Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2014, Vol. 9 Issue (4): 419-438   https://doi.org/10.1007/s11467-013-0410-0
  REVIEW ARTICLE 本期目录
Laser-induced breakdown spectroscopy in China
Zhe Wang1,*(),Ting-Bi Yuan1,Zong-Yu Hou1,Wei-Dong Zhou2,Ji-Dong Lu3,Hong-Bin Ding4,Xiao-Yan Zeng5
1. State Key Lab of Power Systems, Department of Thermal Engineering, Tsinghua-BP Clean Energy Center, Tsinghua University, Beijing 100084, China
2. Institute of Information Optics, Zhejiang Normal University, Jinhua 321004, China
3. School of Electric Power, South China University of Technology, Guangzhou 510640, China
4. School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, China
5. School of Optical and Electronic Information, Huazhong University of Science & Technology, Wuhan 430074, China
 全文: PDF(325 KB)  
Abstract

Laser-induced breakdown spectroscopy (LIBS) has been regarded as a future superstar for chemical analysis for years due to its unique features such as little or no sample preparation, remote sensing, and fast and multi-element analysis. Chinese LIBS community is one of the most dynamically developing communities in the World. The aim of the work is to inspect what have been done in China for LIBS development and, based on the understanding of the overall status, to identify the challenges and opportunities for the future development. In this paper, the scientific contributions from Chinese LIBS community are reviewed for the following four aspects: fundamentals, instrumentation, data processing and modeling, and applications; and the driving force of LIBS development in China is analyzed, the critical issues for successful LIBS application are discussed, and in our opinion, the potential direction to improve the technology and to realize large scale commercialization in China is proposed.

Key wordslaser-induced breakdown spectroscopy    laser-induced breakdown spectroscopy (LIBS)    quantitative analysis    signal enhancement    application    coal    metal    environment    energy
收稿日期: 2013-12-17      出版日期: 2014-08-26
Corresponding Author(s): Zhe Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2014, 9(4): 419-438.
Zhe Wang, Ting-Bi Yuan, Zong-Yu Hou, Wei-Dong Zhou, Ji-Dong Lu, Hong-Bin Ding, Xiao-Yan Zeng. Laser-induced breakdown spectroscopy in China. Front. Phys. , 2014, 9(4): 419-438.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0410-0
https://academic.hep.com.cn/fop/CN/Y2014/V9/I4/419
1 P. Y. Meslin, O. Gasnault, O. Forni, S. Schr?oder, , Soil diversity and hydration as observed by ChemCam at Gale crater, Mars, Science, 2013, 341(6153): 1238670
doi: 10.1126/science.1238670
2 X. Z. Zhao, T. X. Lu, and Z. F. Cui, An experimental study of the lifetimes of excited electronic states of NO2, Chem. Phys. Lett., 1989, 162(1-2): 140
doi: 10.1016/0009-2614(89)85082-1
3 Z. F. Cui, E. Y. Feng, S. Z. Huang, T. X. Lu, and X. Z. Zhao, An investigation on the property of the laser produced plasma under additional static electricity field, Chin. J. Atom. Mol. Phys, 1996, 13: 8
4 J. Yu and R. E. Zheng, Laser-induced plasma and laserinduced breakdown spectroscopy (LIBS) in China: The challenge and the opportunity, Front. Phys., 2012, 7(6): 647
doi: 10.1007/s11467-012-0275-7
5 R. Cong, B. H. Zhang, J. M. Fan, X. F. Zheng, W. Q. Liu, R. E. Zheng, and Z. F. Cui, Experimental investigation on time and spatial evolution of emission spectra of AI atom in laser-induced plasmas, Acta Opt. Sin., 2009, 29: 2594
doi: 10.3788/AOS20092909.2594
6 F. Z. Dong, X. L. Chen, Q. Wang, L. X. Sun, H. B. Yu, Y. X. Liang, J. G Wang, Z. B. Ni, Z. H. Du, Y. W. Ma, and J. D. Lu, Recent progress on the application of LIBS for metallurgical online analysis in China, Front. Phys, 2012, 7(6): 679
doi: 10.1007/s11467-012-0263-y
7 Q. Wang, X. L. Chen, R. H. Yu, M. M. Xu, Y. Yang, B. Wu, Z. B. Ni, and F. Z. Dong, Quantitative analysis of Mn, Cr in steel based on laser-induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2011, 31(9): 2546
8 X. L. Chen, F. Z. Dong, Q. Wang, R. H. Yu, Y. X. Liang, J. G. Wang, Y. Yang, Z. B. Ni, M. M. Xu, and B. Wu, Quantitative analysis of slag by calibration-free laser-induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2011, 31(12): 3289
9 Q. Q. Wang, K. Liu, H. Zhao, C. H. Ge, and Z. W. Huang, Detection of explosives with laser-induced breakdown spectroscopy, Front. Phys, 2012, 7(6): 701
doi: 10.1007/s11467-012-0272-x
10 H. Zhao, Q. Q. Wang, K. Liu, and C. H. Ge, Research on inorganic explosive and its principal component with laserinduced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2012, 32(3): 577
11 Q. Q. Wang, K. Liu, and H. Zhao, Multivariate analysis of laser-induced breakdown spectroscopy for discrimination between explosives and plastics, Chin. Phys. Lett., 2012, 29(4): 044206
doi: 10.1088/0256-307X/29/4/044206
12 Q. Q. Wang, Z. W. Huang, K. Liu, W. J. Li, and J. X. Yan, Classification of plastics with laser-induced breakdown spectroscopy based on principal component analysis and artificial neural network model, Spectroscopy and Spectral Analysis, 2012, 32(12): 3179
13 K. Liu, Q. Q. Wang, H. Zhao, and Y. L. Xiao, Differentiation of plastic with laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2011, 31(5): 1171
14 R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental advanced superconducting tokamak, Spectrochim. Acta B: At. Spectrosc., 2013, 87: 147
doi: 10.1016/j.sab.2013.05.010
15 R. Hai, C. Li, H. B. Wang, H. B. Ding, H. S. Zhuo, J. Wu, and G. N. Luo, Characterization of Li deposition on the first wall of EAST using laser-induced breakdown spectroscopy, J. Nucl. Mater., 2013, 438: S1168
doi: 10.1016/j.jnucmat.2013.01.258
16 Q. Xiao, A. Huber, G. Sergienko, B. Schweer, P. Mertens, A. Kubina, V. Philipps, and H. Ding, Application of laserinduced breakdown spectroscopy for characterization of material deposits and tritium retention in fusion devices, Fusion Eng. Des., 2013, 88(9-10): 1813
doi: 10.1016/j.fusengdes.2013.05.083
17 L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy, Opt. Express, 2013, 21(15): 18188
doi: 10.1364/OE.21.018188
18 L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement, Opt. Express, 2011, 19(15): 14067
doi: 10.1364/OE.19.014067
19 L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation, Opt. Express, 2012, 20(2): 1436
doi: 10.1364/OE.20.001436
20 L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy, Appl. Phys. Lett., 2011, 98(13): 131501
doi: 10.1063/1.3573807
21 N. H. Cheung and E. S. Yeung, Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown, Appl. Spectrosc., 1993, 47(7): 882
doi: 10.1366/0003702934415192
22 W. F. Ho, C. W. Ng, and N. H. Cheung, Spectrochemical analysis of liquids using laser-induced plasma emissions: Effects of laser wavelength, Appl. Spectrosc., 1997, 51(1): 87
doi: 10.1366/0003702971938812
23 C. W. Ng, W. F. Ho, and N. H. Cheung, Spectrochemical analysis of liquids using laser-induced plasma emissions: Effects of laser wavelength on plasma properties, Appl. Spectrosc., 1997, 51(7): 976
doi: 10.1366/0003702971941638
24 S. K. Ho and N. H. Cheung, Sensitive elemental analysis by ArF laser-induced fluorescence of laser ablation plumes: Elucidation of the fluorescence mechanism, Appl. Phys. Lett., 2005, 87: 264104
doi: 10.1063/1.2149983
25 N. H. Cheung, Spectroscopy of laser plumes for atto-mole and ng/g elemental analysis, Appl. Spectrosc. Rev., 2007, 42(3): 235
doi: 10.1080/05704920701293745
26 P. C. Chu, W. L. Yip, Y. Cai, and N. H. Cheung, Multielement analysis of ceramic and polymeric samples by ArF laser excited atomic fluorescence of ablated plumes, J. Anal. At. Spectrom., 2011, 26(6): 1210
doi: 10.1039/c1ja10026b
27 Y. Cai, P. C. Chu, S. K. Ho, and N. H. Cheung, Multielement analysis by ArF laser excited atomic fluorescence of laser ablated plumes: Mechanism and applications, Front. Phys., 2012, 7(6): 670
doi: 10.1007/s11467-012-0264-x
28 S. Y. Chan and N. H. Cheung, Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy, Anal. Chem., 2000, 72(9): 2087
doi: 10.1021/ac991242o
29 S. L. Lui and N. H. Cheung, Resonance-enhanced laserinduced plasma spectroscopy for sensitive elemental analysis: Elucidation of enhancement mechanisms, Appl. Phys. Lett., 2002, 81(27): 5114
doi: 10.1063/1.1532774
30 S. L. Lui and N. H. Cheung, Resonance-enhanced laserinduced plasma spectroscopy: Ambient gas effects, Spectrochim. Acta B: At. Spectrosc., 2003, 58(9): 1613
doi: 10.1016/S0584-8547(03)00139-3
31 W. L. Yip and N. H. Cheung, Analysis of aluminum alloys by resonance-enhanced laser-induced breakdown spectroscopy: How the beam profile of the ablation laser and the energy of the dye laser affect analytical performance, Spectrochim. Acta B: At. Spectrosc., 2009, 64(4): 315
doi: 10.1016/j.sab.2009.03.020
32 Y. Cai and N. H. Cheung, Photoacoustic monitoring of the mass removed in pulsed laser ablation, Microchem. J., 2011, 97(2): 109
doi: 10.1016/j.microc.2010.08.001
33 K. M. Lo and N. H. Cheung, ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions, Appl. Spectrosc., 2002, 56(6): 682
doi: 10.1366/000370202760077612
34 N. H. Cheung and E. S. Yeung, Distribution of sodium and potassium within individual human erythrocytes by pulsedlaser vaporization in a sheath flow, Anal. Chem., 1994, 66(7): 929
doi: 10.1021/ac00079a003
35 C. W. Ng and N. H. Cheung, Detection of sodium and potassium in single human red blood cells by 193-nm laser ablative sampling: a feasibility demonstration, Anal. Chem., 2000, 72(1): 247
doi: 10.1021/ac9908795
36 Y. Z. Lin, M. Y. Yao, M. H. Liu, Q. M. Peng, X. Zhang, T. B. Chen, and Y. Xu, Determination of parameter range in detecting Cu of Gannan navel orange by LIBS setup, Spectroscopy and Spectral Analysis, 2012, 32(11): 2925
37 Y. Xu, M. H. Liu, M. Y. Yao, Q. M. Peng, T. B. Chen, X. Zhang, and Y. Z. Lin, Experimental study on chromium in gannan navel orange by laser-induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2012, 32: 2555
38 M. Y. Yao, L. Huang, J. H. Zheng, S. Q. Fan, and M. H. Liu, Assessment of feasibility in determining of Cr in Gannan navel orange treated in controlled conditions by laser induced breakdown spectroscopy, Opt. Laser Technol., 2013, 52: 70
doi: 10.1016/j.optlastec.2013.04.005
39 D. X. Sun, M. G. Su, and C. Z. Dong, Emission signal enhancement and plasma diagnostics using collinear double pulse for laser-induced breakdown spectroscopy of aluminum alloys, Eur. Phys. J.: Appl. Phys., 2013, 61(3): 30802
doi: 10.1051/epjap/2013120470
40 D. X. Sun, M. G. Su, C. Z. Dong, and G. H. Wen, A comparative study of the laser induced breakdown spectroscopy in single- and collinear double-pulse laser geometry, Plasma Science & Technology, 2013, 15: 6
41 G. C. He, D. X. Sun, M. G. Su, and C. Z. Dong, A quantitative analysis of elements in soil using laser-induced breakdown spectroscopy technique, Eur. Phys. J.: Appl. Phys., 2011, 55(03): 30701
doi: 10.1051/epjap/2011110128
42 D. X. Sun, M. G. Su, C. Z. Dong, D. C. Zhang, and X. W. Ma, A semi-quantitative analysis of essential micronutrient in folium lycii using laser-induced breakdown spectroscopy technique, Plasma Science & Technology, 2010, 12(4): 478
doi: 10.1088/1009-0630/12/4/18
43 J. T. Han, D. X. Sun, M. G. Su, L. L. Peng, and C. Z. Dong, Quantitative analysis of metallic elements in tobacco and tobacco ash by calibration free laser-induced breakdown spectroscopy, Anal. Lett., 2012, 45(13): 1936
doi: 10.1080/00032719.2012.677979
44 H. M. Hou, Y. Li, Y. A. Lu, Z. N. Wang, and R. E. Zheng, Time-resolved evaluation of self-absorption in laser induced plasma from nickel sample, Spectroscopy and Spectral Analysis, 2011, 31(3): 595
45 J. L. Wu, Y. X. Fu, Y. Li, Y. Lu, Z. F. Cui, and R. E. Zheng, Detection of metal ions in water solution by laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2008, 28(9): 1979
46 S. L. Zhong, Y. Lu, K. Cheng, J. S. Xiu, and R. E. Zheng, Ultrasonic nebulizer assisted LIBS for detection of trace metal elements dissolved in water, Spectroscopy and Spectral Analysis, 2011, 31(6): 1458
47 Y. Lu, Y. Li, J. L.Wu, S. L. Zhong, and R. E. Zheng, Guided conversion to enhance cation detection in water using laserinduced breakdown spectroscopy, Appl. Opt., 2010, 49(13): C75
doi: 10.1364/AO.49.000C75
48 Y. Lu, J. L.Wu, Y. Li, J. J. Guo, K. Cheng, H. M. Hou, and R. E. Zheng, Experimental investigation of Pb in soil slurries by laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2009, 29(11): 3121
49 Y. F. Bi, Y. Li, and R. E. Zheng, The symmetric zeroarea conversion adptive peak-seeking method research for LIBS/Raman spectra, Spectroscopy and Spectral Analysis, 2013, 33(2): 438
50 H. M. Hou, Y. Tian, Y. Li, and R. E. Zheng, Study of pressure effects on laser induced plasma in bulk seawater, J. Anal. Atom. Spectrom., 2014, 29(1): 169
doi: 10.1039/c3ja50244a
51 W. B. Yin, L. Zhang, L. Dong, W. G. Ma, and S. T. Jia, Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants, Appl. Spectrosc., 2009, 63(8): 865
doi: 10.1366/000370209788964458
52 L. Zhang, Z. Y. Hu, W. B. Yin, D. Huang, W. G. Ma, L. Dong, H. P. Wu, Z. X. Li, L. T. Xiao, and S. T. Jia, Recent progress on laser-induced breakdown spectroscopy for the monitoring of coal quality and unburned carbon in fly ash, Front. Phys., 2012, 7(6): 690
doi: 10.1007/s11467-012-0259-7
53 L. Zhang, L. Dong, H. P. Dou, W. B. Yin, and S. T. Jia, Laser-induced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions, Appl. Spectrosc., 2008, 62(4): 458
doi: 10.1366/000370208784046786
54 B. Zhang, L. Sun, H. Yu, Y. Xin, and Z. Cong, Wavelet denoising method for laser-induced breakdown spectroscopy, J. Anal. Atom. Spectrom., 2013, 28:1884
doi: 10.1039/c3ja50239b
55 L. X. Sun and H. B. Yu, Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy, Spectrochim. Acta B: At. Spectrosc., 2009, 64(3): 278
doi: 10.1016/j.sab.2009.02.010
56 L. X. Sun and H. B. Yu, Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method, Talanta, 2009, 79(2): 388
doi: 10.1016/j.talanta.2009.03.066
57 B. Zhang, H. B. Yu, L. X. Sun, Y. Xin, and Z. B. Cong, A method for resolving overlapped peaks in laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc., 2013, 67(9): 1087
doi: 10.1366/12-06822
58 L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, Quantitative analysis of Mn and Si of alloy steels by laser-induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2010, 30(12): 3186
59 L. X. Sun, H. B. Yu, Z. B. Cong, and Y. Xin, Quantitative analysis of Mn and Si of Steels by laser-induced breakdown spectroscopy combined with neural networks, Acta Opt. Sin., 2010, 30(9): 2757
doi: 10.3788/AOS20103009.2757
60 S. C. Yao, J. D. Lu, M. R. Dong, K. Chen, J. Y. Li, and J. Li, Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis, Appl. Spectrosc., 2011, 65(10): 1197
doi: 10.1366/10-06190
61 M. R. Dong, J. D. Lu, S. C. Yao, J. Li, J. Y. Li, Z. M. Zhong, and W. Y. Lu, Application of LIBS for direct determination of volatile matter content in coal, J. Anal. At. Spectrom., 2011, 26(11): 2183
doi: 10.1039/c1ja10109a
62 S. C. Yao, J. D. Lu, J. P. Zheng, and M. R. Dong, Analyzing unburned carbon in fly ash using laser-induced breakdown spectroscopy with multivariate calibration method, J. Anal. At. Spectrom., 2012, 27(3): 473
doi: 10.1039/c2ja10229c
63 S. C. Yao, J. D. Lu, J. Y. Li, K. Chen, J. Li, and M. R. Dong, Multi-elemental analysis of fertilizer using laserinduced breakdown spectroscopy coupled with partial least squares regression, J. Anal. At. Spectrom., 2010, 25(11): 1733
doi: 10.1039/c0ja00027b
64 J. Li, J. D. Lu, Z. X. Lin, S. S. Gong, C. L. Xie, L. Chang, L. F. Yang, and P. Y. Li, Effects of experimental parameters on elemental analysis of coal by laser-induced breakdown spectroscopy, Opt. Laser Technol., 2009, 41(8): 907
doi: 10.1016/j.optlastec.2009.03.003
65 L. Y. Yu, J. D. Lu, W. Chen, G. Wu, K. Shen, and W. Feng, Analysis of pulverized coal by laser-induced breakdown spectroscopy, Plasma Science & Technology, 2005, 7(5): 3041
doi: 10.1088/1009-0630/7/5/015
66 K. Chen, J. D. Lu, and J. Y. Li, Real-time, quantitative analysis of multi-elements in liquid steel by LIBS, Spectroscopy and Spectral Analysis, 2011, 31(3): 823
67 S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases, Appl. Surf. Sci., 2011, 257(7): 3103
doi: 10.1016/j.apsusc.2010.10.124
68 Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B: At. Spectrosc., 2012, 68: 58
doi: 10.1016/j.sab.2012.01.005
69 L. Z. Li, Z. Wang, T. B. Yuan, Z. Y. Hou, Z. Li, and W. D. Ni, A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom., 2011, 26(11): 2274
doi: 10.1039/c1ja10194c
70 J. Feng, Z. Wang, Z. Li, and W. D. Ni, Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters, Spectrochim. Acta B: At. Spectrosc., 2010, 65(7): 549
doi: 10.1016/j.sab.2010.05.004
71 X. W. Li, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, A partial least squares based spectrum normalization method for uncertainty reduction for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B: At. Spectrosc., 2013, 88(0): 180
doi: 10.1016/j.sab.2013.07.005
72 T. B. Yuan, Z. Wang, L. Z. Li, Z. Y. Hou, Z. Li, and W. D. Ni, Quantitative carbon measurement in anthracite using laser-induced breakdown spectroscopy with binder, Appl. Opt., 2012, 51(7): B22
doi: 10.1364/AO.51.000B22
73 Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling, Front. Phys., 2012, 7(6): 708
doi: 10.1007/s11467-012-0262-z
74 Z. Y. Hou, Z. Wang, J. M. Liu, W. D. Ni, and Z. Li, Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy, Opt. Express, 2013, 21(13): 15974
doi: 10.1364/OE.21.015974
75 T. B. Yuan, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, Coal property analysis using laserinduced breakdown spectroscopy, J. Anal. At. Spectrom., 2013, 28(7): 1045
doi: 10.1039/c3ja50097g
76 Z. Hou, Z. Wang, S. Lui, T. Yuan, L. Li, Z. Li, and W. Ni, Improving data stability and prediction accuracy in laserinduced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm, J. Anal. At. Spectrom., 2013, 28(1): 107
doi: 10.1039/c2ja30104k
77 J. Feng, Z. Wang, L. Z. Li, Z. Li, and W. D. Ni, A nonlinearized multivariate dominant factor-based partial least squares (PLS) model for coal analysis by using laser-induced breakdown spectroscopy, Appl. Spectrosc., 2013, 67(3): 291
doi: 10.1366/11-06393
78 Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal, Opt. Express, 2012, 20(S6): A1011
doi: 10.1364/OE.20.0A1011
79 Z. Wang, J. Feng, and Z. Li, Reply to “Comment on ‘A multivariate model based on dominant factor for laserinduced breakdown spectroscopy measurements”’ by Vincenzo Palleschi, J. Anal. At. Spectrom., 2011, 26(11): 2302
doi: 10.1039/c1ja10220f
80 Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A nonlinearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom., 2011, 26(11): 2175
doi: 10.1039/c1ja10113g
81 Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom., 2011, 26(11): 2289
doi: 10.1039/c1ja10041f
82 J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laserinduced breakdown spectroscopy, Anal. Bioanal. Chem., 2011, 400(10): 3261
doi: 10.1007/s00216-011-4865-y
83 X. W. Li, Z. Wang, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal by laser-induced breakdown spectroscopy, arXiv: 1402.2062, 2014
84 X. W. Li, Z. Wang, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, The application of spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy, arXiv: 1402.2060, 2014
85 T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy, Anal. Chim. Acta, 2014, 807: 29
doi: 10.1016/j.aca.2013.11.027
86 W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, Optical emission enhancement using laser ablation combined with fast pulse discharge, Opt. Express, 2010, 18(3): 2573
doi: 10.1364/OE.18.002573
87 W. D. Zhou, K. X. Li, H. G. Qian, Z. J. Ren, and Y. L. Yu, Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy, Appl. Opt., 2012, 51(7): B42
doi: 10.1364/AO.51.000B42
88 X. F. Li, W. D. Zhou, and Z. F. Cui, Temperature and electron density of soil plasma generated by LA-FPDPS, Front. Phys., 2012, 7(6): 721
doi: 10.1007/s11467-012-0254-z
89 W. D. Zhou, X. J. Su, H. G. Qian, K. X. Li, X. F. Li, Y. L. Yu, and Z. J. Ren, Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma, J. Anal. At. Spectrom., 2013, 28(5): 702
doi: 10.1039/c3ja30355a
90 K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, Laser ablation assisted spark induced breakdown spectroscopy on soil samples, J. Anal. At. Spectrom., 2010, 25(9): 1475
doi: 10.1039/b922187e
91 X. F. Li, W. D. Zhou, K. X. Li, H. G. Qian, and Z. J. Ren, Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil, Opt. Commun., 2012, 285(1): 54
doi: 10.1016/j.optcom.2011.08.074
92 K. X. Li, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge, Spectrochim. Acta B: At. Spectrosc., 2010, 65(5): 420
doi: 10.1016/j.sab.2010.04.006
93 W. D. Zhou, K. X. Li, X. F. Li, H. G. Qian, J. Shao, X. D. Fang, P. H. Xie, and W. Q. Liu, Development of a nanosecond discharge-enhanced laser plasma spectroscopy, Opt. Lett., 2011, 36(15): 2961
doi: 10.1364/OL.36.002961
94 D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields, Appl. Spectrosc., 2012, 66(4): 347
doi: 10.1366/11-06574
95 A. M. Leach and G. M. Hieftje, Methods for shot-to-shot normalization in laser ablation with an inductively coupled plasma time-of-flight mass spectrometer, J. Anal. At. Spectrom., 2000, 15(9): 1121
doi: 10.1039/b001968m
96 J. S. Huang and K. C. Lin, Laser-induced breakdown spectroscopy of liquid droplets: correlation analysis with plasmainduced current versus continuum background, J. Anal. At. Spectrom., 2005, 20(1): 53
doi: 10.1039/b411719k
97 Z. N. Wang, Y. Li, Q. Y. Zhang, Y. Lu, and R. E. Zheng, Experimental investigation of quantitatively analysing trace Mo in complex metallic alloys by laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2011, 31(6): 1697
98 Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, L. Zhao, C. Yang, Y. Y. Chen, Y. H. Zhang, and P. C. Han, Study on parameters influencing analytical performance of laser-induced breakdown spectroscopy, Front. Phys., 2012, 7(6): 714
doi: 10.1007/s11467-012-0267-7
99 Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, L. Zhao, D. L. Li, Y. Liu, P. C. Han, and Y. Y. Chen, Depth profile analysis for irregular and unknown sample by laser-indu ced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2013, 33: 1468
100 L. X. Sun, H. B. Yu, Y. Xin, Z. B. Cong, and H. Y. Kong, On-line monitoring of molten steel compositions by laserinduced breakdown spectroscopy, Chinese Journal of Lasers, 2011, 38(9): 0915002
doi: 10.3788/CJL201138.0915002
101 L. X. Sun, H. B. Yu, Z. B. Cong, and Y. Xin, On-line semiquantitative analysis of molten steel composition using laserinduced breakdown spectroscopy, Chinese Journal of Scientific Instrument, 2011, 32(11): 2602
102 T. B. Chen, M. Y. Yao, M. H. Liu, Z. J. Lei, Q. M. Peng, Y. Xu, and X. Zhang, Quantitative analysis of Ba and Sr in soil using laser-induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2012, 32(6): 1658
103 J. L. Wu, Y. Lu, Y. Li, K. Cheng, J. J. Guo, and R. E. Zheng, Time resolved laser-induced breakdown spectroscopy for calcium concentration detection in water, Optoelectronics Letters, 2011, 7(1): 65
doi: 10.1007/s11801-011-0123-y
104 Y. Li, Z. N. Wang, J. L. Wu, Y. Lu, and R. E. Zheng, Effects of laser wavelength on detection of metal elements in water solution by laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2012, 32(3): 582
105 X. Y. Pu and N. H. Cheung, ArF laser induced plasma spectroscopy of lead ions in aqueous solutions: plume reheating with a second Nd:YAG laser pulse, Appl. Spectrosc., 2003, 57(5): 588
doi: 10.1366/000370203321666641
106 X. Y. Pu, W. Y. Ma, and N. H. Cheung, Sensitive elemental analysis of aqueous colloids by laser-induced plasma spectroscopy, Appl. Phys. Lett., 2003, 83(16): 3416
doi: 10.1063/1.1616647
107 M. Y. Yao, J. L. Lin, M. H. Liu, and Y. Xu, Detection of chromium in wastewater from refuse incineration power plant near Poyang Lake by laser induced breakdown spectroscopy, Appl. Opt., 2012, 51(10): 1552
doi: 10.1364/AO.51.001552
108 L. Huang, M. Y. Yao, Y. Xu, and M. H. Liu, Determination of Cr in water solution by laser-induced breakdown spectroscopy with different univariate calibration models, Appl. Phys. B, 2013, 111(1): 45
doi: 10.1007/s00340-012-5305-1
109 Y. Feng, J. J. Yang, J. M. Fan, G. X. Yao, X. H. Ji, X. Y. Zhang, X. F. Zheng, and Z. F. Cui, Investigation of laserinduced breakdown spectroscopy of a liquid jet, Appl. Opt., 2010, 49(13): C70
doi: 10.1364/AO.49.000C70
110 D. H. Zhu, J. P. Chen, J. Lu, and X. W. Ni, Laser-induced breakdown spectroscopy for determination of trace metals in aqueous solution using bamboo charcoal as a solid-phase extraction adsorbent, Analytical Methods, 2012, 4(3): 819
doi: 10.1039/c2ay05675e
111 Z. J. Chen, H. K. Li, M. Liu, and R. H. Li, Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates, Spectrochim. Acta B: At. Spectrosc., 2008, 63(1): 64
doi: 10.1016/j.sab.2007.11.010
112 Z. J. Chen, H. K. Li, F. Zhao, and R. H. Li, Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-deposition of the analytes on an aluminium surface, J. Anal. At. Spectrom., 2008, 23(6): 871
doi: 10.1039/b801946k
113 R. Hai, X. Wu, Y. Xin, P. Liu, D. Wu, H. Ding, Y. Zhou, L. Cai, and L. Yan, Use of dual-pulse laser-induced breakdown spectroscopy for characterization of the laser cleaning of a first mirror exposed in HL-2A, J. Nucl. Mater., 2013, 447(1-3): 9
114 Y. Zhang, G. Xiong, S. Li, Z. Dong, S. G. Buckley, and S. D. Tse, Novel low-intensity phase-selective laser-induced breakdown spectroscopy of TiO2 nanoparticle aerosols during flame synthesis, Combust. Flame, 2013, 160(3): 725
doi: 10.1016/j.combustflame.2012.11.007
115 L. L. Peng, D. X. Sun, M. G. Su, J. T. Han, and C. Dong, Rapid analysis on the heavy metal content of spent zinc-manganese batteries by laser-induced breakdown spectroscopy, Opt. Laser Technol., 2012, 44(8): 2469
doi: 10.1016/j.optlastec.2012.01.036
116 Y. Tian, Z. N. Wang, H. M. Hou, X. W. Zhai, X. H. Ci, and R. E.Zheng, Study of cuttings identification using laserinduced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2012, 32(8): 2027
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed