Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2011, Vol. 6 Issue (3): 271-293   https://doi.org/10.1007/s11467-011-0182-3
  REVIEW ARTICLE 本期目录
Transport in graphene nanostructures
Transport in graphene nanostructures
Christoph Stampfer1,2(), Stefan Fringes1, Johannes Güttinger2, Francoise Molitor2, Christian Volk1, Bernat Terrés1, Jan Dauber1, Stephan Engels1, Stefan Schnez2, Arnhild Jacobsen2, Susanne Droscher2, Thomas Ihn2, Klaus Ensslin2
1. JARA-FIT and II. Institute of Physics B, RWTH Aachen University, 52074 Aachen, and Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany; 2. Solid State Physics Laboratory, ETH Zurich, 8093 Zurich, Switzerland
 全文: PDF(1095 KB)   HTML
Abstract

Graphene nanostructures are promising candidates for future nanoelectronics and solid-state quantum information technology. In this review we provide an overview of a number of electron transport experiments on etched graphene nanostructures. We briefly revisit the electronic properties and the transport characteristics of bulk, i.e., two-dimensional graphene. The fabrication techniques for making graphene nanostructures such as nanoribbons, single electron transistors and quantum dots, mainly based on a dry etching “paper-cutting” technique are discussed in detail. The limitations of the current fabrication technology are discussed when we outline the quantum transport properties of the nanostructured devices. In particular we focus here on transport through graphene nanoribbons and constrictions, single electron transistors as well as on graphene quantum dots including double quantum dots. These quasi-one-dimensional (nanoribbons) and quasi-zero-dimensional (quantum dots) graphene nanostructures show a clear route of how to overcome the gapless nature of graphene allowing the confinement of individual carriers and their control by lateral graphene gates and charge detectors. In particular, we emphasize that graphene quantum dots and double quantum dots are very promising systems for spin-based solid state quantum computation, since they are believed to have exceptionally long spin coherence times due to weak spin–orbit coupling and weak hyperfine interaction in graphene.

Key wordsgraphene    nanostructures    electron transport    quantum dots
收稿日期: 2011-03-28      出版日期: 2011-09-05
Corresponding Author(s): Stampfer Christoph,Email:stampfer@physik.rwth-aachen.de   
 引用本文:   
. Transport in graphene nanostructures[J]. Frontiers of Physics, 2011, 6(3): 271-293.
Christoph Stampfer, Stefan Fringes, Johannes Güttinger, Francoise Molitor, Christian Volk, Bernat Terrés, Jan Dauber, Stephan Engels, Stefan Schnez, Arnhild Jacobsen, Susanne Droscher, Thomas Ihn, Klaus Ensslin. Transport in graphene nanostructures. Front. Phys. , 2011, 6(3): 271-293.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0182-3
https://academic.hep.com.cn/fop/CN/Y2011/V6/I3/271
1 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, London: Imperial College Press, 2001
2 P. R. Wallace, Phys Rev. , 1947, 71(9): 622
doi: 10.1103/PhysRev.71.622
3 A. K. Geim and K. S. Novoselov, Nat. Mater. , 2007, 6(3): 183
doi: 10.1038/nmat1849
4 A. Castro-Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. , 2009, 81(1): 109
doi: 10.1103/RevModPhys.81.109
5 S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejon, Phys. Rev. B , 2002, 66(3): 035412
doi: 10.1103/PhysRevB.66.035412
6 J. W. McClure, Phys Rev. , 1957, 108(3): 612
doi: 10.1103/PhysRev.108.612
7 A. Castro-Neto, F. Guinea, and N. M. Peres, Phys. World , 2006, 19: 33
8 M. I. Katsnelson, Eur. J. Phys. B , 2006, 51(2): 157
doi: 10.1140/epjb/e2006-00203-1
9 M. I. Katsnelson and K. S. Novoselov, Solid State Commun. , 2007, 143(1–2): 3
doi: 10.1016/j.ssc.2007.02.043
10 T. Ando, T. Nakanishia, and R. Saito, Microelectron. Eng. , 1999, 47(1–4): 421
doi: 10.1016/S0167-9317(99)00249-X
11 T. Ando and T. Nakanishi, J. Phys. Soc. Jpn. , 1998, 67(5): 1704
doi: 10.1143/JPSJ.67.1704
12 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature , 2005, 438(7065): 197
doi: 10.1038/nature04233
13 Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature , 2005, 438(7065): 201
doi: 10.1038/nature04235
14 S. Y. Zhou, G.-H. Gweon, J. Graf, A. V. Fedorov, C. D. Spataru, R. D. Diehl, Y. Kopelevich, D.-H. Lee, S. G. Louie, and A. Lanzara, Nat. Phys. , 2006, 2(9): 595
doi: 10.1038/nphys393
15 A. Bostwick, T. Ohta, T. Seyller, H. K. Horn, and E. Rotenberg, Nat. Phys. , 2007, 3(1): 36
doi: 10.1038/nphys477
16 C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nanotech. , 2010, 5(10): 722
doi: 10.1038/nnano.2010.172
17 K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Phys. Rev. Lett. , 2008, 101(9): 096802
doi: 10.1103/PhysRevLett.101.096802
18 K. I. Bolotin, K. J. Sikes, Z. Jiang, G. Fundenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. , 2008, 146: 351
doi: 10.1016/j.ssc.2008.02.024
19 X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat. Nanotech. , 2008, 3: 491
doi: 10.1038/nnano.2008.199
20 E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, Phys. Rev. Lett. , 2010, 105(26): 266601
doi: 10.1103/PhysRevLett.105.266601
21 O. Klein, Z. Phys., 1929, 53(3–4): 157
doi: 10.1007/BF01339716
22 N. Dombey and A. Calogeracos, Phys. Rep. , 1999, 315(1–3): 41
doi: 10.1016/S0370-1573(99)00023-X
23 M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. , 2006, 2(9): 620
doi: 10.1038/nphys384
24 A. Calogeracos and N. Dombey, Contemp. Phys. , 1999, 40(5): 313
doi: 10.1080/001075199181387
25 R. K. Su, G. C. Siu, and X. Chou, J. Phys. A , 1993, 26(4): 1001
doi: 10.1088/0305-4470/26/4/026
26 V. G. Veselago, Sov. Phys. Usp. , 1968, 10(4): 509
doi: 10.1070/PU1968v010n04ABEH003699
27 Y.-M. Lin, V. Perebeinos, Z. Chen, and P. Avouris, Phys. Rev. B , 2008, 78(16): 161409
doi: 10.1103/PhysRevB.78.161409
28 K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science , 2007, 315(5817): 1379
doi: 10.1126/science.1137201
29 T. Ando, T. Nakanishi, and R. Saito, J. Phys. Soc. Jpn. , 1998, 67(8): 2857
doi: 10.1143/JPSJ.67.2857
30 M. V. Berry, Proc. R. Soc. Lond. A , 1984, 392(1802): 45
31 G. P. Mikitik and Y. V. Sharlai, Phys. Rev. Lett. , 1999, 82(10): 2147
doi: 10.1103/PhysRevLett.82.2147
32 V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Int. J. Mod. Phys. B , 2007, 21(27): 4611
doi: 10.1142/S0217979207038022
33 A. K. Geim and P. Kim, Sci. Am. , 2008, 298(4): 68
doi: 10.1038/scientificamerican0408-90
34 A. K. Geim, Science , 2009, 324(5934): 1530
doi: 10.1126/science.1158877
35 D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. B , 2006, 74(15): 155426
doi: 10.1103/PhysRevB.74.155426
36 H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Phys. Rev. B , 2006, 74(16): 165310
doi: 10.1103/PhysRevB.74.165310
37 B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Nat. Phys. , 2007, 3(3): 192
doi: 10.1038/nphys544
38 J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Science , 2005, 309(5744): 2180
doi: 10.1126/science.1116955
39 F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K. Vandersypen, Nature , 2006, 442(7104): 766
doi: 10.1038/nature05065
40 C. Stampfer, J. Güttinger, F. Molitor, S. Schnez, E. Schurtenberger, A. Jacobsen, S. Hellmüller, T. Ihn, and K. Ensslin, book chapter in: Handbook of Nanophysics: Functional Nanomaterials, edited by K. D. Sattler, CRC Press, 2010
41 S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995
42 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science , 2004, 306(5696): 666
doi: 10.1126/science.1102896
43 C. Stampfer, F. Molitor, D. Graf, K. Ensslin, A. Jungen, C. Hierold, and L. Wirtz, Appl. Phys. Lett. , 2007, 91(24): 241907
doi: 10.1063/1.2816262
44 E. H. Hwang, S. Adam, and S. Das Sarma, Phys. Rev. Lett. , 2007, 98(18): 186806
doi: 10.1103/PhysRevLett.98.186806
45 S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, Nano Lett. , 2010, 10(12): 4944
doi: 10.1021/nl1029607
46 F. Molitor, J. Güttinger, C. Stampfer, D. Graf, T. Ihn, and K. Ensslin, Phys. Rev. B , 2007, 76(24): 245426
doi: 10.1103/PhysRevB.76.245426
47 J. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature , 2007, 446(7131): 60
doi: 10.1038/nature05545
48 J. Moser, A. Barreiro, and A. Bachtold, Appl. Phys. Lett. , 2007, 91(16): 163513
doi: 10.1063/1.2789673
49 J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby, Nat. Phys. , 2008, 4(2): 144
doi: 10.1038/nphys781
50 J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J. Beenakker, Phys. Rev. Lett. , 2006, 96(24): 246802
doi: 10.1103/PhysRevLett.96.246802
51 Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, Phys. Rev. Lett. , 2007, 99(24): 246803
doi: 10.1103/PhysRevLett.99.246803
52 E. Fradkin, Phys. Rev. B , 1986, 33(5): 3263
doi: 10.1103/PhysRevB.33.3263
53 A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein, Phys. Rev. B , 1994, 50(11): 7526
doi: 10.1103/PhysRevB.50.7526
54 N. M. R. Peres, F. Guinea, and A. H. Castro-Neto, Phys. Rev. B , 2006, 73(12): 125411
doi: 10.1103/PhysRevB.73.125411
55 P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. B , 2006, 74(23): 235443
doi: 10.1103/PhysRevB.74.235443
56 K. Ziegler, Phys. Rev. Lett. , 1998, 80(14): 3113
doi: 10.1103/PhysRevLett.80.3113
57 F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, Science , 2007, 317(5844): 1530
doi: 10.1126/science.1144359
58 R. Danneau, F. Wu, M. F. Craciun, S. Russo, M. Y. Tomi, J. Salmilehto, A. F. Morpurgo, and P. J. Hakonen, J. Low Temp. Phys. , 2008, 153(5–6): 374
doi: 10.1007/s10909-008-9837-z
59 Z. Jiang, Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Solid State Commun. , 2007, 143(1–2): 14
doi: 10.1016/j.ssc.2007.02.046
60 Z. Jiang, Y. Zhang, H. L. Stormer, and P. Kim, Phys. Rev. Lett. , 2007, 99(10): 106802
doi: 10.1103/PhysRevLett.99.106802
61 V. K. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. , 1980, 45(6): 494
doi: 10.1103/PhysRevLett.45.494
62 E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Phys. Rev. B , 2002, 66(4): 045108
doi: 10.1103/PhysRevB.66.045108
63 Y. Zheng and T. Ando, Phys. Rev. B , 2002, 65(24): 245420
doi: 10.1103/PhysRevB.65.245420
64 V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. , 2005, 95(14): 146801
doi: 10.1103/PhysRevLett.95.146801
65 D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. , 1982, 48(22): 1559
doi: 10.1103/PhysRevLett.48.1559
66 X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Nature , 2009, 462(7270): 192
doi: 10.1038/nature08522
67 K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and P. Kim, Nature , 2009, 462(7270): 196
doi: 10.1038/nature08582
68 S. Franssila, Introduction to Micro Fabrication, Hoboken: John Wiley & Sons, 2004
69 T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science , 2006, 313(5789): 951
doi: 10.1126/science.1130681
70 C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science , 2006, 312(5777): 1191
doi: 10.1126/science.1125925
71 P. W. Sutter, J.-I. Flege, and E. A. Sutter, Nat. Mater. , 2008, 7(5): 406
doi: 10.1038/nmat2166
72 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Choi, and B. H. Hong, Nature , 2009, 457(7230): 706
doi: 10.1038/nature07719
73 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science , 2009, 324(5932): 1312
doi: 10.1126/science.1171245
74 G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotech. , 2008, 3(5): 270
doi: 10.1038/nnano.2008.83
75 C. Stampfer, A. Bürli, A. Jungen, and C. Hierold, Physica Status Solidi B , 2007, 244(11): 4341
doi: 10.1002/pssb.200776139
76 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, Da. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. , 2006, 97: 187401
doi: 10.1103/PhysRevLett.97.187401
77 A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, Nano Lett. , 2006, 6(12): 2667
doi: 10.1021/nl061420a
78 D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, H. Hierold, and L. Wirtz, Nano Lett. , 2007, 7(2): 238
doi: 10.1021/nl061702a
79 D. S. L. Abergel, A. Russell, and V. Falko, Appl. Phys. Lett. , 2007, 91(6): 063125
doi: 10.1063/1.2768625
80 P. Blake, K. S. Novoselov, A. H. Castro Neto, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, and E. W. Hill, Appl. Phys. Lett. , 2007, 91(6): 063124
doi: 10.1063/1.2768624
81 S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, Nano Lett. , 2007, 7: 2707
doi: 10.1021/nl071158l
82 C. Casiraghi, A. Hartschuh, A. E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, Nano Lett. , 2007, 7: 2711
doi: 10.1021/nl071168m
83 S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, Nat. Mater. , 2007, 6(3): 198
doi: 10.1038/nmat1846
84 S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Berlin: Wiley-VCH, 2004
85 M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G., Souza, and R. Saito, Carbon , 2002, 40: 2043
doi: 10.1016/S0008-6223(02)00066-0
86 A. C. Ferrari, Solid State Commun. , 2007, 143(1–2): 47
doi: 10.1016/j.ssc.2007.03.052
87 C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, Appl. Phys. Lett. , 2007, 91(23): 233108
doi: 10.1063/1.2818692
88 J. Fernandez-Rossier, J. J. Palacios, and L. Brey, Phys. Rev. B , 2007, 75(20): 205441
doi: 10.1103/PhysRevB.75.205441
89 A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. K. Sood, and A. C. Ferrari, Nat. Nanotech. , 2008, 3(4): 210
doi: 10.1038/nnano.2008.67
90 S. Berciaud, S. Ryu, L. E. Brus, and T. F. Heinz, Nano Lett. , 2009, 9(1): 346
doi: 10.1021/nl8031444
91 C. Thomsen and S. Reich, Phys. Rev. Lett. , 2000, 85(24): 5214
doi: 10.1103/PhysRevLett.85.5214
92 J. Maultzsch, S. Reich, C. Thomsen, S. Webster, R. Czerw, D. L. Carroll, S.M. C. Vieira, P. R. Birkett, and C. A. Rego, Appl. Phys. Lett. , 2002, 81(14): 2647
doi: 10.1063/1.1512330
93 D. Bischoff, J. Güttinger, S. Dr?scher, T. Ihn, K. Ensslin, and C. Stampfer, J. Appl. Phys. , 2011, 109(7): 073710
doi: 10.1063/1.3561838
94 J. Güttinger, C. Stampfer, S. Hellmüller, F. Molitor, T. Ihn, and K. Ensslin, Appl. Phys. Lett. , 2008, 93(21): 212102
doi: 10.1063/1.3036419
95 Y. Aharonov and D. Bohm, Phys. Rev. , 1959, 115(3): 485
doi: 10.1103/PhysRev.115.485
96 S. Russo, J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. Shams Sobhani, L. M. K. Vandersypen, and A. F. Mopurgo, Phys. Rev. B , 2008, 77(8): 085413
doi: 10.1103/PhysRevB.77.085413
97 M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer, K. Ensslin, and T. Ihn, Physica Status Solidi B , 2009, 246(11–12): 2756
doi: 10.1002/pssb.200982284
98 M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer, K. Ensslin, and T. Ihn, New J. Phys. , 2010, 12(4): 043054
doi: 10.1088/1367-2630/12/4/043054
99 Y. Wang, Y. Ouyang, X. Li, G. Wang, J. Guo, and H. Dai, Phys. Rev. Lett. , 2008, 100(20): 206803
doi: 10.1103/PhysRevLett.100.206803
100 Q. Zhang, T. Fang, H. Xing, A. Seabaugh, and D. Jena, IEEE Electron Device Lett. , 2008, 29(12): 1344
doi: 10.1109/LED.2008.2005650
101 I. Meric, M. Y. Han, A. F. Young, B. Oezyilmaz, P. Kim, and K. Shepard, Nat. Nanotech. , 2008, 3(11): 654
doi: 10.1038/nnano.2008.268
102 X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science , 2008, 319(5867): 1229
doi: 10.1126/science.1150878
103 L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Huang, and X. Duan, Nano Lett. , 2010, 10(5): 1917
doi: 10.1021/nl100840z
104 C. Stampfer, J. Güttinger, F. Molitor, D. Graf, T. Ihn, and K. Ensslin, Appl. Phys. Lett. , 2008, 92(1): 012102
doi: 10.1063/1.2827188
105 C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin, Nano Lett. , 2008, 8(8): 2378
doi: 10.1021/nl801225h
106 C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin, Int. J. Mod. Phys. B , 2009, 23(12–13): 2647
doi: 10.1142/S0217979209062128
107 T. Ihn, J. Güttinger, F. Molitor, S. Schnez, E. Schurtenberger, A. Jacobsen, S. Hellmüller, T. Frey, S. Dr?scher, C. Stampfer, and K. Ensslin, Materials Today , 2010, 13(3): 44
doi: 10.1016/S1369-7021(10)70033-X
108 L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. H. Hill, K. S. Novoselov, and A. K. Geim, Science , 2008, 320(5874): 356
doi: 10.1126/science.1154663
109 S. Schnez, F. Molitor, C. Stampfer, J. Güttinger, I. Shorubalko, T. Ihn, and K. Ensslin, Appl. Phys. Lett. , 2009, 94(1): 012107
doi: 10.1063/1.3064128
110 J. Güttinger, C. Stampfer, F. Libisch, T. Frey, J. Burgd?rfer, T. Ihn, and K. Ensslin, Phys. Rev. Lett. , 2009, 103(4): 046810
doi: 10.1103/PhysRevLett.103.046810
111 J. Güttinger, C. Stampfer, T. Frey, T. Ihn, and K. Ensslin, Physica Status Solidi B , 2009, 246(11–12): 2553
doi: 10.1002/pssb.200982312
112 J. Moser and A. Bachtold, Appl. Phys. Lett. , 2010, 95(17): 173506
doi: 10.1063/1.3243690
113 J. Güttinger, T. Frey, C. Stampfer, T. Ihn, and K. Ensslin, Phys. Rev. Lett. , 2010, 105(11): 116801
doi: 10.1103/PhysRevLett.105.116801
114 F. Molitor, S. Dr?scher, J. Güttinger, A. Jacobson, C. Stampfer, T. Ihn, and K. Ensslin, Appl. Phys. Lett. , 2009, 94(22): 222107
doi: 10.1063/1.3148367
115 F. Molitor, H. Knowles, S. Dr?scher, U. Gasser, T. Choi, P. Roulleau, J. Güttinger, A. Jacobson, C. Stampfer, K. Ensslin, and T. Ihn, Europhys. Lett. , 2010, 89(6): 67005
doi: 10.1209/0295-5075/89/67005
116 X. L. Liu, D. Hug, and L. Vandersypen, Nano Lett. , 2010, 10(5): 1623
doi: 10.1021/nl9040912
117 L.-J. Wang, H.-O. Li, Z. Su, T. Tu, G. Cao, C. Zhou, X.-J. Hao, G.-C. Guo, and G.-P. Guo, arXiv:1011.5347v1 , 2010
118 L. Brey and H. A. Fertig, Phys. Rev. B , 2006, 73(23): 235411
doi: 10.1103/PhysRevB.73.235411
119 C. T. White, J. Li, D. Gunlycke, and J. W. Mintmire, Nano Lett. , 2007, 7(3): 825
doi: 10.1021/nl0627745
120 K. Wakabayashi, Y. Takane, and M. Sigrist, Phys. Rev. Lett. , 2007, 99(3): 036601
doi: 10.1103/PhysRevLett.99.036601
121 K. Wakabayashi, Y. Takane, M. Yamamoto, and M. Sigrist, Carbon , 2009, 47(1): 124
doi: 10.1016/j.carbon.2008.09.040
122 Z. Chen, Y.-M. Lin, M. Rooks, and P. Avouris, Physica E , 2007, 40(2): 228
doi: 10.1016/j.physe.2007.06.020
123 M. Y. Han, B. ?zyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. , 2007, 98: 206805
doi: 10.1103/PhysRevLett.98.206805
124 F. Molitor, A. Jacobsen, C. Stampfer, J. Güttinger, T. Ihn, and K. Ensslin, Phys. Rev. B , 2009, 79(7): 075426
doi: 10.1103/PhysRevB.79.075426
125 C. Stampfer, J. Güttinger, S. Hellmüller, F. Molitor, K. Ensslin, and T. Ihn, Phys. Rev. Lett. , 2009, 102(5): 056403
doi: 10.1103/PhysRevLett.102.056403
126 K. Todd, H. T. Chou, S. Amasha, and D. Goldhaber-Gordon, Nano Lett. , 2009, 9(1): 416
doi: 10.1021/nl803291b
127 X. L. Liu, J. Oostinga, A. Morpurgo, and L. Vandersypen, Phys. Rev. B , 2009, 80(12): 121407
doi: 10.1103/PhysRevB.80.121407
128 F. Molitor, C. Stampfer, J. Güttinger, A. Jacobsen, T. Ihn, and K. Ensslin, Semicond. Sci. Technol. , 2010, 25(3): 034002
doi: 10.1088/0268-1242/25/3/034002
129 P. Gallagher, K. Todd, and D. Goldhaber-Gordon, Phys. Rev. B , 2010, 81(11): 115409
doi: 10.1103/PhysRevB.81.115409
130 M. Y. Han, J. C. Brant, and P. Kim, Phys. Rev. Lett. , 2010, 104(5): 056801
doi: 10.1103/PhysRevLett.104.056801
131 B. Terr′es, J. Dauber, C. Volk, S. Trellenkamp, U. Wichmann, and C. Stampfer, Appl. Phys. Lett. , 2011, 98(6): 032109
132 T. Heinzel, Mesoscopic Electronics in Solid State Nanostructures, Weinheim: Wiley-VCH, 2003
133 N. M. R. Peres, A. H. Casrtro-Neto, and F. Guinea, Phys. Rev. B , 2006, 73(19): 195411
doi: 10.1103/PhysRevB.73.195411
134 D. Dunlycke, D. A. Areshkin, and C. T. White, Appl. Phys. Lett. , 2007, 90: 142104
doi: 10.1063/1.2718515
136 L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. , 2007, 99(18): 186801
doi: 10.1103/PhysRevLett.99.186801
137 Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. , 2007, 99: 186801
doi: 10.1103/PhysRevLett.99.186801
138 E. R. Mucciolo, A. H. Castro Neto, and C. H. Lewenkopf, arXiv:0806.3777v1 , 2008
139 S. Adam, S. Cho, M. S. Fuhrer, and S. Das Sarma, Phys. Rev. Lett. , 2008, 101(4): 046404
doi: 10.1103/PhysRevLett.101.046404
140 F. Sols, F. Guinea, and A. H. Castro Neto, Phys. Rev. Lett. , 2007, 99(16): 166803
doi: 10.1103/PhysRevLett.99.166803
141 M. Evaldsson, I. V. Zozoulenko, H. Y. Xu, and T. Heinzel, Phys. Rev. B , 2008, 78: R161407
doi: 10.1103/PhysRevB.78.161407
142 C. W. J. Beenakker, Phys. Rev. B , 1991, 44(4): 1646
doi: 10.1103/PhysRevB.44.1646
144 L. P. Kouwenhoven and C. M. Marcus, Phys. World , 1998, 11: 35
145 L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, Rep. Prog. Phys. , 2001, 64(6): 701
doi: 10.1088/0034-4885/64/6/201
146 M. A. Kastner, Phys. Today , 1993, 46(1): 24
doi: 10.1063/1.881393
147 D. Loss and D. P. DiVincenzo, Phys. Rev. A , 1998, 57(1): 120
doi: 10.1103/PhysRevA.57.120
148 J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, Nature , 2004, 430(6998): 431
doi: 10.1038/nature02693
150 S. J. Angus, A. J. Ferguson, A. S. Dzurak, and R. G. Clark, Nano Lett. , 2007, 7(7): 2051
doi: 10.1021/nl070949k
151 N. Shaji, C. B. Simmons, M. Thalakulam, L. J. Klein, H. Qin, H. Luo, D. E. Savage, M. G. Lagally, A. J. Rimberg, R. Joynt, M. Friesen, R. H. Blick, S. N. Coppersmith, and M. A. Eriksson, Nat. Phys. , 2008, 4: 540
doi: 10.1038/nphys988
152 M. J. Biercuk, N. Mason, and C. M. Marcus, Nano Lett. , 2004, 4(1): 1
doi: 10.1021/nl034696g
153 S. Sapmaz, C. Meyer, P. Beliczynski, P. Jarillo-Herrero, and L. P. Kouwenhoven, Nano Lett. , 2006, 6(7): 1350
doi: 10.1021/nl052498e
154 C. Fasth, A. Fuhrer, M. T. Bjork, and L. Samuelson, Nano Lett. , 2005, 5(7): 1487
doi: 10.1021/nl050850i
155 I. Shorubalko, A. Pfund, R. Leturcq, M. T. Borgstr?m, F. Gramm, E. Müller, E. Gini, and K. Ensslin, Nanotechnology , 2006, 18(4): 044014
doi: 10.1088/0957-4484/18/4/044014
156 M. V. Berry and R. J. Mondragon, Proc. R. Soc. Lond. A , 1987, 412: 53
doi: 10.1098/rspa.1987.0080
157 F. Libisch, C. Stampfer, and J. Burgd?rfer, Phys. Rev. B , 2009, 79(11): 115423
doi: 10.1103/PhysRevB.79.115423
158 F. Libisch, S. Rotter, J. Gttinger, C. Stampfer, and J. Burgdrfer, Phys. Rev. B , 2010, 81(24): 245411
doi: 10.1103/PhysRevB.81.245411
159 Y. H. Chiu, Y. H. Lai, J. H. Ho, D. S. Chuu, and M. F. Lin, Phys. Rev. B , 2008, 77(4): 045407
doi: 10.1103/PhysRevB.77.045407
160 M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. , 1996, 65(7): 1920
doi: 10.1143/JPSJ.65.1920
161 S. Schnez, K. Ensslin, M. Sigrist, and T. Ihn, Phys. Rev. B , 2008, 78(19): 195427
doi: 10.1103/PhysRevB.78.195427
162 P. Recher, J. Nilsson, G. Burkard, and B. Trauzettel, Phys. Rev. B , 2009, 79(8): 085407
doi: 10.1103/PhysRevB.79.085407
163 M. Ciorga, A. S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, and Z. Wasilewski, Phys. Rev. B , 2000, 61(24): R16315
doi: 10.1103/PhysRevB.61.R16315
164 M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, Phys. Rev. Lett. , 1988, 60(6): 535
doi: 10.1103/PhysRevLett.60.535
165 S. Lüscher, A. Fuhrer, R. Held, T. Heinzel, K. Ensslin, and W. Wegscheider, Appl. Phys. Lett. , 1999, 75(16): 2452
doi: 10.1063/1.125045
166 L. P. Kouwenhoven, C. M. Markus, P. L. McEuen, S. Tarucha, R. M. Westervelt, and N. S. Wingreen, Electron Transport in Quantum Dots, NATO ASI Conference Proceedings, edited by L. L. Sohn, L. P. Kouwenhoven, and G. Sch?n, 1997
167 T. Ihn, Springer Tracts in Modern Physics ,2004, 192: 102
168 M. Field, C. G. Smith, M. Pepper, D. A. Ritchie, J. E. F. Frost, G. A. C. Jones, and D. G. Hasko, Phys. Rev. Lett. , 1993, 70(9): 1311
doi: 10.1103/PhysRevLett.70.1311
169 L. DiCarlo, H. Lynch, A. Johnson, L. Childress, K. Crockett, C. Marcus, M. Hanson, and A. C. Gossard, Phys. Rev. Lett. , 2004, 92(22): 226801
doi: 10.1103/PhysRevLett.92.226801
170 S. Gustavsson, R. Leturcq, B. Simovic, R. Schleser, T. Ihn, P. Studerus, K. Ensslin, D. C. Driscoll, and A. C. Gossard, Phys. Rev. Lett. , 2006, 96(7): 076605
doi: 10.1103/PhysRevLett.96.076605
171 R. Schleser, T. Ihn, E. Ruh, K. Ensslin, M. Tews, D. Pfannkuche, D. C. Driscoll, and A. C. Gossard, Phys. Rev. Lett. , 2005, 94(20): 206805
doi: 10.1103/PhysRevLett.94.206805
172 W. G. van der Wiel, S. De Franceschi, J. Elzerman, T. Fujisawa, S. Tarucha, Rev. Mod. Phys. , 2002, 75(1): 1
doi: 10.1103/RevModPhys.75.1
173 J. Cao, Q. Wang, and H. Dai, Nat. Mater. , 2005, 4(10): 745
doi: 10.1038/nmat1478
174 F. Kuemmeth, S. Ilani, D. Ralph, and P. McEuen, Nature , 2008, 452(7186): 448
doi: 10.1038/nature06822
175 J. Cai, P. Rueux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, Nature , 2010, 466(7305): 470
doi: 10.1038/nature09211
176 L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, Nat. Nanotech. , 2010, 5(5): 321
doi: 10.1038/nnano.2010.54
177 L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. Kong, and P. Jarillo-Herrero, Nano Lett. , 2009, 9(7): 2600
doi: 10.1021/nl900811r
178 J. Oostinga, H. Heersche, X. Liu, A. Morpurgo, and L. Vandersypen, Nat. Mater. , 2007, 7(2): 151
doi: 10.1038/nmat2082
179 Y. Zhang, T. Tang, C. Girit, Z. Hao, M. Martin, A. Zettl, M. Crommie, Y. Shen, and F. Wang, Nature , 2009, 459(7248): 820
doi: 10.1038/nature08105
180 T. Echtermeyer, M. Lemme, M. Baus, B. Szafranek, A. Geim, and H. Kurz, Electron Device Letters IEEE , 2008, 29(8): 952
doi: 10.1109/LED.2008.2001179
181 R. Nair, W. Ren, R. Jalil, I. Riaz, V. Kravets, L. Britnell, P. Blake, F. Schedin, A. Mayorov, S. Yuan, M. I. Katsnelson, H. M. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, I. V. Grigorieva, A. N. Grigorenko, K. S. Novoselov, and A. K. Geim, Small , 2010, 6(24): 2773
doi: 10.1002/smll.201090086
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed