Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (3): 127202   https://doi.org/10.1007/s11467-016-0630-1
  本期目录
Topological nodal line semimetals predicted from first-principles calculations
Rui Yu1(),Zhong Fang2,3,Xi Dai2,3,Hongming Weng2,3()
1. School of Physics and Technology, Wuhan University, Wuhan 430072, China
2. Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3. Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
 全文: PDF(15818 KB)  
Abstract

Topological semimetals are newly discovered states of quantum matter, which have extended the concept of topological states from insulators to metals and attracted great research interest in recent years. In general, there are three kinds of topological semimetals, namely Dirac semimetals, Weyl semimetals, and nodal line semimetals. Nodal line semimetals can be considered as precursor states for other topological states. For example, starting from such nodal line states, the nodal line structure might evolve into Weyl points, convert into Dirac points, or become a topological insulator by introducing the spin–orbit coupling (SOC) or mass term. In this review paper, we introduce theoretical materials that show the nodal line semimetal state, including the all-carbon Mackay–Terrones crystal (MTC), anti-perovskite Cu3PdN, pressed black phosphorus, and the CaP3 family of materials, and we present the design principles for obtaining such novel states of matter.

Key wordstopological states    topological semimetals    nodal line semimetal
收稿日期: 2016-10-08      出版日期: 2016-11-14
Corresponding Author(s): Rui Yu,Hongming Weng   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(3): 127202.
Rui Yu,Zhong Fang,Xi Dai,Hongming Weng. Topological nodal line semimetals predicted from first-principles calculations. Front. Phys. , 2017, 12(3): 127202.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0630-1
https://academic.hep.com.cn/fop/CN/Y2017/V12/I3/127202
1 G. E. Volovik, The Universe in a Helium Droplet, Oxford, 2009
https://doi.org/10.1093/acprof:oso/9780199564842.001.0001
2 Z. Fang, N. Nagaosa, K. S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, and K. Terakura, The anomalous Hall effect and magnetic monopoles in momentum space, Science 302(5642), 92 (2003)
https://doi.org/10.1126/science.1089408
3 H. Weng, R. Yu, X. Hu, X. Dai, and Z. Fang, Quantum anomalous Hall effect and related topological electronic states, Adv. Phys. 64(3), 227 (2015)
https://doi.org/10.1080/00018732.2015.1068524
4 C. Fang, Y. Chen, H. Y. Kee, and L. Fu, Topological nodal line semimetals with and without spin-orbital coupling, Phys. Rev. B 92(8), 081201 (2015)
https://doi.org/10.1103/PhysRevB.92.081201
5 Y. X. Zhao, A. P. Schnyder, and Z. D. Wang, Unified theory of PT and CP invariant topological metals and nodal superconductors, Phys. Rev. Lett. 116(15), 156402 (2016)
https://doi.org/10.1103/PhysRevLett.116.156402
6 H. B. Nielsen and M. Ninomiya, The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal, Phys. Lett. B 130(6), 389 (1983)
https://doi.org/10.1016/0370-2693(83)91529-0
7 X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)
https://doi.org/10.1103/PhysRevB.83.205101
8 G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4, Phys. Rev. Lett. 107(18), 186806 (2011)
https://doi.org/10.1103/PhysRevLett.107.186806
9 L. Balents, Weyl electrons kiss, Physics 4, 36 (2011)
https://doi.org/10.1103/Physics.4.36
10 Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb), Phys. Rev. B 85(19), 195320 (2012)
https://doi.org/10.1103/PhysRevB.85.195320
11 Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Three dimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)
https://doi.org/10.1103/PhysRevB.88.125427
12 A. A. Burkov, M. D. Hook, and L. Balents, Topological nodal semimetals, Phys. Rev. B 84(23), 235126 (2011)
https://doi.org/10.1103/PhysRevB.84.235126
13 H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y. Kawazoe, Topological node-line semimetal in three dimensional graphene networks, arxiv: 1411.2175
14 B. J. Yang and N. Nagaosa, Classification of stable three-dimensional Dirac semimetals with nontrivial topology, Nat. Commun. 5, 4898 (2014)
https://doi.org/10.1038/ncomms5898
15 A. Pariari, P. Dutta, and P. Mandal, Probing the Fermi surface of three-dimensional Dirac semimetal Cd3As2 through the de Haas–van Alphen technique, Phys. Rev. B 91(15), 155139 (2015)
https://doi.org/10.1103/PhysRevB.91.155139
16 L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2, Phys. Rev. Lett. 113(24), 246402 (2014)
https://doi.org/10.1103/PhysRevLett.113.246402
17 M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2, Nat. Commun. 5, 3786 (2014)
https://doi.org/10.1038/ncomms4786
18 Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a three dimensional topological Dirac semimetal, Na3Bi, Science 343(6173), 864 (2014)
https://doi.org/10.1126/science.1245085
19 Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S. K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, A stable three dimensional topological Dirac semimetal Cd3As2, Nat. Mater. 13(7), 677 (2014)
https://doi.org/10.1038/nmat3990
20 Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, N. P. Ong, M. Hirschberger, R. Car, and R. J. Cava, Three-dimensional Dirac semimetals: Design principles and predictions of new materials, Phys. Rev. B 91(20), 205128 (2015)
https://doi.org/10.1103/PhysRevB.91.205128
21 H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides, Phys. Rev. X 5(1), 011029 (2015)
https://doi.org/10.1103/PhysRevX.5.011029
22 S. M. Huang, S. Y. Xu, I. Belopolski, C. C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z. Hasan, A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nat. Commun. 6, 7373 (2015)
https://doi.org/10.1038/ncomms8373
23 A. A. Soluyanov, D. Gresch, Z. Wang, Q. S. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Type-II Weyl semimetals, Nature 527(7579), 495 (2015)
https://doi.org/10.1038/nature15768
24 B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5(3), 031013 (2015)
https://doi.org/10.1103/PhysRevX.5.031013
25 X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Observation of the chiral-anomaly-induced negative magnetoresistance in 3d Weyl semimetal TaAs, Phys. Rev. X 5(3), 031023 (2015)
https://doi.org/10.1103/PhysRevX.5.031023
26 B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti, V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, and H. Ding, Observation of Weyl nodes in TaAs, Nat. Phys. 11(9), 724 (2015)
https://doi.org/10.1038/nphys3426
27 S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science 349(6248), 613 (2015)
https://doi.org/10.1126/science.aaa9297
28 N. Xu, H. M. Weng, B. Q. Lv, C. E. Matt, J. Park, F. Bisti, V. N. Strocov, D. Gawryluk, E. Pomjakushina, K. Conder, N. C. Plumb, M. Radovic, G. Autès, O. V. Yazyev, Z. Fang, X. Dai, T. Qian, J. Mesot, H. Ding, and M. Shi, Observation of Weyl nodes and Fermi arcs in tantalum phosphide, Nat. Commun. 7, 11006 (2016)
https://doi.org/10.1038/ncomms11006
29 B. Q. Lv, S. Muff, T. Qian, Z. D. Song, S. M. Nie, N. Xu, P. Richard, C. E. Matt, N. C. Plumb, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, J. H. Dil, J. Mesot, M. Shi, H. M. Weng, and H. Ding, Observation of Fermi-arc spin texture in TaAs, Phys. Rev. Lett. 115(21), 217601 (2015)
https://doi.org/10.1103/PhysRevLett.115.217601
30 G. Chang, S.Y. Xu, D. S. Sanchez, S.M. Huang, C.C. Lee, T.R. Chang, H. Zheng, G. Bian, I. Belopolski, N. Alidoust, H.T. Jeng, A. Bansil, H. Lin, and M. Z. Hasan, A strongly robust Weyl fermion semimetal state in Ta3S2, arXiv: 1512.08781
31 J. Ruan, S. K. Jian, D. Zhang, H. Yao, H. Zhang, S. C. Zhang, and D. Xing, Ideal Weyl Semimetals in the Chalcopyrites CuTlSe2, AgTlTe2, AuTlTe2, and ZnPbAs2, Phys. Rev. Lett. 116(22), 226801 (2016)
https://doi.org/10.1103/PhysRevLett.116.226801
32 J. Ruan, S. K. Jian, H. Yao, H. Zhang, S. C. Zhang, and D. Xing, Symmetry-protected ideal Weyl semimetal in HgTe-class materials, Nat. Commun. 7, 11136 (2016)
https://doi.org/10.1038/ncomms11136
33 M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, S. Liang, C. A. Belvin, B. A. Bernevig, R. J. Cava, and N. P. Ong, The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi, Nat. Mater. (2016), arXiv: 1602.07219
34 Z. Wang, M. G. Vergniory, S. Kushwaha, M. Hirschberger, E. V. Chulkov, A. Ernst, N. P. Ong, R. J. Cava, and B. A. Bernevig, Time-reversal breaking Weyl fermions in magnetic Heuslers, arXiv: 1603.00479
35 G. Autès, D. Gresch, M. Troyer, A. A. Soluyanov, and O. V. Yazyev, Robust type-II Weyl semimetal phase in transition metal diphosphides XP2 (X= Mo, W), Phys. Rev. Lett. 117(6), 066402 (2016)
https://doi.org/10.1103/PhysRevLett.117.066402
36 C. K. Chiu and A. P. Schnyder, Classification of reflection-symmetry-protected topological semimetals and nodal superconductors, Phys. Rev. B 90(20), 205136 (2014)
https://doi.org/10.1103/PhysRevB.90.205136
37 T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik, Flat bands in topological media, JETP Lett. 94(3), 233 (2011)
https://doi.org/10.1134/S0021364011150045
38 T. T. Heikkilä and G. E. Volovik, Dimensional crossover in topological matter: Evolution of the multiple Dirac point in the layered system to the flat band on the surface, JETP Lett. 93(2), 59 (2011)
https://doi.org/10.1134/S002136401102007X
39 T. T. Heikkila and G. E. Volovik, Flat bands as a route to high-temperature superconductivity in graphite, arXiv: 1504.05824
40 H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y. Kawazoe, Topological node-line semimetal in three dimensional graphene networks, Phys. Rev. B 92(4), 045108 (2015)
https://doi.org/10.1103/PhysRevB.92.045108
41 K. Mullen, B. Uchoa, and D. T. Glatzhofer, Line of Dirac nodes in hyperhoney comb lattices, Phys. Rev. Lett. 115(2), 026403 (2015)
https://doi.org/10.1103/PhysRevLett.115.026403
42 M. Ezawa, Loop-nodal and point-nodal semimetals in three-dimensional honeycomb lattices, Phys. Rev. Lett. 116(12), 127202 (2016)
https://doi.org/10.1103/PhysRevLett.116.127202
43 L. S. Xie, L. M. Schoop, E. M. Seibel, Q. D. Gibson, W. Xie, and R. J. Cava, A new form of Ca3P2 with a ring of Dirac nodes, APL Mater. 3(8), 083602 (2015)
https://doi.org/10.1063/1.4926545
44 Y. H. Chan, C. K. Chiu, M. Y. Chou, and A. P. Schnyder, Ca3P2 and other topological semimetals with line nodes and drumhead surface states, Phys. Rev. B 93(20), 205132 (2016)
https://doi.org/10.1103/PhysRevB.93.205132
45 M. Zeng, C. Fang, G. Chang, Y.-A. Chen, T. Hsieh, A. Bansil, H. Lin, and L. Fu, Topological semimetals and topological insulators in rare earth monopnictides, arXiv: 1504.03492
46 R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN, Phys. Rev. Lett. 115(3), 036807 (2015)
https://doi.org/10.1103/PhysRevLett.115.036807
47 Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Dirac line nodes in inversion-symmetric crystals, Phys. Rev. Lett. 115(3), 036806 (2015)
https://doi.org/10.1103/PhysRevLett.115.036806
48 Y. Chen, Y. Xie, S. A. Yang, H. Pan, F. Zhang, M. L. Cohen, and S. Zhang, Nanostructured carbon allotropes with Weyl-like loops and points, Nano Lett. 15(10), 6974 (2015)
https://doi.org/10.1021/acs.nanolett.5b02978
49 G. Bian, T. R. Chang, H. Zheng, S. Velury, S. Y. Xu, T. Neupert, C. K. Chiu, S. M. Huang, D. S. Sanchez, I. Belopolski, N. Alidoust, P. J. Chen, G. Chang, A. Bansil, H. T. Jeng, H. Lin, and M. Z. Hasan, Drumhead surface states and topological nodal-line fermions in TlTaSe2, Phys. Rev. B 93(12), 121113 (2016)
https://doi.org/10.1103/PhysRevB.93.121113
50 G. Bian, T.-R. Chang, R. Sankar, S.-Y. Xu, H. Zheng, T. Neupert, C.-K. Chiu, S.-M. Huang, G. Chang, I. Belopolski, D. S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B. Wang, C.-C. Lee, H.-T. Jeng, A. Bansil, F. Chou, H. Lin, and M. Zahid Hasan, Topological nodalline fermions in the non-centrosymmetric superconductor compound PbTaSe2, arXiv: 1505.03069
51 L. M. Schoop, M. N. Ali, C. Straßer, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lotsch, and C. R. Ast, Dirac cone protected by non-symmorphic symmetry and three dimensional Dirac line node in ZrSiS, Nat. Commun. 7, 11696 (2016)
https://doi.org/10.1038/ncomms11696
52 J. M. Carter, V. V. Shankar, M. A. Zeb, and H. Y. Kee, Semimetal and topological insulator in perovskite iridates, Phys. Rev. B 85(11), 115105 (2012)
https://doi.org/10.1103/PhysRevB.85.115105
53 H. S. Kim, Y. Chen, and H. Y. Kee, Surface states of perovskite iridates AIrO3: Signatures of a topological crystalline metal with nontrivial Z2 index, Phys. Rev. B 91(23), 235103 (2015)
https://doi.org/10.1103/PhysRevB.91.235103
54 J. Liu, D. Kriegner, L. Horak, D. Puggioni, C. Rayan Serrao, R. Chen, D. Yi, C. Frontera, V. Holy, A. Vishwanath, J. M. Rondinelli, X. Marti, and R. Ramesh, Strain-induced nonsymmorphic symmetry breaking and removal of Dirac semimetallic nodal line in an orthoperovskite iridate, Phys. Rev. B 93(8), 085118 (2016)
https://doi.org/10.1103/PhysRevB.93.085118
55 Y. Chen, Y. M. Lu, and H. Y. Kee, Topological crystalline metal in orthorhombic perovskite iridates, Nat. Commun. 6, 6593 (2015)
https://doi.org/10.1038/ncomms7593
56 A. Yamakage, Y. Yamakawa, Y. Tanaka, and Y. Okamoto, Line-node Dirac semimetal and topological insulating phase in noncentrosymmetric pnictides CaAgX (X= P, As), JPSJ 85(1), 013708 (2016)
https://doi.org/10.7566/JPSJ.85.013708
57 Q. F. Liang, J. Zhou, R. Yu, Z. Wang, and H. Weng, Node-surface and node-line fermions from nonsymmorphic lattice symmetries, Phys. Rev. B 93(8), 085427 (2016)
https://doi.org/10.1103/PhysRevB.93.085427
58 J. Zhao, R. Yu, H. Weng, and Z. Fang, Topological node-line semimetal in compressed black phosphorus, arXiv: 1511.05704
59 Q. Xu, R. Yu, Z. Fang, X. Dai, and H. Weng, Topological nodal line semimetals in CaP3 family of materials, arXiv: 1608.03172
60 M. Hirayama, R. Okugawa, T. Miyake, and S. Murakami, Topological Dirac nodal lines in fcc calcium, strontium, and ytterbium, arXiv: 1602.06501
61 J. T. Wang, H. Weng, S. Nie, Z. Fang, Y. Kawazoe, and C. Chen, Body-centered orthorhombic C16: A novel topological node-line semimetal, Phys. Rev. Lett. 116(19), 195501 (2016)
https://doi.org/10.1103/PhysRevLett.116.195501
62 R. Li, H. Ma, X. Cheng, S. Wang, D. Li, Z. Zhang, Y. Li, and X. Q. Chen, Dirac node lines in pure alkali earth metals, Phys. Rev. Lett. 117(9), 096401 (2016)
https://doi.org/10.1103/PhysRevLett.117.096401
63 J. L. Lu, W. Luo, X. Y. Li, S. Q. Yang, J. X. Cao, X. G. Gong, and H. J. Xiang, Two-dimensional nodeline semimetals in a Honeycomb-Kagome lattice, arXiv: 1603.04596
64 Y. Jin, R. Wang, J. Zhao, C. Zheng, L.Y. Gan, J. Liu, H. Xu, and S. Y. Tong, A family group of two dimensional node-line semimetals, arXiv: 1608.05791
65 G. E. Volovik, The Topology of the Quantum Vacuum, Analogue Gravity Phenomenology, Lecture Notes in Physics, Vol. 870, p. 343 (2013)
https://doi.org/10.1007/978-3-319-00266-8_14
66 N. B. Kopnin, T. T. Heikkila, and G. E. Volovik, Hightemperature surface superconductivity in topological flat-band systems, Phys. Rev. B 83(22), 220503 (2011)
https://doi.org/10.1103/PhysRevB.83.220503
67 G. E. Volovik, From standard model of particle physics to room-temperature superconductivity, Phys. Scr. 2015(T164), 014014 (2015)
https://doi.org/10.1088/0031-8949/2015/T164/014014
68 T. T. Heikkila and G. E. Volovik, Flat bands as a route to high-temperature superconductivity in graphite, arXiv: 1504.05824
69 J. W. Rhim and Y. B. Kim, Landau level quantization and almost flat modes in three-dimensional semimetals with nodal ring spectra, Phys. Rev. B 92(4), 045126 (2015)
https://doi.org/10.1103/PhysRevB.92.045126
70 Z. Yan, P. W. Huang, and Z. Wang, Collective modes in nodal line semimetals, Phys. Rev. B 93(8), 085138 (2016)
https://doi.org/10.1103/PhysRevB.93.085138
71 A. L. Mackay, Periodic minimal surfaces, Nature 314(6012), 604 (1985)
https://doi.org/10.1038/314604a0
72 R. S. K. Mong and V. Shivamoggi, Edge states and the bulk-boundary correspondence in Dirac hamiltonians, Phys. Rev. B 83(12), 125109 (2011)
https://doi.org/10.1103/PhysRevB.83.125109
73 A. A. Mostofi, J. R. Yates, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, wannier90: A tool for obtaining maximally-localised Wannier functions, Comput. Phys. Commun. 178(9), 685 (2008)
https://doi.org/10.1016/j.cpc.2007.11.016
74 N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Maximally localized Wannier functions: Theory and applications, Rev. Mod. Phys. 84(4), 1419 (2012)
https://doi.org/10.1103/RevModPhys.84.1419
75 R. Fei, V. Tran, and L. Yang, Topologically protected Dirac cones in compressed bulk black phosphorus, Phys. Rev. B 91(19), 195319 (2015)
https://doi.org/10.1103/PhysRevB.91.195319
76 Z. J. Xiang, G. J. Ye, C. Shang, B. Lei, N. Z. Wang, K. S. Yang, D. Y. Liu, F. B. Meng, X. G. Luo, L. J. Zou, Z. Sun, Y. Zhang, and X. H. Chen, Pressure-induced electronic transition in black phosphorus, Phys. Rev. Lett. 115(18), 186403 (2015)
https://doi.org/10.1103/PhysRevLett.115.186403
77 K. Akiba, A. Miyake, Y. Akahama, K. Matsubayashi, Y. Uwatoko, H. Arai, Y. Fuseya, and M. Tokunaga, Anomalous quantum transport properties in semimetallic black phosphorus, J. Phys. Soc. Jpn. 84(7), 073708 (2015)
https://doi.org/10.7566/JPSJ.84.073708
78 W. Dahlmann and H. G. v. Schnering, CaP3, ein neues Calciumphosphid, Naturwissenschaften 60(11), 518 (1973)
https://doi.org/10.1007/BF00603256
79 Z. Yan and Z. Wang, Tunable Weyl points in periodically driven nodal line semimetals, Phys. Rev. Lett. 117(8), 087402 (2016)
https://doi.org/10.1103/PhysRevLett.117.087402
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed