Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (5): 54502   https://doi.org/10.1007/s11467-020-0973-5
  本期目录
A quantitative assessment of communicating extra-terrestrial intelligent civilizations in the galaxy and the case of FRB-like signals
Bing Zhang()
Department of Physics and Astronomy, University of Nevada Las Vegas, NV 89154, USA
 全文: PDF(611 KB)  
Abstract

A formula is proposed to quantitatively estimate the signal emission rate of Communicating Extra-Terrestrial Intelligent civilizations (CETIs) in the Galaxy. I suggest that one possible type of CETI signal would be brief radio bursts similar to fast radio bursts (FRBs). A dedicated search for FRB–like artificial signals in the Galaxy for decades may pose a meaningful upper limit on the emission rate of these signals by CETIs. The Fermi-Hart paradox is answered in terms of not having enough observing times for this and other types of signals. Whether humans should send FRB-like signals in the far future is briefly discussed.

Key wordsfast radio bursts    astrobilogy
收稿日期: 2020-05-20      出版日期: 2020-07-20
Corresponding Author(s): Bing Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(5): 54502.
Bing Zhang. A quantitative assessment of communicating extra-terrestrial intelligent civilizations in the galaxy and the case of FRB-like signals. Front. Phys. , 2020, 15(5): 54502.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-0973-5
https://academic.hep.com.cn/fop/CN/Y2020/V15/I5/54502
1 D. A. Vakoch, M. F. Dowd, and F. Drake, The Drake Equation, Cambridge: Cambridge University Press, 2015
2 M. J. Burchell, W(h)ither the Drake equation? Int. J. Astrobiol. 5, 243(2006)
https://doi.org/10.1017/S1473550406003107
3 T. Westby and C. J. Conselice, The astrobiological copernican weak and strong limits for extraterrestrial intelligent life, Astrophys. J. (2020) (in press), arXiv: 2004.03968
https://doi.org/10.3847/1538-4357/ab8225
4 P. Kroupa, On the variation of the initial mass function, Mon. Not. R. Astron. Soc. 322(2), 231 (2001)
https://doi.org/10.1046/j.1365-8711.2001.04022.x
5 A. W. Howard, G. W. Marcy, S. T. Bryson, J. M. Jenkins, J. F. Rowe, et al., Planet occurrence within 0.25 au of solar-type stars from Kepler, Astrophys. J. 201(2 Suppl., 201), 15 (2012)
6 C. J. Burke, J. L. Christiansen, F. Mullally, S. Seader, D. Huber, et al., Terrestrial planet occurrence rates for the Kepler GK dwarf sample, Astrophys. J. 809(1), 8 (2015)
https://doi.org/10.1088/0004-637X/809/1/8
7 C. J. Lada, Stellar multiplicity and the initial mass function: Most stars are single, Astrophys. J. 640(1), L63 (2006)
https://doi.org/10.1086/503158
8 G. R. Ricker, J. N. Winn, R. Vanderspek, D. W. Latham, G. Á. Bakos, et al., Transiting exoplanet survey satellite, J. Astron. Telesc. Instrum. Syst. 1(1), 014003 (2015)
9 W. J. Borucki, D. Koch, G. Basri, N. Batalha, T. Brown, et al., Kepler Planet-Detection Mission: Introduction and First Results, Science 327(5968), 977 (2010)
10 C. H. Lineweaver, An estimate of the age distribution of terrestrial planets in the universe: Quantifying metallicity as a selection effect, Icarus 151(2), 307 (2001)
https://doi.org/10.1006/icar.2001.6607
11 J. T. Wright, S. Kanodia, and E. Lubar, How much SETI has been done? Finding needles in the n-dimensional cosmic haystack, Astron. J. 156(6), 260 (2018)
https://doi.org/10.3847/1538-3881/aae099
12 The Staff at the National Astronomy, The Arecibo message of November 1974, Icarus 26(4), 462 (1975)
https://doi.org/10.1016/0019-1035(75)90116-5
13 J. Welch, D. Backer, L. Blitz, D. C.-J. Bock, G. C. Bower, et al., The Allen telescope array: The first widefield, panchromatic, snapshot radio camera for radio astronomy and SETI, IEEE Proceedings 97, 1438 (2009)
https://doi.org/10.1109/JPROC.2009.2017103
14 D. R. Lorimer, M. Bailes, M. A. McLaughlin, D. J. Narkevic, and F. Crawford, A bright millisecond radio burst of extragalactic origin, Science 318, 777 (2007)
https://doi.org/10.1126/science.1147532
15 E. Petroff, J. W. T. Hessels, and D. R. Lorimer, Fast radio bursts, Astron. Astrophys. Rev. 27(1), 4 (2019)
https://doi.org/10.1007/s00159-019-0116-6
16 J. M. Cordes and S. Chatterjee, Fast Radio Bursts: An Extragalactic Enigma, Annu. Rev. Astron. Astrophys. 57(1), 417 (2019)
https://doi.org/10.1146/annurev-astro-091918-104501
17 J. Luan and P. Goldreich, Physical constraints on fast radio bursts, Astrophys. J. 785(2), L26 (2014)
https://doi.org/10.1088/2041-8205/785/2/L26
18 M. Lingam and A. Loeb, Fast radio bursts from extragalactic light sails, Astrophys. J. 837(2), L23 (2017)
https://doi.org/10.3847/2041-8213/aa633e
19 E. Platts, A. Weltman, A. Walters, S. P. Tendulkar, J. E. B. Gordin, and S. Kandhai, A living theory catalogue for fast radio bursts, Phys. Rep. 821, 1 (2019)
https://doi.org/10.1016/j.physrep.2019.06.003
20 K. Bandura, G. E. Addison, M. Amiri, et al., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9145, Canadian Hydrogen Intensity Mapping Experiment (CHIME) pathfinder, 914522 (2014)
21 G. Hallinan, V. Ravi, and S. Weinreb, The DSA-2000- A radio survey camera, in: Bull. Am. Astron. Soc. 51, 255 (2019)
22 S. Johnston, R. Taylor, M. Bailes, N. Bartel, C. Baugh, et al., Science with ASKAP, Exp. Astron. 22(3), 151 (2008)
https://doi.org/10.1007/s10686-008-9124-7
23 M. H. Hart, An explanation for the absence of extraterrestrials on earth, Quart. J. R. Astron. Soc. 16, 128 (1975)
24 G. D. Brin, The “great silence” — the controversy concerning extraterrestrial intelligent life, Quart. J. R. Astron. Soc. 24, 283 (1983)
25 J. Gertz, Reviewing METI: A critical analysis of the arguments, J. Br. Interplanet. Soc. 69, 31 (2016)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed