Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (4): 107101   https://doi.org/10.1007/s11467-015-0496-7
  RESEARCH ARTICLE 本期目录
First-principles investigation of structural, mechanical, electronic, and bonding properties of NaZnSb
Jian-Bing Gu1,2,Chen-Ju Wang1,3,Lin Zhang1,*(),Yan Cheng2,Xiang-Dong Yang3
1. Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621999, China
2. College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
3. Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
 全文: PDF(783 KB)  
Abstract

The structural, mechanical, electronic, and bonding properties and phase transition of NaZnSb are explored using the generalized gradient approximation based on ab initio plane-wave pseudopotential density functional theory. With the help of the quasi-harmonic Debye model, we probe the Grüneisen parameter, thermal expansivity, heat capacity, Debye temperature, and entropy of NaZnSb in the tetragonal phase. The results indicate that the lattice constants and the bulk modulus and its first pressure derivative agree well with the available theoretical and experimental data. NaZnSb in its ground state structure exhibits a distinct energy gap of about 0.41 eV, which increases with increasing pressure. Our conclusions are consistent with the theoretical predictions obtained by the ABINIT package, but are different from those obtained through the tight-binding linear muffin-tin orbital method. As a result, further experimental and theoretical researches need to be carried out. For the purpose of providing a comparative and complementary study for future research, we first investigate the thermodynamic properties of NaZnSb.

Key wordsmechanical properties    electronic properties    density functional theory    structural properties
收稿日期: 2015-01-21      出版日期: 2015-08-17
Corresponding Author(s): Lin Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(4): 107101.
Jian-Bing Gu, Chen-Ju Wang, Lin Zhang, Yan Cheng, Xiang-Dong Yang. First-principles investigation of structural, mechanical, electronic, and bonding properties of NaZnSb. Front. Phys. , 2015, 10(4): 107101.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0496-7
https://academic.hep.com.cn/fop/CN/Y2015/V10/I4/107101
1 B. Balke, J. Barth, M. Schwall, G. H. Fecher, and C. Felser, An alternative approach to improve the thermoelectric properties of half-Heusler compounds, J. Electron. Mater. 40(5), 702 (2011)
https://doi.org/10.1007/s11664-011-1517-0
2 J. W. Bennett, K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Orthorhombic ABC semiconductors as antiferroelectrics, Phys. Rev. Lett. 110(1), 017603 (2013)
https://doi.org/10.1103/PhysRevLett.110.017603
3 J. W. Bennett, K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Hexagonal ABC semiconductors as ferroelectrics, Phys. Rev. Lett. 109(16), 167602 (2012)
https://doi.org/10.1103/PhysRevLett.109.167602
4 S. Chadov, X. Qi, J. Kubler, G. H. Fecher, C. Felser, and S. C. Zhang, Tunable multifunctional topological insulators in ternary Heusler compounds, Nat. Mater. 9(7), 541 (2010)
https://doi.org/10.1038/nmat2770
5 H. Lin, A. Wray, Y. Xia, S. Xu, S. Jia, R. J. Cava, A. Bansil, and M. Z. Hasan, Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena, Nat. Mater. 9(7), 546 (2010)
https://doi.org/10.1038/nmat2771
6 H. J. Zhang, S. Chadov, L. Müchler, B. Yan, X. L. Qi, J. Kübler, S. C. Zhang, and C. Felser, Topological insulators in ternary compounds with a honeycomb lattice, Phys. Rev. Lett. 106(15), 156402 (2011)
https://doi.org/10.1103/PhysRevLett.106.156402
7 A. Roy, J. W. Bennett, K. M. Rabe, and D. Vanderbilt, Half-Heusler semiconductors as piezoelectrics, Phys. Rev. Lett. 109(3), 037602 (2012)
https://doi.org/10.1103/PhysRevLett.109.037602
8 J. W. Bennett, I. Grinberg, and A. M. Rappe, New highly polar semiconductor ferroelectrics through d8 cation-O vacancy substitution into PbTiO3: A theoretical study, J. Am. Chem. Soc. 130(51), 17409 (2008)
https://doi.org/10.1021/ja8052249
9 J.W. Bennett, I. Grinberg, P. K. Davies, and A. M. Rappe, Pb-free semiconductor ferroelectrics: A theoretical study of Pd-substituted Ba(Ti1-xCex)O3 solid solutions, Phys. Rev. B 82(18), 184106 (2010)
https://doi.org/10.1103/PhysRevB.82.184106
10 G. Y. Gou, J. W. Bennett, H. Takenaka, and A. M. Rappe, Post density functional theoretical studies of highly polar semiconductive Pb(Ti1-xNix)O3-x solid solutions: Effects of cation arrangement on band gap, Phys. Rev. B 83(20), 205115 (2011)
https://doi.org/10.1103/PhysRevB.83.205115
11 D. Kieven, R. Klenk, S. Naghavi, C. Felser, and T. Gruhn, I-II-V half-Heusler compounds for optoelectronics: Ab initio calculations, Phys. Rev. B 81(7), 075208 (2010)
https://doi.org/10.1103/PhysRevB.81.075208
12 S. Kacimi, H. Mehnane, and A. Zaoui, I-II-V and I-IIIIV half-Heusler compounds for optoelectronic applications: Comparative ab initio study, J. Alloys Compd. 587, 451 (2014)
https://doi.org/10.1016/j.jallcom.2013.10.046
13 M. S. Lee, F. P. Poudeu, and S. D. Mahanti, Electronic structure and thermoelectric properties of Sb-based semiconducting half-Heusler compounds, Phys. Rev. B 83(8), 085204 (2011)
https://doi.org/10.1103/PhysRevB.83.085204
14 A. F. May, E. S. Toberer, and G. J. Snyder, Transport properties of the layered Zintl compound SrZnSb2, J. Appl. Phys. 106(1), 013706 (2009)
https://doi.org/10.1063/1.3158553
15 D. M. Wood, A. Zunger, and R. de Groot, Electronic structure of filled tetrahedral semiconductors, Phys. Rev. B 31(4), 2570 (1985)
https://doi.org/10.1103/PhysRevB.31.2570
16 R. Bacewicz and T. F. Ciszek, Preparation and characterization of some AIBIICIII type semiconductors, Appl. Phys. Lett. 52(14), 1150 (1988)
https://doi.org/10.1063/1.99188
17 A. Beleanu, M. Mondeshki, Q. Juan, F. Casper, C. Felser, and F. Porcher, Systematical, experimental investigations on LiMgZ (Z= P, As, Sb) wide band gap semiconductors, J. Phys. D 44(47), 475302 (2011)
https://doi.org/10.1088/0022-3727/44/47/475302
18 A. H. Reshak and S. Auluck, Thermoelectric properties of Nowotny–Juza NaZnX (X= P, As and Sb) compounds, Comput. Mater. Sci. 96, 90 (2015)
https://doi.org/10.1016/j.commatsci.2014.09.008
19 A. H. Reshak, Nowotny–Juza NaZnX (X= P, As and Sb) as photovoltaic materials, Sol. Energy 115, 430 (2015)
https://doi.org/10.1016/j.solener.2015.03.011
20 G. Jaiganesh, T. Merita Anto Britto, R. D. Eithiraj, and G. Kalpana, Electronic and structural properties of NaZnX (X= P, As, Sb): An ab initio study, J. Phys.: Condens. Matter 20(8), 085220 (2008)
https://doi.org/10.1088/0953-8984/20/8/085220
21 Z. Charifi, H. Baaziz, S. Noui, ?. U?ur, G. U?ur, A. ?yig?r, A. Candan, and Y. AlDouri, Phase transition of Nowotny– Juza NaZnX (X= P, As and Sb) compounds at high pressure: Theoretical investigation of structural, electronic and vibrational properties, Comput. Mater. Sci. 87, 187 (2014)
https://doi.org/10.1016/j.commatsci.2014.02.018
22 W. Kohn and L. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
https://doi.org/10.1103/PhysRev.140.A1133
23 B. Zhu, Y. Cheng, Z. W. Niu, M. Zhou, and M. Gong, LDA+U calculation of structural and thermodynamic properties of Ce2O3, Front. Phys. 9(4), 483 (2014)
https://doi.org/10.1007/s11467-014-0414-4
24 B. Hammer, L. B. Hansen, and J. K. Norskov, Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals, Phys. Rev. B 59(11), 7413 (1999)
https://doi.org/10.1103/PhysRevB.59.7413
25 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
26 S. H. Vosko, L. Wilk, and M. Nusair, Accurate spindependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys. 58(8), 1200 (1980)
https://doi.org/10.1139/p80-159
27 D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45(7), 566 (1980)
https://doi.org/10.1103/PhysRevLett.45.566
28 J. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23(10), 5048 (1981)
https://doi.org/10.1103/PhysRevB.23.5048
29 X. L. Yuan, M. A. Xue, W. Chen, and T. Q. An, Concentration-dependent crystal structure, elastic constants and electronic structure of ZrxTi1-x alloys under high pressure, Front. Phys. 9(2), 219 (2014)
https://doi.org/10.1007/s11467-013-0391-z
30 Y. Y. Qi, Z. W. Niu, C. Cheng, and Y. Cheng, Structural and elastic properties of Ce2O3 under pressure from LDA+U method, Front. Phys. 8(4), 405 (2013)
https://doi.org/10.1007/s11467-013-0331-y
31 B. G. Pfrommer, M. Cote, S. G. Louie, and M. L. Cohen, Relaxation of crystals with the quasi-Newton method, J. Comput. Phys. 131(1), 233 (1997)
https://doi.org/10.1006/jcph.1996.5612
32 B. B. Karki, G. J. Ackland, and J. Crain, Elastic instabilities in crystals from ab initio stress-strain relations, J. Phys.: Condens. Matter 9(41), 8579 (1997)
https://doi.org/10.1088/0953-8984/9/41/005
33 R. M. Wentzcovitch, N. L. Ross, and G. D. Price, Ab initio study of MgSiO3and CaSiO3 perovskites at lower-mantle pressures, Phys. Earth Planet. Inter. 90(1-2), 101 (1995)
https://doi.org/10.1016/0031-9201(94)03001-Y
34 Z. L. Lv, Y. Cheng, X. R. Chen, and G. F. Ji, Electronic, elastic and thermal properties of SrCu2As2 via first principles calculation, J. Alloys Compd. 570, 156 (2013)
https://doi.org/10.1016/j.jallcom.2013.03.132
35 R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Soc. London A 65(5), 349 (1952)
https://doi.org/10.1088/0370-1298/65/5/307
36 M. A. Blanco, E. Francisco, and V. Luana, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun. 158(1), 57 (2004)
https://doi.org/10.1016/j.comphy.2003.12.001
37 M. Flórez, J. M. Recio, E. Francisco, M. A. Blanco, and A. M. Pendas, First-principles study of the rocksalt-cesium chloride relative phase stability in alkali halides, Phys. Rev. B 66(14), 144112 (2002)
https://doi.org/10.1103/PhysRevB.66.144112
38 E. Francisco, M. A. Blanco, and G. Sanjurjo, Atomistic simulation of SrF2 polymorphs, Phys. Rev. B 63(9), 094107 (2001)
https://doi.org/10.1103/PhysRevB.63.094107
39 D. Vogel, P. Kruger, and J. Pollmann, Structural and electronic properties of group-III nitrides, Phys. Rev. B 55(19), 12836 (1997)
https://doi.org/10.1103/PhysRevB.55.12836
40 G. K. H. Madsen, Automated search for new thermoelectric materials: The case of LiZnSb, J. Am. Chem. Soc. 128(37), 12140 (2006)
https://doi.org/10.1021/ja062526a
41 F. D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30(9), 244 (1944)
https://doi.org/10.1073/pnas.30.9.244
42 M. P. Ghimire, T. P. Sandeep, T. P. Sinha, and R. K. Thapa, First principles study of the electronic and magnetic properties of semi-Heusler alloys NiXSb (X= Ti, V, Cr and Mn), J. Alloys Compd. 509(41), 9742 (2011)
https://doi.org/10.1016/j.jallcom.2011.08.017
43 S. L. Shang, A. Saengdeejing, Z. G. Mei, D. E. Kim, H. Zhang, S. Ganeshan, Y. Wang, and Z. K. Liu, Firstprinciples calculations of pure elements: Equations of state and elastic stiffness constants, Comput. Mater. Sci. 48(4), 813 (2010)
https://doi.org/10.1016/j.commatsci.2010.03.041
44 P. Wang, Y. Cheng, X. H. Zhu, X. R. Chen, and G. F. Ji, First principles investigations on elastic and electronic properties of BaHfN2 under pressure, J. Alloys Compd. 526, 74 (2012)
https://doi.org/10.1016/j.jallcom.2012.02.118
45 Y. Fan, Y. N. Osetsky, S. Yip, and B. Yildiz, Onset mechanism of strain-rate-induced flow stress upturn, Phys. Rev. Lett. 109(13), 135503 (2012)
https://doi.org/10.1103/PhysRevLett.109.135503
46 Y. Fan, Y. N. Osetskiy, S. Yip, and B. Yildiz, Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations, Proc. Natl. Acad. Sci. USA 110(44), 17756 (2013)
https://doi.org/10.1073/pnas.1310036110
47 P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84(9), 4891 (1998)
https://doi.org/10.1063/1.368733
48 J. He, E. Wu, H. Wang, R. Liu, and Y. Tian, Ionicities of boron-boron bonds in B12 icosahedra, Phys. Rev. Lett. 94(1), 015504 (2005)
https://doi.org/10.1103/PhysRevLett.94.015504
49 S. F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45(367), 823 (1954)
https://doi.org/10.1080/14786440808520496
50 R. S. Mulliken, Electronic population analysis on LCAO– MO molecular wave functions, J. Chem. Phys. 23(10), 1833 (1955)
https://doi.org/10.1063/1.1740588
51 M. D. Segall, R. Shah, C. J. Pickard, and M. C. Payne, Population analysis of plane-wave electronic structure calculations of bulk materials, Phys. Rev. B 54(23), 16317 (1996)
https://doi.org/10.1103/PhysRevB.54.16317
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed