Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (2): 121201   https://doi.org/10.1007/s11467-016-0583-4
  本期目录
A survey of dark matter and related topics in cosmology
Bing-Lin Young()
Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
 全文: PDF(17860 KB)  
Abstract

This article presents an extensive review of the status of the search of the dark matter. The first eight sections are devoted to topics in dark matter and its experimental searches, and the rest to selected topics in astrophysics and cosmology, which are intended to supply some of the needed background for students in particle physics. Sections 9 and 13 are introductory cosmology. The three astrophysical topics, Big Bang nucleosynthesis Section 10, Boltzmann transport equation and freeze out of massive particles Section 11, and CMB anisotropy Section 12 can all be studied in analytical approaches when reasonable approximations are made. Their original analytically forms, to which this article follows very closely, were given by particle physicists. Dark matter is an evolving subject requiring timely update to stay current. Hence a review of such a subject matter would undoubtedly have something wanting when it appears in print. It is hoped that this review can form a humble basis for those graduate students who would like to pursue the subject of dark matter. The reader can use the extensive table of contents to see in some details the materials covered in the article.

Key wordsdark matter    CMB anisotropy    Boltzmann transport equation    freeze out of massive particles
收稿日期: 2016-04-14      出版日期: 2016-10-17
Corresponding Author(s): Bing-Lin Young   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(2): 121201.
Bing-Lin Young. A survey of dark matter and related topics in cosmology. Front. Phys. , 2017, 12(2): 121201.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0583-4
https://academic.hep.com.cn/fop/CN/Y2017/V12/I2/121201
1 S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61, 1 (1989)
https://doi.org/10.1103/RevModPhys.61.1
2 D. J. Gross, The frontier physicist, Nature 467(7317), S8 (2010)
https://doi.org/10.1038/467S8a
3 E. W. Kolb, Particle Physics and Cosmology, in: K. L. Peach and L. L. J. Vick (Eds.), St. Andrews, 1993, Proceedings, High Energy Phenomenology, arXiv: astroph/9403007
4 G. Aad, et al.. (ATLAS Collaboration), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012), arXiv: 1207.7214 [hep-ex]
https://doi.org/10.1016/j.physletb.2012.08.020
5 S. Chatrchyan, et al.. (CMS Collaboration), Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30 (2012), arXiv: 1207.7235 [hep-ex]
https://doi.org/10.1016/j.physletb.2012.08.021
6 S. Chatrchyan, et al.. (CMS Collaboration), Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs, Phys. Rev. Lett. 110(8), 081803 (2013)
https://doi.org/10.1103/PhysRevLett.110.081803
7 G. Aad, et al.. (Atlas Collaboration), Evidence for the spin-0 nature of the Higgs boson using ATLAS data, Phys. Lett. B 726, 120 (3013), arXiv: 1307.1432 [hepex]
8 Y. Baryshev, Paradoxes of cosmological physics in the beginning of the 21st century, in: Proceedings of the XXX-th International Workshop on High Energy Physics- Particle and Astroparticle Physics, Gravitation and Cosmology- Predictions, Observations and New Projects, June 23-27, 2014, in Protvino, Moscow region, Russia; arXiv: 1501.01919 [physics.gen-ph]
9 D. N. Apergel, et al., Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology, Astrophys. J. Suppl. 170, 377 (2007), arXiv: astro-ph/0603449
10 This is the WMAP third data release made in March 2006. See The WMAP homepage including the WMAP 9-year results can be found at.
11 J. Beringer, et al. (Particle Data Group), The review of particle physics, Phys. Rev. D 86, 010001 (2012)
https://doi.org/10.1103/PhysRevD.86.010001
12 A list of publications on various aspects of the Planck data can be found in
13 K. A. Olive, et al. (Particle Data Group), The review of particle physics, Chin. Phys. C 38, 090001 (2014)
14
15 L. Zappacosta, et al., Studying the WHIM content of the galaxy large-scale structures along the line of sight to H 2356-309, arXiv: 1004.5359 [astro-p-CO]
16
17 E. Komatsu, et al., Five-year Wilkinson Microwave Anisotropy ProbeObservations: Cosmological interpretation, Astrophys. J. Suppl. 180(2), 330 (2009), arXiv: 0803.0547
18 K. A. Olive, TASI lecture on dark matter, arXiv: astroph/0301505
19 H. Murayama, Physics beyond the standard model and dark matter, Lecture given in Les Houches 2006, arXiv: 0704.2276 [hep-ph]
20 F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helvetica Physica Acta 6, 110U127 (1933); See also: F. Zwicky, On the masses of nebulae and of clusters of nebulae, Astrophys. J. 86, 217 (1937)
https://doi.org/10.1086/143864
21 J. Einasto, Dark Matter, Astronomy and Astrophysics 2010, Eds. O. Engvold, R. Stabell, B. Czerny, and J. Lattanzio, in: Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK; arXiv: 0901.0632 [astro-ph.CO]
22 K. Freeman and G. McNamara, In Search of Dark Matter, Springer, 2006
23 H. Zinkernagel, High-energy physics and reality-some philosophical aspects of a science, Ph.D. thesis, 1998, Niels Boho Institute, pp 4–5
24 G. Bertone, D. Hooper, and J. Silk, Particle dark matter: Eidence, candidates and constraints, Phys. Rep. 405, 279 (2005), arXiv: hep-ph/0404175
https://doi.org/10.1016/j.physrep.2004.08.031
25 G. B. Gelmini, TASI 2014 Lectures: The hunt for dark matter, arXiv: 1502.01320 [hep-ph]
26 Powerpoint presentations of talks given at the 42nd SLAC Summer Institute (2014) can be found at
27 J. Primack, A brief history of dark matter
28 V. Springel, S. D. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J. Navarro, R. Thacker, D. Croton, J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman, A. Evrard, J. Colberg, and F. Pearce, Simulations of the formation, evolution and clustering of galaxies and quasars, Nature 435(7042), 629 (2005), arXiv: astroph/0504097
29 NASA images from Large Synoptic Survey Telescope (LSST)
30 M. Bartelmann and P. Schneider, Weak gravitational lensing, Phys. Rep. 340(4-5), 291 (2001)
https://doi.org/10.1016/S0370-1573(00)00082-X
31 R. Massey, J. Rhodes, R. Ellis, N. Scoville, A. Leauthaud, et al., Dark matter maps reveal cosmic scaffolding, Nature 445 (7125), 286 (2007)
https://doi.org/10.1038/nature05497
32 O. Goske, B. Moore, J. Kneib, and G. Soucail, A wide-field spectroscopic survey of the cluster of galaxies Cl0024+ 1654-II. A high–speed collision? Astron. Astrophys. 386, 31 (2002)
33 More can be found in
34 F. Kahlhoefer, K. Schmidt-Hoberg, M.T. Frandsen, and S. Sarkar, Colliding clusters and dark matter selfinteractions, Mon. Not. R. Astron. Soc. 437, 2865 (2014), arXiv: 1308.3419 [astro-ph.CO]
https://doi.org/10.1093/mnras/stt2097
35 https://chandra.harvard.edu/photo/2006/1e0657/
36 D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, A direct empirical proof of the existence of dark matter, Astrophys. J. 648, L109 (2006), arXiv: astro-ph/0608407
https://doi.org/10.1086/508162
37
38 G. W. Angus, B. Famaey, and H. S. Zhao, Can MOND take a bullet? Analytical comparisons of three versions of MOND beyond spherical symmetry, Mon. Not. R. Astron. Soc. 371, 138 (2006), arXiv: astro-ph/0606216
https://doi.org/10.1111/j.1365-2966.2006.10668.x
39 M. Bradač, S. W. Allen, T. Treu, H. Ebeling, R. Massey, R. G. Morris, A. von der Linden, and D. Applegate Revealing the properties of dark matter in the merging cluster MACSJ0025.4-1222, arXiv: 0806.2320 [astroph]; a NASA news release at: . A short video can be found at
40 D. Harvey, R. Massey, T. Kitching, A. Taylor, and E. Tottley, The non-gravitational interactions of dark matter in colliding galaxy clusters, Science 347, 1462 (2015), arXiv: 1503.07675 [astro-ph.CO]
41 R. Massey, et al., The behaviour of dark matter associated with 4 bright cluster galaxies in the 10kpc core of Abell 3827, Mon. Not. R. Astron. Soc. 449, 3393 (2015), arXiv: 1504.03388 [astroph.CO]
42 J. Navarro, C. S. Frenk, and S. D. White, The structure of cold Dark Matter Halos, Astrophys. J. 462, 563 (1886), arXiv: astro-ph/9508025
https://doi.org/10.1086/177173
43 J. Navarro, C. S. Frenk, and S. D. White, Universal density profile from hierarchical clustering, Astrophys. J. 490, 493 (1997), arXiv: astro-ph/9611107
https://doi.org/10.1086/304888
44 J. Einasto, On the construction of a composite model for the galaxy and on the determination of the system of galactic parameters, Trudy Astrofizicheskogo Instituta Alma-Ata 5, 87 (1965)
45 D. Merritt, A. W. Graham, B. Moore, J. Diemand, and B. Terzic, Empirical models for Dark Matter Halos. I. Nonparametric construction of density profiles and comparison with parametric models, Astrophys. J. 132, 2685 (2006), arXiv: astro-ph/0509417
https://doi.org/10.1086/508988
46 A. A. Dutton and A. V. Macciò, Cold dark matter haloes in the Planck era: Evolution of structural parameters for Einasto and NFW profiles, Mon. Not. R. Astron. Soc. 441, 3359 (2014), arXiv: 1402.7073 [Astroph.CO]
https://doi.org/10.1093/mnras/stu742
47 A. Burkert, The structure of dark matter haloes in dwarf galaxies, Astrophys. J. 447, L25 (1995), arXiv: astroph/9504041
48 M. Pierre, J. M. Siegal-Gaskins, and P. Scott, Sensitivity of CTA to dark matter signals from the galactic center, JCAP 1406, 024 (2014), arXiv: 1401.7330 [astroph. HE]; Erratum: JCAP 1410, E01 (2014)
49 V. Vikram, et al.. (DES Collaboration), Wide-Field lensing mass Maps from DES science verification data, arXiv: 1504.03002 [astro-ph.CO]
50 D. Scott and G. F. Smoot, Cosmic Microwave Background, given in Ref. [13]
51 D. H. Weinberg, J. S. Bullock, F. Gevernato, R. K. de Naray, and A. H. G. Peter, Cold dark matter: Controversies on small scales, Proceedings of the National Academy of Sciences of the USA (PNAS), approved Dec. 2, 2014; arXiv: 1306.0913 [astro-ph.CO]
52 M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat, Too big to fail? The puzzling darkness of massive Milky Way subhaloes, Mon. Not. R. Astron. Soc. 415, L40 (2011), arXiv: 1103.0007 [astro-ph.CO]
https://doi.org/10.1111/j.1745-3933.2011.01074.x
53 E. Papastergis, R. Giovanelli, M. P. Haynes, and F. Shanka, Is there a “too big to fail” problem in the field? Astron. Astrophys. 574, A113 (2015), arXiv: 1407.4665 [astro-ph/GA]
https://doi.org/10.1051/0004-6361/201424909
54 J. R. Primack, Cosmological structure formation, arXiv: 1505.02821 [astro-ph.GA]
55 A. Schneider, D. Amderjadem, A. V. Maccio, and J. Diemand, Warm dark matter does not do better than cold dark matter in solving small-scale inconsistencies, Mon. Not. R. Astron. Soc. 441, 6 (2014), arXiv: 1309.5960 [astro-ph.CO]
https://doi.org/10.1093/mnrasl/slu034
56 D. N. Spergel and P. J. Steinhardt, Observational evidence for self-interacting cold dark matter, Phys. Rev. Lett. 84(17), 3760 (2000), arXiv: astro-ph/9909386
https://doi.org/10.1103/PhysRevLett.84.3760
57 M. Milgrom, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophys. J. 270, 365 (1983)
https://doi.org/10.1086/161130
58 J. D. Bekenstein, Relativistic gravitation theory for the MOND paradigm, Phys. Rev. D 70, 083509 (2004), arXiv: astro-ph/0403694
https://doi.org/10.1103/PhysRevD.70.083509
59 B. Famaey and S. McGaugh, Modified Newtonian Dynamics (MOND): Observational phenomenology and relativistic extension, arXiv: 1112.3960 [astro-ph.CO]
60 I. Ferreras, N. Mavromatos, M. Sakellariadou, and M. F. Yusaf, Confronting MOND and TeVeS with strong gravitational lensing over galactic scales: An extended survey, Phys. Rev. D 86, 083507 (2012), arXiv: 1205.4880 [astro-ph.CO]
https://doi.org/10.1103/PhysRevD.86.083507
61 J. W. Moffat, Scalar-tensor-vector gravity theory, JCAP 0603, 004 (2006), arXiv: gr-qc/0506021
62 C. Tao, Astrophysical constraints on dark Matter, to appear in the proceedings of CYGNUS 2011: 3rd Workshop on directional detection of dark matter (conference: C11-06-08), arXiv: 1110.0298 [astro-ph.CO]
63
64 C. Munoz, Direct WIMP search and theoretical scenario, TAUP 2011
65 M. Drees and G. Gerbier, Dark Matter, review article given in Ref. [13]
66 F. Iocco, M. Pato, and G. Bertone, Evidence for dark matter in the inner Milky Way, Nat. Phys. 11, 245 (2015), arXiv: 1502.03821 [astoph.GA]
67 M. Pato and F. Iocco, The dark matter profile of the Milky Way: A non-parametric reconstruction, Astrophys. J. 803, L3 (2015), arXiv: 1504.03317 [astrpph. GA]
68 J. Silk, The Big Bang, Freeman, 1988
69 J. R. Bond, J. Centgrella, and A. S. Wilson, Dark matter and shocked pancakes, in: Proceedings of the Third Moriond Astrophysics Meeting, Formation and evolution of galaxies and large structures in the universe, edited by J. Audouze and J. Tran Thanh Van, Reidel, Dordrecht, 1984, pp 87–99
https://doi.org/10.1007/978-94-009-7245-2_5
70 J. R. Primack and G. R. Blumenthal, What is the Dark Matter, in: Proceedings of the third Moriond Astrophysics Meeting, Formation and evolution of galaxies and large structures in the universe, edited by J. Audouze and J. Tran Thanh Van, Reidel, Dordrecht, 1984, pp 162–183
71 Daniel Chalonge Workshop CIAS Meudon 2010-2014
72 G. Gelmini and P. Gondolo, DM production mechanisms, Ch. 7 of Particle Dark Matter: Observations, Models and Searches, edited by G. Bertone, Cambridge University Press, 2010, arXiv: 1009.3690 [astro-ph.CO]
73 H. Baer, K.Y. Choi, E. Kim, and L. Roszkowski, Dark matter production in the early universe: Beyond the thermal WIMP paradigm, Phys. Rep. 555, 1 (2014), arXiv: 1407.0017 [hep-ph]
https://doi.org/10.1016/j.physrep.2014.10.002
74 E. W. Kolb and M. S. Turner, The Early Universe, Addison-Wesley, 1989
75 G. L. Kane, P. Kumar, B. D. Nelson, and B. Zhang, Dark matter production mechanisms with a nonthermal cosmological history- A classification, arXiv: 1502.05406 [hep-ph]
76 L. D. Duffy and K. Van Bibber, Axions as dark matter particles, New J. Phys. 11, 105008 (2009), arXiv: 0904.3346 [hep-ph]
https://doi.org/10.1088/1367-2630/11/10/105008
77 P. Sikivie, Dark matter axions, Int. J. Mod. Phys. A 25, 554 (2010), arXiv: 0909.0949 [hep-ph]
https://doi.org/10.1142/S0217751X10048846
78 D. Hooper, Kaluza-Klein dark matter, in Proceeding of the Workshop on Exotic Physics with Neutrino Telescopes, 2006, available at:
79 K. Griest and M. Kamionkowski, Unitarity limits on the mass and radius of dark-matter particles, Phys. Rev. Lett. 64(6), 615 (1990)
https://doi.org/10.1103/PhysRevLett.64.615
80 D. J. H. Chung, E. W. Kolb, and A. Riotto, Nonthermal Supermassive Dark Matter, Phys. Rev. Lett. 81, 4048 (1998), arXiv: hep-ph/9805473; WIMPZILLAS! Proceedings of the 2nd International Conference on dark matter in astro and particle physics, arXiv: hepph/ 9810361
81 V. Kuzmin and T. I. Tkachev, Matter creation via vacuum fluctuations in the early universe and observed ultra-high energy cosmic ray events, Phys. Rev. D 59, 123006 (1999), arXiv: hep-ph/9809547
https://doi.org/10.1103/PhysRevD.59.123006
82 J. A. Frieman, G. B. Gelmini, M. Gleiser, and E. W. Kolb, Primordial origin of nontopological solitons, Phys. Rev. Lett. 60(21), 2101 (1988)
https://doi.org/10.1103/PhysRevLett.60.2101
83 A. L. Macpherson and B. A. Campbell, Biased discrete symmetry breaking and Fermi balls, Phys. Lett. B 347, 205 (1995), arXiv: hep-ph/9408387
https://doi.org/10.1016/0370-2693(95)00080-5
84 R. B. Metcalf and J. Silk, New constraints on macroscopic compact objects as dark matter candidates from gravitational lensing of type Ia supernovae, Phys. Rev. Lett. 98(7), 071302 (2007)
https://doi.org/10.1103/PhysRevLett.98.071302
85 Goddard Space Flight Center, Dark Matter may be Black Hole Pinpoints. NASA’s Imagine the Universe.
86 M. Kesden and S. Hanasoge, Transient solar oscillation driven by primordial black holes, Phys. Rev. Lett. 107, 111101 (2011), arXiv: 1106.0011 [astro-ph.CO]
https://doi.org/10.1103/PhysRevLett.107.111101
87 J. L. Feng and J. Kumar, Dark-matter particles without weak-scale masses or weak interactions, Phys. Rev. Lett. 101(23), 231301 (2008)
https://doi.org/10.1103/PhysRevLett.101.231301
88 K. K. Boddy, J. L. Feng, M. Kaplinghat, Y. Shadmi, and T. M. P. Tait, Strongly interaction dark: Selfinteractions and keV lines, Phys. Rev. D 90, 095016 (2014), arXiv: 1408.6532 [hep-ph]
https://doi.org/10.1103/PhysRevD.90.095016
89 R. Essig, et al., Working Group Report: Dark sectors and new, light, weakly-coupled particles, arXiv: 1311.0029 [hep-ph]
90 G. Steigman and M. S. Turner, Cosmological constraints on the properties of weakly interacting massive particles, Nucl. Phys. B 253, 375 (1985)
https://doi.org/10.1016/0550-3213(85)90537-1
91 N. Daci, I. De Bruyn, S. Lowette, M. H. G. Tytgat, and B. Zaldivar, Simplified SIMOs and the LHC, arXiv: 1503.05505 [hep-ph]
92 Y. Hochberg, E. Kuflik, T. Volansky, and J. G. Wacker, The SIMP miracle, Phys. Rev. Lett. 113, 171301 (2014)
https://doi.org/10.1103/PhysRevLett.113.171301
93 N. Bernal, C. Garcia-Cely, and R. Rosenfeld, WIMP and SIMP dark matter from the spontaneous breaking of a globle group, arXiv: 1501.0197 [hep-ph]
94 J. L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48, 495 (2010), arXiv: 1003.0904 [astro-ph.CO]
95 L. Roszkowski, Particle dark matter — A theorist’s perspective, Pramana 62, 389 (2004)
https://doi.org/10.1007/BF02705097
96 Report on the Direct Detection and Study of Dark Matter, The Dark Matter Scientific Assessment Group, A Joint Sub-panel of HEPAP and AAAC, p. 59,
97 S. Tremaine and J. E. Gunn, Dynamical role of light neutral leptons in cosmology, Phys. Rev. Lett. 42, 407 (1979)
https://doi.org/10.1103/PhysRevLett.42.407
98 J. Madsen, Phase-space constraints on bosonic and fermionic dark matter, Phys. Rev. Lett. 64(23), 2744 (1990) J. Madsen, Generalized Tremaine-Gunn limits for bosons and fermions, Phys. Rev. D 44(4), 999 (1991)
https://doi.org/10.1103/PhysRevD.44.999
99 F. Wilczek, Asymptotic Freedom: From Paradox to Paradigm, Nobel Lecture, December 8, 2004
100 J. Ellis and K. A. Olive, in: Particle Dark Matter, Observations, Models and Searches, Cambridge University Press, 2010, Ch. 8, Supersymmetric dark matter candidates, arXiv: 1001.3651 [astro-ph.CO]
101 S. Dodelson, Modern Cosmology, Academic Press, 2003
102 F. Bezrukov, Light sterile neutrino dark matter in extensions of the standard model, talk given at the Workshop CIAS Neudon 2011, Warm Dark matter in the galaxies: Theoretical and observational progress, June 8-10, 2011
103 M. R. Lovell, V. Eke, C. S. Frenk, L. Gao, A. Jenkins, T. Theuns, J. Wang, S. D. M. White, A. Boyarsky, and O. Ruchayskiy, The haloes of bright satellite galaxies in a warm dark matter universe, Mon. Not. R. Astron. Soc. 420, 2318 (2012), arXiv: 1104.2929 [astro-ph.CO]
https://doi.org/10.1111/j.1365-2966.2011.20200.x
104 N. Smith, Status update on deep underground facilities, talk given in TAUP 2011
105 H. Chen, Underground laboratory in China, Eur. Phys. J. Plus 127, 105 (2012)
https://doi.org/10.1140/epjp/i2012-12105-0
106 Focus point on Deep Underground Science Laboratories and Projects, edited by A. Bettini, Eur. Phys. J. Plus 127, Sep. 2012
107 J. D. Lewin and P. F. Smith, Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6, 87 (1996)
https://doi.org/10.1016/S0927-6505(96)00047-3
108 E. Armengaud, Gif Lectures on direct detection of dark matter, arXiv: 1003.2380 [hep-ph]
109 G. Jungman, M. Kamionkowski, and K. Girest, Supersymmetric dark matter, Phys. Rep. 267, 195 (1996), arXiv: hep-ph/9506380
https://doi.org/10.1016/0370-1573(95)00058-5
110 K. Freese, J. Frieman, and A. Gould, Signal modulation in cold-dark-matter detection, Phys. Rev. D 37(12), 3388 (1988)
https://doi.org/10.1103/PhysRevD.37.3388
111 D. R. Tovey, R. J. Gaitskell, P. Gondolo, Y. A. Ramachers, and L. Roszkowski. A new model-independent method for extracting spin-dependent cross section limits from dark matter searches, Phys. Lett. B 488, 17 (2000), arXiv: hep-ph/0005041
https://doi.org/10.1016/S0370-2693(00)00846-7
112 Dark Matter Portal,
113 Dark Matter Hub,
114 S. C. Kim, et al.. (KIMS Collaboration), New limits on interactions between weakly interacting massive particles and nucleons obtained with CsI(Tl) Crystal Detectors, Phys. Rev. Lett. 108, 181301 (2012), arXiv: 1204.2646 [astro-ph.CO]
https://doi.org/10.1103/PhysRevLett.108.181301
115 9th International Conference: Identification of Dark Matter, July 23-27, 2012, Chicago.
116 T. Saab, An introduction to dark matter direct detection searches & techniques, arXiv: 1203.2566 [physics.ins-det]
117 M. Boezio, et al.. (PAMELA Collaboration), PAMELA and indirect dark matter searches, New J. Phys. 11, 102053 (2009)
https://doi.org/10.1088/1367-2630/11/10/105023
118 D. Hooper, D. P. Finkbeiner, and G. Dobler, Evidence of dark matter annihilations in the WMAP haze, Phys. Rev. D 76, 083012 (2007), arXiv: 0705.3655 [Astro-ph]
https://doi.org/10.1103/PhysRevD.76.083012
119 M. Cirelli, Indirect search for dark matter: A status review, Pramana 79, 1021 (2012), arXiv: 1202.1454 [hepph]
https://doi.org/10.1007/s12043-012-0419-x
120 P. Converners, P. Nath, and B. Nelson, The hunt for New physics at the Large Hadron Collider, Ch. 5, Connecting Dark Matter to the LHC, arXiv: 1001.2693 [hep-ph]
121
122 A. Ringwald, L. J. Rosenberg, and G. Rybka, Axions and other similar particles, a mini review given in Ref. [13]
123 G. G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys. 741, 51 (2008), arXiv: hep-ph/0611350
124 A. Friedland, M. Giannotti, and M. Wise, Constraining the axion-photon coupling with massive stars, Phys. Rev. Lett. 110(6), 061101 (2013)
https://doi.org/10.1103/PhysRevLett.110.061101
125 G. Raffelt, Viewpoint: Particle physics in the sky, Physics 6, 14 (2013)
https://doi.org/10.1103/Physics.6.14
126 I. N. T. Workshop, 12-50W Vistas in Axion Physics: A Roadmap for theoretical and Experimental Axion Physics through 2050, April 23-26, 2012, Seatle.
127 C. Athanassopoulos, L. B. Auerbach, D. A. Bauer, R. D. Bolton, B. Boyd, et al., Candidate Events in a Search for Muon Antineutrino to Electron Antineutrino Oscillations, Phys. Rev. Lett. 75(14), 2650 (1995), arXiv: nucl-ex/9504002
https://doi.org/10.1103/PhysRevLett.75.2650
128 This website entitled LSND is a collection of information related to LSND:
129 A. A. Aguilar-Arevalo, et al.. (MiniBooNE Collaboration), Improved Search for ν − ν > υ − e Oscillations in the MiniBooNE Experiment, Phys. Rev. Lett. 110, 161801 (2013)
https://doi.org/10.1103/PhysRevLett.110.161801
130 K. B. M. Mahn, et al.. (MiniBooNE Collaboration), Dual baseline search for muon neutrino disappearance at 0.5 eV2<Δm2<40 eV2, Phys. Rev. D 85, 032007 (2012), arXiv: 1106.5685 [hep-ex]
https://doi.org/10.1103/PhysRevD.85.032007
131 This website contains various information on the sterile neutrino:
132 K. N. Abazajian, et al., Light sterile neutrinos: A white paper, arXiv: 1204.5379 [hep-ph]
133 T. Asaka, S. Blanchet, and M. Shaposhnikov, The vMSM, dark matter and neutrino masses, Phys. Lett. B 631, 151 (2005), arXiv: hep-ph/0503065
https://doi.org/10.1016/j.physletb.2005.09.070
134 T. Asaka and M. Shaposhnikov, The MSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620, 17 (2005), arXiv: hep-ph/0505013
https://doi.org/10.1016/j.physletb.2005.06.020
135 A. Kusenko, Sterile neutrinos: The dark side of the light fermions, Phys. Rep. 481, 1 (2009), arXiv: 0906.2968 [hep-ph]
https://doi.org/10.1016/j.physrep.2009.07.004
136 A. Boyarsky, D. Iakubovskyi, and O. Ruchayskiy, Next decade of sterile neutrino studies, Phys. Dark Univ. 1, 136 (2012), arXiv: 1306.4954 [astro-ph.CO]
137 The Sterile Neutrinos references and useful link website:
138 E. Bulbul, et al., Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters, Astrophy. J. 789, 13 (2014), arXiv: 1402.2301 [astropph. CO]
https://doi.org/10.1088/0004-637X/789/1/13
139 A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, and J. Franse, An unidentified line in X-ray of the Andromeda and Sperseus galaxy cluster, Phys. Rev. Lett. 113, 251301 (2014), arXiv: 1402.4119 [astro-ph.CO]
https://doi.org/10.1103/PhysRevLett.113.251301
140 K. N. Abazajian, Resonantly-produced 7 KeV sterile neutrino dark matte models and the properties of Milky Way satellites, Phys. Rev. Lett. 112, 161303 (2014), arXiv: 1403.0954 [astro-ph.CO]
https://doi.org/10.1103/PhysRevLett.112.161303
141 R. Bernabei, et al. (DAMA/LIBRA Collaboration), New results from DAMA/LIBRA, Eur. Phys. J. C 67, 39 (2010), arXiv: 1002.1028 [astro-ph.GA]
https://doi.org/10.1140/epjc/s10052-010-1303-9
142 R. Angnese, et al. (CDMS Collaboration), Silicon Detector Dark Matter Results from the Final Exposure of CDMS II, Phys. Rev. Lett. 111, 251401 (2013), arXiv: 1304.4279 [hep-ex]
143 C. E. Aaseth, et al.. (CoGeNT Collaboration), CoGeNT: A Search for Low-Mass Dark Matter using p-type Point Contact Germanium Detectors, Phys. Rev. D 88, 012002 (2013), arXiv: 1208.5737 [astro-ph.CO]
https://doi.org/10.1103/PhysRevD.88.012002
144 G. Angloher, et al.. (CRESST Collaboration), Results from 730 kg days of the CRESST-II Dark Matter Search, Eur. Phys. J. C 72, 1971 (2012), arXiv: 1109.0702 [astro-ph.CO]
https://doi.org/10.1140/epjc/s10052-012-1971-8
145 P. Belli, Results from DAMA/LIBRA and perspectives of phase 2, talk given at Aspen 2013-Closing in on Dark Matter, January 28-February 3, 2013
146 P. Belli, Results and strategisties for dark matter investigations, talk at NDM 2015, Jyvaskyla, Finland, June 1-5, 2015
147 DAMA Collaboration homepage:
148 M. Drees and G. Gerbier, Dark matter, a mini review in Ref. [11]
149 K. Blum, DAMA vs. the annually modulated muon background, arXiv: 1110.0857 [astroph.HE]
150 J. Klinger and V. A. Kudryavtsev, Muon-induced neutrons do not explain the DAMA data, Phys. Rev. Lett. 114, 151301 (2015), arXiv: 1503.07225 [hep-ph]
151 C. Arina, E. Del Nobile, and P. Panci, Dark matter with pseudoscalar-mediated interactions explains the DAMA signal and the galactic center excess, Phys. Rev. Lett. 114(1), 011301 (2015)
https://doi.org/10.1103/PhysRevLett.114.011301
152 J. Cherwinka, et al. (DM-Ice Collaboration), First data from DM-Ice17, Phys. Rev. D 90, 092005 (2014), arXiv: 1401.4804 [astro-ph.IM]
https://doi.org/10.1103/PhysRevD.90.092005
153 R. Agnese, et al. (The SuperCDMS Collaboration), Search for low-mass weakly interacting massive particles with SuperCDMS, Phys. Rev. Lett. 112(24), 241302 (2014)
https://doi.org/10.1103/PhysRevLett.112.241302
154 P. Cushman, Lecture given at the 2014 SLAC Summer Institute [26], entitled WIMP Direct Detection Searches: Solid State Technologies
155 B. Angloher, et al. (The EURECA Collaboration), EURECA conceptual design report, Physics of the Dark Universe 3, 41–74 (2014)
156 C. E. Aalseth, et al. (CoGeNT Collaboration), Results from a Search for Light-Mass Dark Matter with a p-type Point Contact Germanium Detector, Phys. Rev. Lett. 106, 131301 (2011), arXiv: 1002.4703 [astro-ph.CO]
https://doi.org/10.1103/PhysRevLett.106.131301
157 C. E. Aalseth, et al. (CoGeNT Collaboration), Search for an Annual Modulation in a p-type Point Contact Germanium Dark Matter Detector, Phys. Rev. Lett. 107, 141301 (2011), arXiv: 1106.0650 [astro-ph.CO]
https://doi.org/10.1103/PhysRevLett.107.141301
158 P. J. Fox, J. Kopp, M. Lisanti, and N. Weiner, A Co- GeNT modulation analysis, Phys. Rev. D 85, 036008 (2012), aXiv: 1107.0717 [hep-ph]
159 C. McCabe, DAMA and CoGeNT without astrophysical uncertainties, arXiv: 1107.0741 [hep-ph]
160 J. Herrero-Garcia, T. Schwetz, and J. Zupan, Astrphysics independent bounds on the annual modulation of dark matter signals, arXiv: 1205.0134 [hep-ph]
161 E. Aprile, et al. (XENON100 Collaboration), First dark matter result from the XENON100 experiment, arXiv: 1005.0389 [astro-ph.CO]
162 C. C. Aalseth, et al., Search for an annual modulation in three years of CoGeNT dark matter detector data, arXiv: 1401.3295 [astro-ph.CO]
163 J. H. Davis, C. McCabe, and C. Boehm, Quantifying the evidence for dark matter in CoGeNT data, JCAP 1408, 014 (2014), arXiv: 1405.0495 [hep-ph]
164 G. Angloher, et al. (CRESST Collaboration), Results frm 730 kg days of the CRESST-II Dark Matter Search, Eur. Phys. J. C 72, 1971 (2012), arXiv: 1109.0702 [astro-ph.CO]
https://doi.org/10.1140/epjc/s10052-012-1971-8
165 G. Angloher, et al. (CRESST Collaboration), Results on low mass WIMPs using an upgraded CRESST-II detector, Eur. Phys. J. C 74 3184 (2014), arXiv: 1407.3146 [astro-ph.CO]
https://doi.org/10.1140/epjc/s10052-014-3184-9
166 X.-J. Bi, P.-F. Yin, and Q. Yuan, Status of dark matter detection, Front. Phys. 8, 794 (2013), arXiv: 1409.4590 [hep-ph]
https://doi.org/10.1007/s11467-013-0330-z
167 M. Boudaud, et al., A new look at the cosmic ray positron fraction, Astron. Astrophys. 575, A67 (2015)
https://doi.org/10.1051/0004-6361/201425197
168 S.-J. Lin, Q. Yuan, and X.-J. Bi, Quantitative study of the AMS-02 electron/positron spectra: Implications for pulsars and dark matter properties, Phys. Rev. D 91, 063508 (2015), arXiv: 1409.6248 [astro-ph.HE]
https://doi.org/10.1103/PhysRevD.91.063508
169 J. Feng and H. H. Zhang, Pulsar interpretation of the lepton spectra measured by AMS-02, arXiv: 1504.03312 [hep-ph]
170 S. Ting, The AMS Experiment, talk given at the AMS Day at CERN, April 15-17, 2015
171 G. Giesen, M. Boudaud, Y. Génolini, V. Poulin, M. Cirelli, P. Salati, and P. D. Serpico, AMS-02 Antiprotons, at last! Secondary astrophysical component and immediate implications for Dark Matter, arXiv: 1504.04276 [astro-ph.HE]
172 K. Hamaguchi, T. Moroi, and K. Nakayama, AMS-02 Antiprotons from Annihilating or Decaying Dark Matter, Phys. Lett. B 747, 523 (2015), arXiv: 1504.05937 [hep-ph]
173 L. Bergström, Dark matter evidence, particle physics candidates and detection methods, arXiv: 1205.4882
174 C. Weniger, A tentative Gamma-ray line from dark matter annihilation at the Fermi Large Area Telescope, arXiv: 1204.2797 [hep-ph]
175 M. Ackermann, et al. (Fermi-LAT Collaboration), Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope, Phys. Rev. Lett. 107, 241302 (2011), arXiv: 1108.3546 [astro-ph.HE]
https://doi.org/10.1103/PhysRevLett.107.241302
176 A. Geringer-Smith and S. M. Koushiappas, Exclusion of canonical WIMPs by the joint analysis of Milky Way dwarfs with Fermi, Phys. Rev. Lett. 107, 241303 (2011), arXiv: 1108.2914 [astro-ph.CO]
https://doi.org/10.1103/PhysRevLett.107.241303
177 Y-L. S. Tsai, Q. Yuan, and X. Huang, A generic method to constrain the dark matter model parameter from Fermi observations of dwarf spheroids, JCAP 1303, 018 (2013), arXiv: 1212.3990 [astro-ph.HE]
178 S. Ando and D. Nagai, Fermi-LAT constraints on dark matter annihilation cross section from observations of the Fornax cluster, JCAP 1207, 017 (2012), arXiv: 1201.0753 [astro-ph.HE]
179 Jianxin Han, C. S. Frenk, V. R. Eke, and Liang Cao, Constraining Extended Gamma-ray Emission from Galaxy Clusters, Mon. Not. R. Astron. Soc. 427, 1651 (2012), arXiv: 1207.6749 [astro-ph.CO]
https://doi.org/10.1111/j.1365-2966.2012.22080.x
180 S. Ando and E. Komatsu, Constraints on the annihilation cross section of dark matter particles from anisotropies in the diffuse gamma-ray background measured with Fermi-LAT, arXiv: 1301.5901 [astro-ph.CO]
181 M. Ackermann, et al. (Fermi-LAT Collaboration), The spectrum of isotropic diffuse gamma ray emission between 100 MeV and 820 GeV, Astrophys. J. 799, 86 (2015), arXiv: 1410.3696 [astro-ph.DE]
https://doi.org/10.1088/0004-637X/799/1/86
182 M. Fornasa and M. A. Sanchez-Conde, The nature of the diffuse gamma-ray background, arXiv: 1502.02866 [astro-ph.CO]
183 D. Hooper and T. Linden, On the origin of the gamma rays from the galactic center, Phys. Rev. D 84, 123005 (2011), arXiv: 1110.0006 [astro-ph.HE]
https://doi.org/10.1103/PhysRevD.84.123005
184 A. Boyarsky, D. Malyshev, and D. Ruchayskiy, A comment on the emission from the Galactic Center as seen by the Fermi telescope, Phys. Lett. B 705, 165 (2011), arXiv: 1012.5839 [hep-ph]
https://doi.org/10.1016/j.physletb.2011.10.014
185 K. N. Abazajian and M. Kaplinghat, Detection of a gamma-ray source in the galactic center consistent with extended emission from dark matter annihilation and concentrated astrophysical emission, Phys. Rev. D 86, 083511 (2012), Erratum: Phys. Rev. D 87, 129902 (2013), arXiv: 1207.6047 [astro-ph.HE]
186 T. Daylan, D. P. Finkbeiner, D. Hooper, T. Linden, S. K. N. Portillo, N. L. Rodd, and T. R. Slatyer, The characterization of the gamma-ray signal from the central Milky Way: A compelling case for annihilating dark matter, arXiv: 1402.6703 [astro-ph.HE]
187 T. Bringmann, X. Huang, A. Ibarra, S. Vogl, and C. Weniger, Fermi-LAT search for internal bremsstrahlung signatures from dark matter annihilation, JCAP 1207, 054 (2012), arXiv: 1203.1312 [hep-ph]
188 E. Tempel, A. Hektor, and M. Raidal, Fermi 130 GeV gamma-ray excess and dark matter annihilation in subhaloes and in the galactic center, JCAP 1209, 032 (2012), arXiv: 1205.1045 [hep-ph]
189 M. Ackermann, et al., Updated search for spectral lines from galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope, Phys. Rev. D 91, 122002 (2015)
https://doi.org/10.1103/PhysRevD.91.122002
190 N. Prantzos, et al., The 511 KeV emission from positron annihilation in the Galaxy, Rev. Mod. Phys. 83, 1001 (2011), arXiv: 1009.4620 [astro-ph.HE]
https://doi.org/10.1103/RevModPhys.83.1001
191 K. Helbing, et al. (The IceCube Collaboration), IceCube as a discovery observatory for physics beyond the standard model, arXiv: 1107.5227 [hep-ex]
192 R. Kappl and M. W. Winkler, New limits on dark matter from Super-Kamiokande, Nucl. Phys. B 850, 505 (2011) arXiv: 1104.0679 [hep-ph]
https://doi.org/10.1016/j.nuclphysb.2011.05.006
193 M. G. Aartsen, et al., Search for dark matter annihilations in the Sun with the 79-string IceCube detector, Phys. Rev. Lett. 110, 131302 (2013), arXiv: 1212.4097 [astro-ph.HE]
https://doi.org/10.1103/PhysRevLett.110.131302
194 K. Choi, et al. (Super-K Collaboration), Search for neutrinos from annihilation of captured low-mass dark matter particles in the Sun by Super-Kamiokande, arXiv: 1503.04858 [hep-ex]
195 M. G. Aartsen, et al. (IceCube Collaboration), Search for dark matter annihilation in the galactic center with IceCube-79, arXiv: 1505.07259 [astro-ph.HE]
196 F. Donato, N. Fernengo, and P. Salati, Antideuterons as a signature of supersymmetric dark matter, Phys. Rev. D 62, 043003 (2000), arXiv: hep-ph/9904481
https://doi.org/10.1103/PhysRevD.62.043003
197 M. Kadastic, M. Raidal, and A. Strumia, Enhanced anti-deuteron Dark Matter signal and the implications of PAMELA, Phys. Lett. B 683, 248 (2010), arXiv: 0908.1578 [hep-ph]
https://doi.org/10.1016/j.physletb.2009.12.005
198 T. Aramaki, et al., Review of the theoretical and experimental status of dark matter identification with cosmicray antideuterons, arXiv: 1505.07785 [hep-ph]
199 J. B. Billard and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89, 023524 (2024), arXiv: 1307.5458 [hep-ph]
200 M. Schumann, Dark Matter 2014, EPJ Web Conf. 96, 01027 (2015), arXiv: 1501.01200 [astroph.CO]
201 E. Aprile, et al. (XENON Collaboration), Physics reach of the XENON1T dark matter experiment, JCAP 04, 027 (2016), arXiv: 1512.07501 [physics.ins-det]
202 L. Baudis, et al., Neutrino physics with multi-ton scale liquid xenon detector, JCAP 1401, 044 (2014), arXiv: 1309.7024 [physics.ins-det]
203 A. Kish, Direct Dark Matter Detection with Xenon and DARWIN Experiment, PoS TIPP 2014, 164 (2014), C14-06-02 Proceedings
204 D. S. Akerib, et al. (LZ Collaboration), LUX-ZEPLIN (LZ) Conceptual Design Report, LBNL-190005, arXiv: 1509.02910 [physics.ins-det]
205 D. Bauer, et al., Snowmass CF1 Summary: WIMP Dark Matter Direct Detection, arXiv: 1310.8327 [hep-ex]
206 L. Hsu, Direct searches for dark matter, plenary talk given at the ICHEP 2012
207 R. Aaij, et al., First evidence for the decay B s 0 → μ + μ − Phys. Rev. Lett. 110(2), 021801 (2013)
https://doi.org/10.1103/PhysRevLett.110.021801
208 K. Hara, et al. (Belle Collaboration), Evidence for B − → τ − ν ¯ τ with a Hadronic Tagging Method Using the Full Data Sample of Belle, Phys. Rev. Lett. 110, 131801 (2013), arXiv: 1208.4678 [hep-ex]
https://doi.org/10.1103/PhysRevLett.110.131801
209 A. Dighe, D. Ghosh, K. M. Patel, and S. Raychaudhuri, Testing Times for Supersymmetry: Looking under the Lamp Post, arXiv: 1303.0721 [hep-ph]
210 G. Rolandi, LHC Results – Highlights, Lecture given at the European School of High Energy Physics (ESHEP2012), June 2012, Anjou, France, arXiv: 1211.3718 [hep-ex]
211 A. V. Gladyshev and D. I. Kazakov, Is (low Energy) SUSY still alive? Lecture given at the European School of High Energy Physics (ESHEP2012), June 2012, Anjou, France, arXiv: 1212.2548 [hep-ex]
212 P. Bectle, T. Plehn, and C. Sander, The Status of Supersymmetry after the LHCC Run 1, arXiv: 1506.03091 [hep-ex]
213 B. W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy-Neutrino Masses, Phys. Rev. Lett. 39, 165 (1977)
https://doi.org/10.1103/PhysRevLett.39.165
214 D. E. Kaplan, M. A. Luty, and K. M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79, 115016 (2009), arXiv: 0901.4117 [hep-ph]
https://doi.org/10.1103/PhysRevD.79.115016
215 H. Davoudiasl and R. N. Mohapatra, On Relating the Genesis of Cosmic Baryons and Dark Matter, New J. Phys. 14, 095011 (2012), arXiv: 1203.1247 [hep-ph]
https://doi.org/10.1088/1367-2630/14/9/095011
216 P. Gondolo, Theory of low mass WIMPs, talk given at UCLA Dark Matter 2012
217 N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79, 015014 (2009), arXiv: 0810.0713 [hep-ph]
https://doi.org/10.1103/PhysRevD.79.015014
218 S. Weinberg, Gravitation and Cosmology, Principles and Applications of the General Theory of Relativity, John Wiley & Sons, 1972
219 P. J. E. Peebles, Principles of Physical Cosmology, Princeton University Press, 1993
220 A. Linde, Particle Physics and inflationary Cosmology, Hardwood, Chur, Switzerland, 1990
221 S. Weinberg, Cosmology, Oxford University Press, 2008
222 L. Bergström and A. Goobar, Cosmology and Particle Astrophysics, Second Edition, Springer, 2003
223 V. Mukhanov, Physical Foundations of Cosmology, Cambridge University Press, 2005
224 D. H. Lyth and A. R. Liddle, The Primordial Density Perturbation, Cosmology, Inflation, and the Origin of Structure, Cambridge University Press, 2009
https://doi.org/10.1017/CBO9780511819209
225 A. Liddle and J. Loveday, Oxford Companion to Cosmology, Oxford University Press, 2008
226 K. W. Ford and J. A. Wheeler, Geons, Black Holes, and Quantum Foam: A Life in Physics, W.W. Norton & Company, Inc., 1998, p. 235
227 E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae, Proc. Natl. Acad. Sci. USA 15(3), 168 (1929)
https://doi.org/10.1073/pnas.15.3.168
228 P. P. Penzias and R. W. Wilson, A measurement of excess antenna temperature at 4048-Mc/s, Astrophys. J. 142, 419 (1965)
https://doi.org/10.1086/148307
229 J. C. Mather, et al., A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite, Astrophys. J. 354, 237 (1990); J. C. Mather, et al., Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument, Astrophys. J. 420, 439 (1994)
https://doi.org/10.1086/185717
230 S. Weinberg, The First Three Minutes, Basic Books, 1993
231 A. G. Riess, et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Astron. J. 116, 1009 (1989)
https://doi.org/10.1086/300499
232 S. Perlmutter, et al., Measurements of Ω and from 42 High-Redshift Supernovae, Astrophys. J. 517, 565 (1999)
https://doi.org/10.1086/307221
233
234 S. M. Carroll, Lecture Notes on General Relativity, Ch. 8, arXiv: gr-qc/9712019
235 V. Eric, Linder, First Principles of Cosmology, Addison- Wesley, 1997
236 P. A. R. Ade, et al. (Planck Collaboration), Planck 2013 results. XVI. Cosmological parameters, arXiv: 1303.5076 [astro-ph.CO]
237 C. Kittel and H. Kroemer, Thermal Physics, W.H. Freemann and Company, 1998
238 K. A. Olive, The violent Universe: The Big Bang, lectures given at the 2009 European School of Hing- Energy Physics, Bautzen, Germany, June 2009, arXiv: 1005.3955 [hep-ph]
239 R. J. Scherer and M. S. Turner, On the relic, cosmic abundance of stable, weakly interacting massive particles, Phys. Rev. D 33, 1585 (1986); Erratum: Phys. Rev. D 34, 3263 (1986)
https://doi.org/10.1103/PhysRevD.33.1585
240 B. S. Ryden, Introduction to Cosmology, January 13, 2006.
241 L. Verde, et al. (WMAP Collaboration), First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters, Astrophys. J. Suppl. 148, 175 (2003), arXiv: astroph/0302209
242 J. R. III Gott, M. Jurič, D. Schtegel, F. Hoyle, M. Vogeley, M. Tegmark, N. Bachall, and J. Brinkmann, A Map of the Universe, Astrophys. J. 624, 463 (2005), arXiv: astro-ph/0310571
243 R. E. Alpher, H. Bethe, and G. Gamov, The origin of chemical elements, J. Wash. Acad. Sci. 38(8), 288 (1948)
https://doi.org/10.1103/physrev.73.803
244 K. Jedamzik and M. Pospelov, Big bang nucleosynthesis and particle dark matter, New J. Phys. 11, 105028 (2009), arXiv: 0906.2087 [hep-ph]
https://doi.org/10.1088/1367-2630/11/10/105028
245 K. Jedamzik and M. Pospelov, Big bang nucleosynthesis as a probe of new physics, Ann. Rev. Nucl. Sci. 60, 539 (2010), arXiv: 1011.1054 [hep-ph]
246 C. L. Bennett, et al. (WMAP Collaboration), First year Wilkinson Microwave Anisotropy probe (WMAP) observations: Preliminary maps and basic results, Astrophys. J. Suppl. 148, 1 (2003), arXiv: astro-ph/0302207
247 The following articles are given in Footnote 1, pp 159–160, [221] to which we refer for more details: V. F. Mukhanov, arXiv: astrp-ph/0303073, G. Steigman, arXiv: astro-ph/0307244, arXiv: astro-ph/0308511, arXiv: astro-ph/0501591, and arXiv: astro-ph/0511534
248 K. A. Olive, G. Steigman, and T. P. Walker, Primordial Nucleosynthesis: Theory and Observations, Phys. Rep. 333, 389 (2000), arXiv: astro-ph/9905320
https://doi.org/10.1016/S0370-1573(00)00031-4
249 D. N. Schramm and M. S. Turner, Big-bang nucleosynthesis enters the precision era, Rev. Mod. Phys. 70, 303 (1998), arXiv: astro-ph/9706069
https://doi.org/10.1103/RevModPhys.70.303
250 S. Sarkar, Big Bang nucleosynthesis and physics beyond the Standard Model, Rep. Prog. Phys. 59, 1493 (1996), arXiv: hep-ph/9602260
https://doi.org/10.1088/0034-4885/59/12/001
251 J. Bernstein, L. S. Brown, and G. Feinbeerg, Cosmological helium production simplified, Rev. Mod. Phys. 61, 25 (1989)
https://doi.org/10.1103/RevModPhys.61.25
252 R. Esmailzaedeh, G. D. Starkman, and S. Dimopoulos, Primordial nucleosynthesis without a computer, Astrophys. J. 387, 504 (1991)
https://doi.org/10.1086/170452
253 V. Mukhanov, Nucleosynthesis without a computer, Int. J. Theor. Phys. 43, 669 (2003), arXiv: astro-ph/0303073
https://doi.org/10.1023/B:IJTP.0000048169.69609.77
254 C. Hayashi, Proton-neutron concentration ratio in the expanding universe at the stages preceding the formation of the elements, Prog. Theor. Phys. 5, 224 (1950)
https://doi.org/10.1143/ptp/5.2.224
255 G. Steigman, D. N. Schramm, and J. Gunn, Cosmological limits to the number of massive leptons, Phys. Lett. B 66, 202 (1977)
https://doi.org/10.1016/0370-2693(77)90176-9
256 K. A. Olive and G. Steigman, A new look at neutrino limits from big bang nucleosynthesis, Phys. Lett. B 354, 357 (1995)
https://doi.org/10.1016/0370-2693(95)00668-B
257 B. W. Carroll and D. A. Ostlie, An Introduction to Modern Astrophysics, Pearson Education, 2007, Ch. 29
258 J. Bernstein, L. S. Brown, and G. Feinberg, Cosmological heavy-neutrino problem, Phys. Rev. D 32(12), 3261 (1985)
https://doi.org/10.1103/PhysRevD.32.3261
259 D. A. Dicus, E. W. Kolb, and V. L. Teplitz, cosmological upper bound on heavy-neutrino lifetimes, Phys. Rev. Lett. 39, 168 (1977)
https://doi.org/10.1103/PhysRevLett.39.168
260 E. W. Kolb and K. A. Olive, Lee-Weinberg bound reexamined, Phys. Rev. D 33(4), 1202 (1986) (in INSPIRE Search, fulltext available at the Fermilab Library Server)
https://doi.org/10.1103/PhysRevD.33.1202
261 M. T. Ressell and M. S. Turner, Comments Astrophys. 14, 323 (1990), Bull. Am. Astron. Soc. 22, 753 (1990) [Fermilab-pub-89/214-A, Oct. 1989]
262 A. Lasenby, Physics of Primary CMB Anisotropy
263 J. C. Mather, et al., A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) Satellite, Astrophys. J. 354, L37 (1990)
https://doi.org/10.1086/185717
264 G. F Smoot, et al., Structure in the COBE Differential Microwave Radiometer First-year Maps, Astrophys. J. 396, L1 (1992)
https://doi.org/10.1086/186504
265 R. Adam, et al. (Planck Collaboration), Plank 2015 results. I. Overview of products and Scientific results, arXiv: 1502.01582 [astro-ph.CO]
266 P. A. R. Ade, et al. (Planck Collaboration), Planck 2015 results. XIII. Cosmological parameters, arXiv: 1502.01589 [astro-ph.CO]
267
268 See:
269 Y. Itoh, K. Yahata, and M. Takada, A dipole anisotropy of galaxy distribution: Does the CMB rest-frame exist in the local universe? Phys. Rev. D 82, 043530 (2010), arXiv: 0912.1460 [astroph. CO]
https://doi.org/10.1103/PhysRevD.82.043530
270 G. Hinshaw, et al. (WMAP Collaboration), Five-Year Wilkinson Microwave Anisotropy Probe Observations: Data processing, sky maps, and basic results, Astrophys. J. Suppl. 180, 225 (2009)
https://doi.org/10.1088/0067-0049/180/2/225
271 Ya. B. Zel’dovich and R. A. Sunyaev, The Interaction of Matter and Radiation in a Hot-Model Universe, Astrophys. Space Sci. 4, 301 (1969); R. A. Sunyaev and Ya. B. Zel’dovich, The Observations of Relic Radiation as a Test of the Nature of X-Ray Radiation from the Clusters of Galaxies, Comments Astrophys. Space Phys. 2, 173 (1972)
https://doi.org/10.1007/BF00661821
272 J. E. Carlstrom, G. P. Hoder, and E. D. Reese, Cosmology with the Sunyaev–Zel’dovich Effect, Annu. Rev. Astron. Astrophys. 40, 643 (2002), arXiv: astroph/0208192
273 R. K. Sachs and A. M. Wolfe, Perturbations of a cosmological model and angular variations of the microwave background, Astrophys. J. 147, 73 (1987)
https://doi.org/10.1086/148982
274 R. K. Sachs and A. M. Wolfe, Perturbations of a cosmological model and angular variations of the microwave background, Gen. Relativ. Gravit. 39, 1929 (2007)
https://doi.org/10.1007/s10714-007-0448-9
275 A. J. Nishizawa, Integrated Sachs Wolfe Effect and Rees Sciama Effect, Prog. Theor. Exp. Phys. 2014, 06B110 (2014), arXiv: 1404.5102 [astro-ph.CO]
276 W. Hu, CMB anisotropy tutorial
277 D. Langlois, Isocurvature cosmology perturbation and the CMB, C. R. Phys. 4, 953 (2003)
https://doi.org/10.1016/j.crhy.2003.09.004
278 C. Gordon, Adiabatic and entropy perturbations in cosmology, arXiv: astro-ph/0112523
279 W. Hu and M. White, Acoustic signatures in the cosmic microwave background, Astrophys. J. 471, 30 (1996), arXiv: astro-ph/9602019
https://doi.org/10.1086/177951
280 J. A. Peacok, Large-scale surverys and cosmic structure, 7. Anisotropies in the CMB
281 M. White, Big Bang Acoustics: Sound for the new born univers, 8. Removing Distortion
282 H. Jurki-Suonio, Cosmology I & II. See Chapters 12 and 13
283 U. Seljak, A Two-Fluid Approximation for Calculating the Cosmic Microwave Background Anisotropies, Astrophys. J. 435, L87 (1994), arXiv: astro-ph/9406050
https://doi.org/10.1086/187601
284 W. Hu and N. Sugiyama, Anisotropies in the Cosmic Microwave Background: An Analytic Approach, Astrophys. J. 444, 489 (1995), arXiv: astro-ph/9407093
https://doi.org/10.1086/175624
285 M. White and J. D. Cohn, TACMB-1: The Theory of Anisotropies in the Cosmic Microwave Background (Bibliographic Resource Letter), Am. J. Phys. 70, 106 (2002), arXiv: astro-ph/0203120
https://doi.org/10.1119/1.1380381
286 See:
287 A wealth information on the Cosmic Bacground Explorer (CORE) is accessible on the web.
288 Information on the Wilkinson Microwave Anisotropy probe (WMAP) can be found on its official site
289 The Planck Spacecraft is an European Space Agency (ESA) experiment for the observation of the CMB anisotropy, lauched in May 2009. For a general description, see officila sites
290 I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Corrected and Enlarged Edition, Academic Press, 1980
291 M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Pub., 1970
292 D. Baumann Cosmology part III Mathematical Tripos, pp 80–81
293 H. Kurki-Suonio, Cosmological Perturbation Theory, Sept. 30, 2012
294 H. Kodama and M. Sasaki, Cosmological Perturbation Theory, Prog. Theor. Phys. Suppl. 78, 1 (1984)
https://doi.org/10.1143/PTPS.78.1
295 J. Fritz, An introduction to the theory of hydrodynamiclimits
296 U. Seljak and M. Zaldarriaga, A line of sight approach to cosmic microwave background anisotropies, Astrophys. J. 469, 437 (1996), arXiv: astro-ph/9603033
https://doi.org/10.1086/177793
297 A. Lewis, A. Challinor, and A. Lasenby, Efficient Computation of CMB anisotropies in closed FRW models, Astrophys. J. 538, 473 (2000), arXiv: astro-ph/991117710.1086/309179
https://doi.org/10.1086/309179
298 M. Doran, CMBEASY: an Object Oriented Code for the Cosmic Microwave Background, JCAP 0510, 011 (2005), arXiv: astro-ph/0302138
299 J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview, arXiv: 1104.2932 [astroph. CO]
300 D. Blas, J. Lesgourgues, and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, arXiv: 1104.2933 [astro-ph.CO]
301 J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) III: Comparision with CAMB for LambdaCDM, arXiv: 1104.2934 [astro-ph.CO]
302 J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) IV: Efficient implementation of non-cold relics, arXiv: 1104.2935 [astroph. CO]
303 J. Lesgourgues, The Cosmic Linear Anisortropy Solving System (CLASS) III: Comparison with CMB for LambdaCDM, arXiv: 1104.2934 [astro-ph.CO]
304 The Planck news release on the epoch of the first stars can be found at
305 The list of Planck publications is at
306 S. Zaroubi, The Epoch of Reionization, arXiv: 1206.0267 [astro-ph.CO]
307 D. Scott and G. F. Smoot, Cosmic Microwave Background, PDB [13]
308 P. A. R. Ade, et al. (Planck Collaboration), Planck 2013 results. I. Overview of products and scientific results, Astron. Astrophys. 571, A1 (2014), arXiv: 1303.5062 [astro-ph.CO]
https://doi.org/10.1051/0004-6361/201321529
309 P. A. R. Ade, et al. (Planck Collaboration), Planck 2013 results. XV. CMB power spectra and likelihood, Astron. Astrophys. 571, A15 (2014), arXiv: 1303.5075 [astroph.CO]
https://doi.org/10.1051/0004-6361/201321573
310 G. Hinshaw, et al. (WMAP Collaboration), Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208, 19 (2013), arXiv: 1212.5226 [asrtroph. CO]
311 C. L. Bennett, et al. (WMAP Collaboration), Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, Astrophys. J. Suppl. 208, 20 (2013), arXiv: 1212.5225 [astro-ph.CO]
312 For a list of WMAP scientific publications, see:
313 D. Larson, J. L. Weiland, G. Hinshaw, and C. L. Bennett, Comparing Planck and WMAP9: Maps, Spectra, and Parameters, arXiv: 1409.7718 [astro-ph.CO]
314 D. W. Hogg, Distance measures in cosmology, arXiv: astro-ph/9905116
315 T. M. Davis and C. H. Lineweaver, Expanding Confusion: common misconceptions of cosmological horizons and the superluminal expansion of the Universe, PASA 21, 97 (2004), arXiv: astro-ph/0310808
316 C. H. Lineweaver and T. M. Davis, Misconceptions about the big bang, Sci. Am. 292(3), 24 (2005)
https://doi.org/10.1038/scientificamerican0305-36
317 W. Rindler, Visual Horizons in World models, Mon. Not. Roy. Ast. Soc. 116, 662 (1956)
https://doi.org/10.1093/mnras/116.6.662
318 A. Loeb, The Long-Term Future of Extragalactic Astronomy, Phys. Rev. D 65, 047301 (2002), arXiv: astroph/ 0107568
319
320 H. Bradt and S. Olbert, Liouville’s Theorem, Suppl. to Ch. 3 of Astrophysical Processes by the same authors.
321 J. D. Jackson, Classical Electrodynamics, Second Edition, John Wiley & Sons, Inc., 1975
322 H. Goldstein, Classical Mechanics, Addison-Wesley, 1950, pp 266–268
323 C. Kittel and H. Kroemer, Thermal Physics, W.H. Freeman and Company, 1998
324 S. Dodelson and M. S. Turner, Nonequilibrium neutrino statistical mechanics in the expanding Universe, Phys. Rev. D 46(8), 3372 (1992)
https://doi.org/10.1103/PhysRevD.46.3372
325 Wolfram Alpha, Wolfram Research Company:
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed