soc. Am. B 25(12), 1955 (2008)
https://doi.org/10.1364/JOSAB.25.001955
38 H. Y. Fan, X. G. Meng, and J. S. Wang, New form of Legendre polynomials obtained by virtue of excited squeezed state and IWOP technique in quantum optics, Commum. Theor. Phys. 46(5), 845 (2006)
https://doi.org/10.1088/0253-6102/46/5/015
39 S. Y. Lee and H. Nha, Quantum state engineering by a coherent superposition of photon subtraction and addition, Phys. Rev. 82(5), 053812 (2010)
https://doi.org/10.1103/PhysRevA.82.053812
40 Z. R. Zhong, X. Wang, and W. Qin, Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure, Front. Phys. 13(5), 130319 (2018)
https://doi.org/10.1007/s11467-018-0824-9
41 T. Liu, Z. F. Zheng, Y. Zhang, Y. L. Fang, and C. P. Yang, Transferring entangled states of photonic cat-state qubits in circuit QED, Front. Phys. 15(2), 21603 (2020)
https://doi.org/10.1007/s11467-019-0949-5
42 H. C. Yuan, X. X. Xu, and Y. J. Xu, Generating two variable Hermite polynomial excited squeezed vacuum states by conditional measurement on beam splitters, Optik 172(21), 1034 (2018)
https://doi.org/10.1016/j.ijleo.2018.07.067
43 P. L. Kelley and W. H. Kleiner, Theory of electromagnetic field measurement and photoelectron counting, Phys. Rev. 136(2A), A316 (1964)
https://doi.org/10.1103/PhysRev.136.A316
44 H. Y. Fan and L. Y. Hu, Two quantum-mechanical photocount formulas,Opt. Lett. 33(5), 443 (2008)
https://doi.org/10.1364/OL.33.000443
45 M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997
https://doi.org/10.1017/CBO9780511813993
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed