Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (5): 52502   https://doi.org/10.1007/s11467-020-0968-2
  本期目录
Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings
Yang-Yang Fu1(), Jia-Qi Tao1, Ai-Ling Song3, You-Wen Liu1, Ya-Dong Xu2()
1. College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2. School of Physical Science and Technology, Soochow University, Suzhou 215006, China
3. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 全文: PDF(3216 KB)  
Abstract

In this work, we designed and studied a feasible dual-layer binary metagrating, which can realize controllable asymmetric transmission and beam splitting with nearly perfect performance. Owing to ingenious geometry configuration, only one meta-atom is required to design for the metagrating system. By simply controlling air gap between dual-layer metagratings, high-efficiency beam splitting can be well switched from asymmetric transmission to symmetric transmission. The working principle lies on gap-induced diffraction channel transition for incident waves from opposite directions. The asymmetric/symmetric transmission can work in a certain frequency band and a wide incident range. Compared with previous methods using acoustic metasurfaces, our approach has the advantages of simple design and tunable property and shows promise for applications in wavefront manipulation, noise control and one-way propagation.

Key wordsbeam splitting    asymmetric transmission    acoustic metagrating    binary design
收稿日期: 2020-05-04      出版日期: 2020-06-17
Corresponding Author(s): Yang-Yang Fu,Ya-Dong Xu   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(5): 52502.
Yang-Yang Fu, Jia-Qi Tao, Ai-Ling Song, You-Wen Liu, Ya-Dong Xu. Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings. Front. Phys. , 2020, 15(5): 52502.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-0968-2
https://academic.hep.com.cn/fop/CN/Y2020/V15/I5/52502
1 Y. Xu, Y. Fu, and H. Chen, Planar gradient metamaterials, Nat. Rev. Mater. 1(12), 16067 (2016)
https://doi.org/10.1038/natrevmats.2016.67
2 S. A. Cummer, J. Christensen, and A. Alù, Controlling sound with acoustic metamaterials, Nat. Rev. Mater. 1(3), 16001 (2016)
https://doi.org/10.1038/natrevmats.2016.1
3 N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334(6054), 333 (2011)
https://doi.org/10.1126/science.1210713
4 S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, From single-dimensional to multidimensional manipulation of optical waves with metasurfaces, Adv. Mater. 31(16), 1802458 (2019)
https://doi.org/10.1002/adma.201802458
5 B. Assouar, B. Liang, Y. Wu, Y. Li, J. Cheng, and Y. Jing, Acoustic metasurfaces, Nat. Rev. Mater. 3(12), 460 (2018)
https://doi.org/10.1038/s41578-018-0061-4
6 Y. Li, B. Liang, Z. Gu, X. Zou, and J. Cheng, Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces, Sci. Rep. 3(1), 2546 (2013)
https://doi.org/10.1038/srep02546
7 Y. Xie, W. Wang, H. Chen, A. Konneker, B. I. Popa, and S. A. Cummer, Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface, Nat. Commun. 5(1), 5553 (2014)
https://doi.org/10.1038/ncomms6553
8 Y. Wang, Y. Cheng, and X. J. Liu, Modulation of acoustic waves by a broadband metagrating, Sci. Rep. 9(1), 7271 (2019)
https://doi.org/10.1038/s41598-019-43850-y
9 Y. Tian, Q. Wei, Y. Cheng, and X. Liu, Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude, Appl. Phys. Lett. 110(19), 191901 (2017)
https://doi.org/10.1063/1.4983282
10 Y. Li and B. Assouar, Acoustic metasurface-based perfect absorber with deep subwavelength thickness, Appl. Phys. Lett. 108(6), 063502 (2016)
https://doi.org/10.1063/1.4941338
11 B. Liang, X. Guo, J. Tu, D. Zhang, and J. Cheng, An acoustic rectifier, Nat. Mater. 9(12), 989 (2010)
https://doi.org/10.1038/nmat2881
12 X. Li, X. Ni, L. Feng, M. Lu, C. He, and Y. F. Chen, Tunable unidirectional sound propagation through a soniccrystal- based acoustic diode, Phys. Rev. Lett. 106(8), 084301 (2011)
https://doi.org/10.1103/PhysRevLett.106.084301
13 B. I. Popa and S. A. Cummer, Non-reciprocal and highly nonlinear active acoustic metamaterials, Nat. Commun. 5(1), 3398 (2014)
https://doi.org/10.1038/ncomms4398
14 Y. Fu, L. Xu, Z. Hang, and H. Chen, Unidirectional transmission using array of zero-refractive-index metamaterials, Appl. Phys. Lett. 104(19), 193509 (2014)
https://doi.org/10.1063/1.4878400
15 Y. Wang, J. Xia, H. Sun, S. Yuan, Y. Ge, Q. Si, Y. Guan, and X. Liu, Multifunctional asymmetric sound manipulations by a passive phased array prism, Phys. Rev. Appl. 12(2), 024033 (2019)
https://doi.org/10.1103/PhysRevApplied.12.024033
16 Y. Zhu, X. Zou, B. Liang, and J. C. Cheng, Acoustic oneway open tunnel by using metasurface, Appl. Phys. Lett. 107(11), 113501 (2015)
https://doi.org/10.1063/1.4930300
17 Y. Ge, H. Sun, S. Yuan, and Y. Lai, Broadband unidirectional and omnidirectional bidirectional acoustic insulation through an open window structure with a metasurface of ultrathin hooklike meta-atoms, Appl. Phys. Lett. 112(24), 243502 (2018)
https://doi.org/10.1063/1.5025812
18 C. Shen, Y. Xie, J. Li, S. A. Cummer, and Y. Jing, Asymmetric acoustic transmission through near-zero-index and gradient-index metasurfaces, Appl. Phys. Lett. 108(22), 223502 (2016)
https://doi.org/10.1063/1.4953264
19 Y. Li, C. Shen, Y. Xie, J. Li, W. Wang, S. A. Cummer, and Y. Jing, Tunable asymmetric transmission via lossy acoustic metasurfaces, Phys. Rev. Lett. 119(3), 035501 (2017)
https://doi.org/10.1103/PhysRevLett.119.035501
20 F. Ju, Y. Tian, Y. Cheng, and X. Liu, Asymmetric acoustic transmission with a lossy gradient-index metasurface, Appl. Phys. Lett. 113(12), 121901 (2018)
https://doi.org/10.1063/1.5032263
21 B. Liu and Y. Jiang, Controllable asymmetric transmission via gap-tunable acoustic metasurface, Appl. Phys. Lett. 112(17), 173503 (2018)
https://doi.org/10.1063/1.5023852
22 J. Xia, X. Zhang, H. Sun, S. Yuan, J. Qian, and Y. Ge, Broadband tunable acoustic asymmetric focusing lens from dual-layer metasurfaces, Phys. Rev. Appl. 10(1), 014016 (2018)
https://doi.org/10.1103/PhysRevApplied.10.014016
23 N. J. R. K. Gerard, H. Cui, C. Shen, Y. Xie, S. Cummer, X. Zheng, and Y. Jing, Fabrication and experimental demonstration of a hybrid resonant acoustic gradient index metasurface at 40 kHz, Appl. Phys. Lett. 114(23), 231902 (2019)
https://doi.org/10.1063/1.5095963
24 C. Shen and S. A. Cummer, Harnessing multiple internal reflections to design highly absorptive acoustic metasurfaces, Phys. Rev. Appl. 9(5), 054009 (2018)
https://doi.org/10.1103/PhysRevApplied.9.054009
25 Y. Cao, Y. Fu, Q. Zhou, X. Ou, L. Gao, H. Chen, and Y. Xu, Mechanism behind angularly asymmetric diffraction in phase-gradient metasurfaces, Phys. Rev. Appl. 12(2), 024006 (2019)
https://doi.org/10.1103/PhysRevApplied.12.024006
26 Y. Fu, C. Shen, Y. Cao, L. Gao, H. Chen, C. T. Chan, S. A. Cummer, and Y. Xu, Reversal of transmission and reflection based on acoustic metagratings with integer parity design, Nat. Commun. 10(1), 2326 (2019)
https://doi.org/10.1038/s41467-019-10377-9
27 Y. Fu, Y. Cao, and Y. Xu, Multifunctional reflection in acoustic metagratings with simplified design, Appl. Phys. Lett. 114(5), 053502 (2019)
https://doi.org/10.1063/1.5083081
28 Y. Jin, X. Fang, Y. Li, and D. Torrent, Engineered diffraction gratings for acoustic cloaking, Phys. Rev. Appl. 11(1), 011004 (2019)
https://doi.org/10.1103/PhysRevApplied.11.011004
29 C. Shen, A. Díaz-Rubio, J. Li, and S. A. Cummer, A surface impedance-based three-channel acoustic metasurface retroreflector, Appl. Phys. Lett. 112(18), 183503 (2018)
https://doi.org/10.1063/1.5025481
30 B. Y. Xie, H. Cheng, K. Tang, Z. Y. Liu, S. Q. Chen, and J. G. Tian, Multiband asymmetric transmission of airborne sound by coded metasurfaces, Phys. Rev. Appl. 7(2), 024010 (2017)
https://doi.org/10.1103/PhysRevApplied.7.024010
31 H. Ni, X. Fang, Z. Hou, Y. Li, and B. Assouar, Highefficiency anomalous splitter by acoustic meta-grating, Phys. Rev. B 100(10), 104104 (2019)
https://doi.org/10.1103/PhysRevB.100.104104
32 Z. Jia, J. Li, C. Shen, Y. Xie, and S. A. Cummer, Systematic design of broadband path-coiling acoustic metamaterials, J. Appl. Phys. 123(2), 025101 (2018)
https://doi.org/10.1063/1.5009488
33 J. Li, C. Shen, A. Díaz-Rubio, S. Tretyakov, and S. A. Cummer, Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts, Nat. Commun. 9(1), 1342 (2018)
https://doi.org/10.1038/s41467-018-03778-9
34 H. Zhang, Y. Zhu, B. Liang, J. Yang, J. Yang, and J. C. Cheng, Omnidirectional ventilated acoustic barrier, Appl. Phys. Lett. 111 (20), 203502 (2017)
https://doi.org/10.1063/1.4993891
35 L. Cao, Y. Xu, B. Assouar, and Z. Yang, Asymmetric flexural wave transmission based on dual-layer elastic gradient metasurfaces, Appl. Phys. Lett. 113(18), 183506 (2018)
https://doi.org/10.1063/1.5050671
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed