Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (3): 107303   https://doi.org/10.1007/s11467-015-0493-x
  REVIEW ARTICLE 本期目录
Recent advances in MXene: Preparation, properties, and applications
Lei Jin-Cheng(雷进程),Zhang Xu(张旭),Zhou Zhen(周震)()
Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Computational Centre for Molecular Science, Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
 全文: PDF(677 KB)  
Abstract

Owing to the exceptional properties of graphene, intensive studies have been carried out on novel two-dimensional (2D) materials. In the past several years, an elegant exfoliation approach has been used to successfully create a new family of 2D transition metal carbides, nitrides, and carbonitrides, termed MXene, from layered MAX phases. More recently, some unique properties of MXene have been discovered leading to proposals of potential applications. In this review, we summarize the latest progress in development of MXene from both a theoretical and experimental view, with emphasis on the possible applications.

Key wordsMXene    exfoliation    graphene    2D materials    supercapacitors
收稿日期: 2015-03-12      出版日期: 2015-06-11
Corresponding Author(s): Zhou Zhen(周震)   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(3): 107303.
Lei Jin-Cheng(雷进程), Zhang Xu(张旭), Zhou Zhen(周震). Recent advances in MXene: Preparation, properties, and applications. Front. Phys. , 2015, 10(3): 107303.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0493-x
https://academic.hep.com.cn/fop/CN/Y2015/V10/I3/107303
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
2 A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
https://doi.org/10.1038/nmat1849
3 S. Guo and S. Dong, Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev. 40(5), 2644 (2011)
https://doi.org/10.1039/c0cs00079e
4 V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56(8), 1178(2011)
https://doi.org/10.1016/j.pmatsci.2011.03.003
5 T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, Chemical functionalization of graphene and its applications, Prog. Mater. Sci. 57(7), 1061(2012)
https://doi.org/10.1016/j.pmatsci.2012.03.002
6 Q. Tang, Z. Zhou, and Z. Chen, Graphene-related nanomaterials: Tuning properties by functionalization, Nanoscale 5(11), 4541(2013)
https://doi.org/10.1039/c3nr33218g
7 Q. Tang and Z. Zhou, Graphene-analogous low-dimensional materials, Prog. Mater. Sci. 58(8), 1244(2013)
https://doi.org/10.1016/j.pmatsci.2013.04.003
8 M. Naguib and Y. Gogotsi, Synthesis of two-dimensional materials by selective extraction, Acc. Chem. Res. 48(1), 128(2015)
https://doi.org/10.1021/ar500346b
9 Y. Jing, Z. Zhou, C. R. Cabrera, and Z. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries, J. Mater. Chem. A 2(31), 12104(2014)
https://doi.org/10.1039/C4TA01033G
10 M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(37), 4248(2011)
https://doi.org/10.1002/adma.201102306
11 I. R. Shein and A. L. Ivanovskii, Graphene-like nanocarbides and nanonitrides of d metals (MXenes): synthesis, properties and simulation, Micro & Nano Lett. 8(2), 59(2013)
https://doi.org/10.1049/mnl.2012.0797
12 M. W. Barsoum and M. A. X. Phases, Properties of Machinable Ternary Carbides and Nitrides, Wiley & Sons, 2013
https://doi.org/10.1002/9783527654581
13 M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional transition metal carbides, ACS Nano 6(2), 1322(2012)
https://doi.org/10.1021/nn204153h
14 M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman, Y. Gogotsi, and M. W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for li-ion batteries, J. Am. Chem. Soc. 135(43), 15966(2013)
https://doi.org/10.1021/ja405735d
15 M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L. M. Pan, B. Zhang, J. Yang, Y. Gogotsi, S. J. L.Billinge, and M. W. Barsoum, Synthesis and characterization of two-dimensional Nb4C3 (MXene), Chem. Commun. 50(67), 9517(2014)
https://doi.org/10.1039/C4CC03366C
16 O. Mashtalir, K. M. Cook, V. N. Mochalin, M. Crowe, M. W. Barsoum, and Y. Gogotsi, Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media, J. Mater. Chem. A 2(35), 14334(2014)
https://doi.org/10.1039/C4TA02638A
17 M. Kurtoglu, M. Naguib, Y. Gogotsi, and M. W. Barsoum, First principles study of two-dimensional early transition metal carbides, MRS Commun. 2(04), 133(2012)
https://doi.org/10.1557/mrc.2012.25
18 M. Khazaei, M. Arai, T. Sasaki, C. Y. Chung, N. S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides, Adv. Funct. Mater. 23(17), 2185(2013)
https://doi.org/10.1002/adfm.201202502
19 J. Come, M. Naguib, P. Rozier, M. W. Barsoum, Y. Gogotsi, P. L. Taberna, M. Morcrette, and P. Simon, A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode, J. Electrochem. Soc. 159(8), A1368(2012)
https://doi.org/10.1149/2.003208jes
20 J. Hu, B. Xu, C. Ouyang, S. A. Yang, and Y. Yao, Investigations on V2C and V2CX2 (X= F, OH) monolayer as a promising anode material for li ion batteries from firstprinciples calculations, J. Phys. Chem. C 118(42), 24274(2014)
https://doi.org/10.1021/jp507336x
21 X. Xie, S. Chen, W. Ding, Y. Nie, and Z. Wei, An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X= OH, F) nanosheets for oxygen reduction reaction, Chem. Commun. 49(86), 10112(2013)
https://doi.org/10.1039/c3cc44428g
22 F. Wang, C. H. Yang, C. Y. Duan, D. Xiao, Y. Tang, and J. F. Zhu, An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor, J. Electrochem. Soc. 162(1), B16(2015)
https://doi.org/10.1149/2.0371501jes
23 M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials, Adv. Mater. 26(7), 992(2014)
https://doi.org/10.1002/adma.201304138
24 O. Mashtalir, M. Naguib, V. N. Mochalin, Y. Dall’Agnese, M. Heon, M. W. Barsoum, and Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun. 4, 1716 (2013)
https://doi.org/10.1038/ncomms2664
25 F. Chang, C. Li, J. Yang, H. Tang, and M. Xue, Synthesis of a new graphene-like transition metal carbide by deintercalating Ti3AlC2, Mater. Lett. 109, 295 (2013)
https://doi.org/10.1016/j.matlet.2013.07.102
26 J. Halim, M. R. Lukatskaya, K. M. Cook, J. Lu, C. R. Smith, L. A. Naslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, Transparent conductive twodimensional titanium carbide epitaxial thin films, Chem. Mater. 26(7), 2374(2014)
https://doi.org/10.1021/cm500641a
27 M. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, Y. Gogotsi, and M. W. Barsoum, Conductive two-dimensional titanium carbide ’clay’ with high volumetric capacitance, N ature 516(7529), 78(2014)
28 O. Mashtalir, M. Naguib, B. Dyatkin, Y. Gogotsi, and M. W. Barsoum, Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid, Mater. Chem. Phys. 139(1), 147(2013)
https://doi.org/10.1016/j.matchemphys.2013.01.008
29 Y. Xie, M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, X. Q. Yu, K. W. Nam, X. Q. Yang, A. I. Kolesnikov, and P. R. C. Kent, Role of surface structure on li-ion energy storage capacity of two-dimensional transition-metal carbides, J. Am. Chem. Soc. 136(17), 6385(2014)
https://doi.org/10.1021/ja501520b
30 Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M. W. Barsoum, H. L. L. Zhuang, and P. R. C. Kent, Prediction and characterization of MXene nanosheet anodes for nonlithiumion batteries, ACS Nano 8(9), 9606(2014)
https://doi.org/10.1021/nn503921j
31 T. Hu, J. Wang, H. Zhang, Z. Li, M. Hu, and X. Wang, Vibrational properties of Ti3C2 and Ti3C2T2 (T= O, F, OH) monosheets by first-principles calculations: A comparative study, Phys. Chem. Chem. Phys. 17(15), 9997(2015)
https://doi.org/10.1039/C4CP05666C
32 Q. Tang, Z. Zhou, and P. W. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X= F, OH) monolayer, J. Am. Chem. Soc. 134(40), 16909(2012)
https://doi.org/10.1021/ja308463r
33 X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu, and L. Chen, Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X, J. Am. Chem. Soc. 137(7), 2715(2015)
https://doi.org/10.1021/ja512820k
34 A. N. Enyashin and A. L. Ivanovskii, Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Structural, electronic properties and stability of Mxenes Ti3C2txNx(OH)2 from DFTB calculations, J. Solid State Chem. 207, 42 (2013)
https://doi.org/10.1016/j.jssc.2013.09.010
35 V. Mauchamp, M. Bugnet, E. P. Bellido, G. A. Botton, P. Moreau, D. Magne, M. Naguib, T. Cabioc’h, and M. W. Barsoum, Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: Electronic structure versus boundary effects, Phys. Rev. B 89(23), 235428(2014)
https://doi.org/10.1103/PhysRevB.89.235428
36 I. R. Shein and A. L. Ivanovskii, Planar nano-block structures Tin+1Al0.5Cn and Tin+1Cn (n=1, and 2) from MAX phases: Structural, electronic properties and relative stability from first principles calculations, Superlattices Microstruct. 52(2), 147(2012)
https://doi.org/10.1016/j.spmi.2012.04.014
37 I. R. Shein and A. L. Ivanovskii, Graphene-like titanium carbides and nitrides Tin+1 Cn, Tin+1Nn (n=1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability, Comput. Mater. Sci. 65, 104 (2012)
https://doi.org/10.1016/j.commatsci.2012.07.011
38 Y. Xie and P. R. C. Kent, Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X= C, N) monolayers, Phys. Rev. B 87(23), 235441(2013)
https://doi.org/10.1103/PhysRevB.87.235441
39 S. Zhao, W. Kang, and J. Xue, Manipulation of electronic and magnetic properties of M2C (M= Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains, Appl. Phys. Lett. 104(13), 133106(2014)
https://doi.org/10.1063/1.4870515
40 S. Wang, J. X. Li, Y. L. Du, and C. Cui, First-principles study on structural, electronic and elastic properties of graphene-like hexagonal Ti2C monolayer, Comput. Mater. Sci. 83, 290 (2014)
https://doi.org/10.1016/j.commatsci.2013.11.025
41 M. Khazaei, M. Arai, T. Sasaki, M. Estili, and Y. Sakka, Two-dimensional molybdenum carbides: Potential thermoelectric materials of the MXene family, Phys. Chem. Chem. Phys. 16(17), 7841(2014)
https://doi.org/10.1039/c4cp00467a
42 H. Lashgari, M. R. Abolhassani, A. Boochani, S. M. Elahi, and J. Khodadadi, Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations, Solid State Commun. 195, 61 (2014)
https://doi.org/10.1016/j.ssc.2014.06.008
43 A. N. Enyashin and A. L. Ivanovskii, Structural and electronic properties and stability of MXenes Ti2C and Ti3C2 functionalized by Methoxy groups, J. Phys. Chem. C 117(26), 13637(2013)
https://doi.org/10.1021/jp401820b
44 Y. Lee, S. B. Cho, and Y. C. Chung, Tunable indirect to direct band gap transition of monolayer Sc2CO2 by the strain effect, ACS Appl. Mater. Interfaces 6(16), 14724(2014)
https://doi.org/10.1021/am504233d
45 Y. Lee, Y. Hwang, S. B. Cho, and Y. C. Chung, Achieving a direct band gap in oxygen functionalized-monolayer scandium carbide by applying an electric field, Phys. Chem. Chem. Phys. 16(47), 26273(2014)
https://doi.org/10.1039/C4CP03811H
46 N. J. Lane, M. W. Barsoum, and J. M. Rondinelli, Correlation effects and spin-orbit interactions in two-dimensional hexagonal 5d transition metal carbides, Tan+1Cn (n = 1,2,3), EPL 101(5), 57004(2013)
https://doi.org/10.1209/0295-5075/101/57004
47 M. Naguib, O. Mashtalir, M. R. Lukatskaya, B. Dyatkin, C. Zhang, V. Presser, Y. Gogotsi, and M. W. Barsoum, Onestep synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes, Chem. Commun. 50(56), 7420(2014)
https://doi.org/10.1039/c4cc01646g
48 H. Ghassemi, W. Harlow, O. Mashtalir, M. Beidaghi, M. R. Lukatskaya, Y. Gogotsi, and M. L. Taheri, In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbonsupported TiO2, J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14339(2014)
https://doi.org/10.1039/C4TA02583K
49 Z. Y. Li, L. B. Wang, D. D. Sun, Y. D. Zhang, B. Z. Liu, Q. K. Hu, and A. G. Zhou, Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2, Mater. Sci. Eng. B 191, 33 (2015)
https://doi.org/10.1016/j.mseb.2014.10.009
50 J. X. Li, Y. L. Du, C. X. Huo, S. Wang, and C. Cui, Thermal stability of two-dimensional Ti2C nanosheets, Ceram. Int. 41(2), 2631(2015)
https://doi.org/10.1016/j.ceramint.2014.10.070
51 M. Naguib, J. Come, B. Dyatkin, V. Presser, P. L. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, MXene: A promising transition metal carbide anode for lithium-ion batteries, Electrochem. Commun. 16(1), 61(2012)
https://doi.org/10.1016/j.elecom.2012.01.002
52 C. Eames and M. S. Islam, Ion intercalation into twodimensional transition-metal carbides: Global screening for new high-capacity battery materials, J. Am. Chem. Soc. 136(46), 16270(2014)
https://doi.org/10.1021/ja508154e
53 D. D. Sun, M. S. Wang, Z. Y. Li, G. X. Fan, L. Z. Fan, and A. G. Zhou, Two-dimensional Ti3C2 as anode material for Li-ion batteries, Electrochem. Commun. 47, 80 (2014)
https://doi.org/10.1016/j.elecom.2014.07.026
54 M. D. Levi, M. R. Lukatskaya, S. Sigalov, M. Beidaghi, N. Shpigel, L. Daikhin, D. Aurbach, M. W. Barsoum, and Y. Gogotsi, Adv. Energy Mater. 5, 1400815 (2014)
55 S. J. Zhao, W. Kang, and J. M. Xue, Role of strain and concentration on the li adsorption and diffusion properties on Ti2C layer, J. Phys. Chem. C 118(27), 14983(2014)
https://doi.org/10.1021/jp504493a
56 J. B. Goodenough and K. S. Park, The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc. 135(4), 1167(2013)
https://doi.org/10.1021/ja3091438
57 D. Q. Er, J.W. Li, M. Naguib, Y. Gogotsi, and V. B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries, ACS Appl. Mater. Interfaces 6(14), 11173(2014)
https://doi.org/10.1021/am501144q
58 M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall’Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, and Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science 341(6153), 1502(2013)
https://doi.org/10.1126/science.1241488
59 E. Yang, H. Ji, J. Kim, H. Kim, and Y. Jung, Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries, Phys. Chem. Chem. Phys. 17(7), 5000(2015)
https://doi.org/10.1039/C4CP05140H
60 Y. Dall’Agnese, M. R. Lukatskaya, K. M. Cook, P. L. Taberna, Y. Gogotsi, and P. Simon, High capacitance of surface-modified 2D titanium carbide in acidic electrolyte, Electrochem. Commun. 48, 118 (2014)
https://doi.org/10.1016/j.elecom.2014.09.002
61 Z. Ling, C. E. Ren, M. Q. Zhao, J. Yang, J. M. Giammarco, J. S. Qiu, M. W. Barsoum, and Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance, Proc. Natl. Acad. Sci. USA 111(47), 16676(2014)
https://doi.org/10.1073/pnas.1414215111
62 M. Q. Zhao, C. E. Ren, Z. Ling, M. R. Lukatskaya, C. Zhang, K. L. Van Aken, M. W. Barsoum, and Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance, Adv. Mater. 27(2), 339(2015)
https://doi.org/10.1002/adma.201404140
63 X. Liang, A. Garsuch, and L. F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for highperformance lithium-sulfur batteries, Angew. Chem. Int. Ed. 54(13), 3907(2015)
https://doi.org/10.1002/anie.201410174
64 X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, and A. Yamada, Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors, Nat. Commun. 6, 6544 (2015)
https://doi.org/10.1038/ncomms7544
65 Q.M. Peng, J. X. Guo, Q. R. Zhang, J. Y. Xiang, B. Z. Liu, A. G. Zhou, R. P. Liu, and Y. J. Tian, Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide, J. Am. Chem. Soc. 136(11), 4113(2014)
https://doi.org/10.1021/ja500506k
66 Q. K. Hu, D. D. Sun, Q. H. Wu, H. Y. Wang, L. B. Wang, B. Z. Liu, A. G. Zhou, and J. L. He, MXene: A new family of promising hydrogen storage medium, J. Phys. Chem. A 117(51), 14253(2013)
https://doi.org/10.1021/jp409585v
67 Q. K. Hu, H. Y. Wang, Q. H. Wu, X. T. Ye, A. G. Zhou, D. D. Sun, L. B. Wang, B. Z. Liu, and J. L. He, Twodimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations, Int. J. Hydrogen Energy 39(20), 10606(2014)
https://doi.org/10.1016/j.ijhydene.2014.05.037
68 X. Li, G. Fan, and C. Zeng, Synthesis of ruthenium nanoparticles deposited on graphene-like transition metal carbide as an effective catalyst for the hydrolysis of sodium borohydride, Int. J. Hydrogen Energy 39(27), 14927(2014)
https://doi.org/10.1016/j.ijhydene.2014.07.029
69 Y. P. Gao, L. B. Wang, Z. Y. Li, A. G. Zhou, Q. K. Hu, and X. X. Cao, Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate, Solid State Sci. 35, 62 (2014)
https://doi.org/10.1016/j.solidstatesciences.2014.06.014
70 J. Yang, B. Chen, H. Song, H. Tang, and C. Li, Synthesis, characterization, and tribological properties of twodimensional Ti3C2, Cryst. Res. Technol. 49(11), 926(2014)
https://doi.org/10.1002/crat.201400268
71 X. H. Zhang, M. Q. Xue, X. H. Yang, Z. P. Wang, G. S. Luo, Z. D. Huang, X. L. Sui, and C. S. Li, Preparation and tribological properties of Ti3C2(OH)2 nanosheets as additives in base oil, RSC Adv. 5(4), 2762(2015)
https://doi.org/10.1039/C4RA13800G
72 Z. N. Ma, Z. P. Hu, X. D. Zhao, Q. Tang, D. H. Wu, Z. Zhou, and L. X. Zhang, Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and Mxene monolayer, J. Phys. Chem. C 118(10), 5593(2014)
https://doi.org/10.1021/jp500861n
73 J. Chen, K. Chen, D. Tong, Y. Huang, J. Zhang, J. Xue, Q. Huang, and T. Chen, CO2 and temperature dual responsive “Smart” MXene phases, Chem. Commun. 51(2), 314(2015)
https://doi.org/10.1039/C4CC07220K
74 Y. Lee, Y. Hwang, and Y. C. Chung, Achieving type I, II, and III heterojunctions using functionalized MXene, ACS Appl. Mater. Interfaces 7(13), 7163(2015)
https://doi.org/10.1021/acsami.5b00063
75 X. Li, Y. Dai, Y. Ma, Q. Liu, and B. Huang, Intriguing electronic properties of two-dimensional MoS2 /TM2CO2 (TM= Ti, Zr, or Hf) hetero-bilayers: Type-II semiconductors with tunable band gaps, Nanotechnology 26(13), 135703(2015)
https://doi.org/10.1088/0957-4484/26/13/135703
76 X. Zhang, Z. Ma, X. Zhao, Q. Tang, and Z. Zhou, Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes, J. Mater. Chem. A 3(9), 4960(2015)
https://doi.org/10.1039/C4TA06557C
77 S. J. Zhao, W. Kang, and J. M. Xue, MXene nanoribbons, J. Mater. Chem. C 3(4), 879(2015)
https://doi.org/10.1039/C4TC01721H
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed