Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (4): 41503   https://doi.org/10.1007/s11467-020-0976-2
  本期目录
Nonadiabatic geometric quantum computation with optimal control on superconducting circuits
Jing Xu1, Sai Li1, Tao Chen1, Zheng-Yuan Xue1,2()
1. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
2. Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
 全文: PDF(2248 KB)  
Abstract

Quantum gates, which are the essential building blocks of quantum computers, are very fragile. Thus, to realize robust quantum gates with high fidelity is the ultimate goal of quantum manipulation. Here, we propose a nonadiabatic geometric quantum computation scheme on superconducting circuits to engineer arbitrary quantum gates, which share both the robust merit of geometric phases and the capacity to combine with optimal control technique to further enhance the gate robustness. Specifically, in our proposal, arbitrary geometric single-qubit gates can be realized on a transmon qubit, by a resonant microwave field driving, with both the amplitude and phase of the driving being timedependent. Meanwhile, nontrivial two-qubit geometric gates can be implemented by two capacitively coupled transmon qubits, with one of the transmon qubits’ frequency being modulated to obtain effective resonant coupling between them. Therefore, our scheme provides a promising step towards fault-tolerant solid-state quantum computation.

Key wordsnonadiabatic geometric quantum computation    superconducting circuits    optimal control
收稿日期: 2020-06-13      出版日期: 2020-07-22
Corresponding Author(s): Zheng-Yuan Xue   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(4): 41503.
Jing Xu, Sai Li, Tao Chen, Zheng-Yuan Xue. Nonadiabatic geometric quantum computation with optimal control on superconducting circuits. Front. Phys. , 2020, 15(4): 41503.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-0976-2
https://academic.hep.com.cn/fop/CN/Y2020/V15/I4/41503
1 M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. Ser. A 392, 45 (1984)
https://doi.org/10.1098/rspa.1984.0023
2 F. Wilczek and A. Zee, Appearance of gauge structure in simple dynamical systems, Phys. Rev. Lett. 52(24), 2111 (1984)
https://doi.org/10.1103/PhysRevLett.52.2111
3 Y. Aharonov and J. Anandan, Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58(16), 1593 (1987)
https://doi.org/10.1103/PhysRevLett.58.1593
4 P. Solinas, P. Zanardi, and N. Zanghì,Robustness of non-Abelian holonomic quantum gates against parametric noise, Phys. Rev. A 70(4), 042316 (2004)
https://doi.org/10.1103/PhysRevA.70.042316
5 S.-L. Zhu and P. Zanardi, Geometric quantum gates that are robust against stochastic control errors, Phys. Rev. A 72, 020301(R) (2005)
https://doi.org/10.1103/PhysRevA.72.020301
6 P. Solinas, M. Sassetti, T. Truini, and N. Zanghì, On the stability of quantum holonomic gates, New J. Phys. 14(9), 093006 (2012)
https://doi.org/10.1088/1367-2630/14/9/093006
7 M. Johansson, E. Sjöqvist, L. M. Andersson, M. Ericsson, B. Hessmo, K. Singh, and D. M. Tong, Robustness of nonadiabatic holonomic gates, Phys. Rev. A 86(6), 062322 (2012)
https://doi.org/10.1103/PhysRevA.86.062322
8 X. B. Wang and M. Keiji, Nonadiabatic conditional geometric phase shift with NMR, Phys. Rev. Lett. 87(9), 097901 (2001)
https://doi.org/10.1103/PhysRevLett.87.097901
9 S. L. Zhu and Z. D. Wang, Implementation of universal quantum gates based on nonadiabatic geometric phases, Phys. Rev. Lett. 89(9), 097902 (2002)
https://doi.org/10.1103/PhysRevLett.89.097902
10 P. Z. Zhao, X. D. Cui, G. F. Xu, E. Sjöqvist, and D. M. Tong, Rydberg-atom-based scheme of nonadiabatic geometric quantum computation, Phys. Rev. A 96(5), 052316 (2017)
https://doi.org/10.1103/PhysRevA.96.052316
11 T. Chen and Z. Y. Xue, Nonadiabatic geometric quantum computation with parametrically tunable coupling, Phys. Rev. Appl. 10(5), 054051 (2018)
https://doi.org/10.1103/PhysRevApplied.10.054051
12 X. Y. Chen, T. Li, and Z. Q. Yin, Nonadiabatic dynamics and geometric phase of an ultrafast rotating electron spin, Sci. Bull. 64(6), 380 (2019)
https://doi.org/10.1016/j.scib.2019.02.018
13 T. Bækkegaard, L. B. Kristensen, N. J. S. Loft, C. K. Andersen, D. Petrosyan, and N. T. Zinner, Realization of efficient quantum gates with a superconducting qubitqutrit circuit, Sci. Rep. 9(1), 13389 (2019)
https://doi.org/10.1038/s41598-019-49657-1
14 E. Sjöqvist, D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, and K. Singh, Non-adiabatic holonomic quantum computation, New J. Phys. 14(10), 103035 (2012)
https://doi.org/10.1088/1367-2630/14/10/103035
15 G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, Nonadiabatic holonomic quantum computation in decoherencefree subspaces, Phys. Rev. Lett. 109(17), 170501 (2012)
https://doi.org/10.1103/PhysRevLett.109.170501
16 G. Falci, R. Fazio, G. M. Palma, J. Siewert, and V. Vedral, Detection of geometric phases in superconducting nanocircuits, Nature 407(6802), 355 (2000)
https://doi.org/10.1038/35030052
17 D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate, Nature 422(6930), 412 (2003)
https://doi.org/10.1038/nature01492
18 P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Goppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, Observation of Berry’s phase in a solid-state qubit, Science 318(5858), 1889 (2007)
https://doi.org/10.1126/science.1149858
19 J. M. Cui, M. Z. Ai, R. He, Z. H. Qian, X. K. Qin, Y. F. Huang, Z. W. Zhou, C. F. Li, T. Tu, and G. C. Guo, Experimental demonstration of suppressing residual geometric dephasing, Sci. Bull. 64(23), 1757 (2019)
https://doi.org/10.1016/j.scib.2019.09.007
20 J. Chu, D. Li, X. Yang, S. Song, Z. Han, Z. Yang, Y. Dong, W. Zheng, Z. Wang, X. Yu, D. Lan, X. Tan, and Y. Yu, Realization of superadiabatic two-qubit gates using parametric modulation in superconducting circuits, Phys. Rev. Appl. 13(6), 064012 (2020)
https://doi.org/10.1103/PhysRevApplied.13.064012
21 Y. Xu, Z. Hua, T. Chen, X. Pan, X. Li, J. Han, W. Cai, Y. Ma, H. Wang, Y. P. Song, Z. Y. Xue, and L. Sun, Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit, Phys. Rev. Lett. 124(23), 230503 (2020)
https://doi.org/10.1103/PhysRevLett.124.230503
22 P. Z. Zhao, Z. Dong, Z. Zhang, G. Guo, D. M. Tong, and Y. Yin, Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit, arXiv: 1909.09970 (2019)
23 S. B. Zheng, C. P. Yang, and F. Nori, Comparison of the sensitivity to systematic errors between nonadiabatic non-Abelian geometric gates and their dynamical counterparts, Phys. Rev. A 93(3), 032313 (2016)
https://doi.org/10.1103/PhysRevA.93.032313
24 J. Jing, C. H. Lam, and L. A. Wu, Non-Abelian holonomic transformation in the presence of classical noise, Phys. Rev. A 95(1), 012334 (2017)
https://doi.org/10.1103/PhysRevA.95.012334
25 B. J. Liu, X. K. Song, Z. Y. Xue, X. Wang, and M. H. Yung, Plug-and-play approach to nonadiabatic geometric quantum gates, Phys. Rev. Lett. 123(10), 100501 (2019)
https://doi.org/10.1103/PhysRevLett.123.100501
26 S. Li, T. Chen, and Z. Y. Xue, Fast holonomic quantum computation on superconducting circuits with optimal control, Adv. Quantum Technol. 3(3), 2000001 (2020)
https://doi.org/10.1002/qute.202000001
27 T. Yan, B. J. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. H. Yung, Y. Chen, and D. Yu, Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates, Phys. Rev. Lett. 122(8), 080501 (2019)
https://doi.org/10.1103/PhysRevLett.122.080501
28 M.-Z. Ai, S. Li, Z. Hou, R. He, Z.-H. Qian, Z.-Y. Xue, J.-M. Cui, Y.-F. Huang, C.-F. Li, and G.-C. Guo, Experimental realization of nonadiabatic holonomic singlequbit quantum gates with optimal control in a trapped ion, arXiv: 2006.04609 (2020)
29 A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, Optimally robust shortcuts to population inversion in two-level quantum systems, New J. Phys. 14(9), 093040 (2012)
https://doi.org/10.1088/1367-2630/14/9/093040
30 D. Daems, A. Ruschhaupt, D. Sugny, and S. Gu�rin, Robust quantum control by a single-shot shaped pulse, Phys. Rev. Lett. 111(5), 050404 (2013)
https://doi.org/10.1103/PhysRevLett.111.050404
31 M. H. Goerz, F. Motzoi, K. B. Whaley, and C. P. Koch, Charting the circuit QED design landscape using optimal control theory, npj Quantum Inf. 3, 37 (2017)
https://doi.org/10.1038/s41534-017-0036-0
32 G. Bhole and J. A. Jones, Practical pulse engineering: Gradient ascent without matrix exponentiation, Front. Phys. 13(3), 130312 (2018)
https://doi.org/10.1007/s11467-018-0791-1
33 G. Long, G. Feng, and P. Sprenger, Overcoming synthesizer phase noise in quantum sensing, Quantum Engineering 1(4), e27 (2019)
https://doi.org/10.1002/que2.27
34 K. Li, Eliminating the noise from quantum computing hardware, Quantum Engineering 2(1), e28 (2020)
https://doi.org/10.1002/que2.28
35 J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)
https://doi.org/10.1038/nature10122
36 M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339(6124), 1169 (2013)
https://doi.org/10.1126/science.1231930
37 X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.10.002
38 M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I. J. Wang, S. Gustavsson, and W. D. Oliver, Superconducting qubits: Current state of play, Annu. Rev. Condens. Matter Phys. 11(1), 369 (2020)
https://doi.org/10.1146/annurev-conmatphys-031119-050605
39 Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(2), 21602 (2019)
https://doi.org/10.1007/s11467-018-0875-y
40 X. T. Mo and Z. Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)
https://doi.org/10.1007/s11467-019-0888-1
41 H. Fan and X. Zhu, 12 superconducting qubits for quantum walks, Front. Phys. 14(6), 61201 (2019)
https://doi.org/10.1007/s11467-019-0915-2
42 J. M. Gambetta, F. Motzoi, S. T. Merkel, and F. K. Wilhelm, Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator, Phys. Rev. A 83(1), 012308 (2011)
https://doi.org/10.1103/PhysRevA.83.012308
43 T. H. Wang, Z. X. Zhang, L. Xiang, Z. H. Gong, J. L. Wu, and Y. Yin, Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories, Sci. China Phys. Mech. Astron. 61(4), 047411 (2018)
https://doi.org/10.1007/s11433-017-9156-1
44 T. H. Wang, Z. X. Zhang, L. Xiang, Z. L. Jia, P. Duan, W. Z. Cai, Z. H. Gong, Z. W. Zong, M. M. Wu, J. L. Wu, L. Y. Sun, Y. Yin, and G. P. Guo, The experimental realization of highfidelity “shortcut-to-adiabaticity” quantum gates in a superconducting Xmon qubit, New J. Phys. 20(6), 065003 (2018)
https://doi.org/10.1088/1367-2630/aac9e7
45 F. W. Strauch, P. R. Johnson, A. J. Dragt, C. J. Lobb, J. R. Anderson, and F. C. Wellstood, Quantum logic gates for coupled superconducting phase qubits, Phys. Rev. Lett. 91(16), 167005 (2003)
https://doi.org/10.1103/PhysRevLett.91.167005
46 L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, Preparation and measurement of three-qubit entanglement in a superconducting circuit, Nature 467(7315), 574 (2010)
https://doi.org/10.1038/nature09416
47 M. Reagor, C. B. Osborn, N. Tezak, A. Staley, G. Prawiroatmodjo, et al., Demonstration of universal parametric entangling gates on a multi-qubit lattice, Sci. Adv. 4(2), eaao3603 (2018)
https://doi.org/10.1126/sciadv.aao3603
48 S. A. Caldwell, N. Didier, C. A. Ryan, E. A. Sete, A. Hudson, et al., Parametrically activated entangling gates using transmon qubits, Phys. Rev. Appl. 10(3), 034050 (2018)
49 X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings, Phys. Rev. Appl. 10(5), 054009 (2018)
https://doi.org/10.1103/PhysRevApplied.10.054009
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed