Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (4): 138118   https://doi.org/10.1007/s11467-018-0812-0
  本期目录
The rise of two-dimensional MoS2 for catalysis
Jun Mao (毛军)1,2, Yong Wang (王勇)1,2, Zhilong Zheng (郑智龙)1,2, Dehui Deng (邓德会)1,2()
1. State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
2. State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
 全文: PDF(56346 KB)  
Abstract

Two-dimensional (2D) MoS2 is used as a catalyst or support and has received increased research interest because of its superior structural and electronic properties compared with those of bulk structures. In this article, we illustrate the active sites of 2D MoS2 and various strategies for enhancing its intrinsic catalytic activity. The recent advances in the use of 2D MoS2-based materials for applications such as thermocatalysis, electrocatalysis, and photocatalysis are discussed. We also discuss the future opportunities and challenges for 2D MoS2-based materials, in both fundamental research and industrial applications.

Key wordscatalysis    2D materials    MoS2    non-precious metal    electronic properties
收稿日期: 2018-04-12      出版日期: 2018-07-06
Corresponding Author(s): Dehui Deng (邓德会)   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(4): 138118.
Jun Mao (毛军), Yong Wang (王勇), Zhilong Zheng (郑智龙), Dehui Deng (邓德会). The rise of two-dimensional MoS2 for catalysis. Front. Phys. , 2018, 13(4): 138118.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0812-0
https://academic.hep.com.cn/fop/CN/Y2018/V13/I4/138118
1 J. K. Nørskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, Towards the computational design of solid catalysts, Nat. Chem. 1(1), 37 (2009)
https://doi.org/10.1038/nchem.121
2 S. Bag, A. F. Gaudette, M. E. Bussell, and M. G. Kanatzidis, Spongy chalcogels of non-platinum metals act as effective hydrodesulfurization catalysts, Nat. Chem. 1(3), 217 (2009)
https://doi.org/10.1038/nchem.208
3 S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation, Science 344(6187), 1005 (2014)
https://doi.org/10.1126/science.1251428
4 H. Zhang, Ultrathin two-dimensional nanomaterials, ACS Nano 9(10), 9451 (2015)
https://doi.org/10.1021/acsnano.5b05040
5 A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and N. P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science 350(6267), 1513 (2015)
https://doi.org/10.1126/science.aad1080
6 G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. J. Cha, et al., Recent advances in two-dimensional materials beyond graphene, ACS Nano 9(12), 11509 (2015)
https://doi.org/10.1021/acsnano.5b05556
7 S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
https://doi.org/10.1021/nn400280c
8 P. Miró, M. Audiffred, and T. Heine, An atlas of twodimensional materials, Chem. Soc. Rev. 43(18), 6537 (2014)
https://doi.org/10.1039/C4CS00102H
9 R. Zhao, B. Grisafe, R. K. Ghosh, S. Holoviak, B. Wang, K. Wang, and J. Robinson, Two-dimensional tantalum disulfide: Controlling structure and properties via synthesis, 2D Mater. 5(2), 025001 (2018)
10 X. Guo, G. Yang, J. Zhang, and X. Xu, Structural, mechanical and electronic properties of in-plane 1T/2H phase interface of MoS2 heterostructures, AIP Adv. 5(9), 097174 (2015)
https://doi.org/10.1063/1.4932040
11 M. Xu, T. Liang, M. Shi, and H. Chen, Graphenelike two-dimensional materials, Chem. Rev. 113(5), 3766 (2013)
https://doi.org/10.1021/cr300263a
12 Y. Yin, J. C. Han, Y. M. Zhang, X. H. Zhang, P. Xu, Q. Yuan, L. Samad, X. J. Wang, Y. Wang, Z. H. Zhang, P. Zhang, X. Z. Cao, B. Song, and S. Jin, Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets, J. Am. Chem. Soc. 138(25), 7965 (2016)
https://doi.org/10.1021/jacs.6b03714
13 V. P. Santos, B. van der Linden, A. Chojecki, G. Budroni, S. Corthals, H. Shibata, G. R. Meima, F. Kapteijn, M. Makkee, and J. Gascon, Mechanistic insight into the synthesis of higher alcohols from syngas: the role of K promotion on MoS2 catalysts, ACS Catal. 3(7), 1634 (2013)
https://doi.org/10.1021/cs4003518
14 Y. Q. Yang, C. T. Tye, and K. J. Smith, Influence of MoS2 catalyst morphology on the hydrodeoxygenation of phenols, Catal. Commun. 9(6), 1364 (2008)
https://doi.org/10.1016/j.catcom.2007.11.035
15 B. Yoosuk, D. Tumnantong, and P. Prasassarakich, Unsupported MoS2 and CoMoS2 catalysts for hydrodeoxygenation of phenol, Chem. Eng. Sci. 79, 1 (2012)
https://doi.org/10.1016/j.ces.2012.05.020
16 J. Zhu, Y. Wei, W. Chen, Z. Zhao, and A. Thomas, Graphitic carbon nitride as a metal-free catalyst for NO decomposition, Chem. Commun. 46(37), 6965 (2010)
https://doi.org/10.1039/c0cc01432j
17 Y. Romero, F. Richard, and S. Brunet, Hydrodeoxygenation of 2-ethylphenol as a model compound of biocrude over sulfided Mobased catalysts: Promoting effect and reaction mechanism, Appl. Catal. B 98(3–4), 213 (2010)
https://doi.org/10.1016/j.apcatb.2010.05.031
18 D. H. Deng, K. S. Novoselov, Q. Fu, N. F. Zheng, Z. Q. Tian, and X. H. Bao, Catalysis with two-dimensional materials and their heterostructures, Nat. Nanotechnol. 11(3), 218 (2016)
https://doi.org/10.1038/nnano.2015.340
19 L. Yuwen, F. Xu, B. Xue, Z. Luo, Q. Zhang, B. Bao, S. Su, L. Weng, W. Huang, and L. Wang, General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation, Nanoscale 6(11), 5762 (2014)
https://doi.org/10.1039/C3NR06084E
20 H. Huang, X. Feng, C. C. Du, S. Y. Wu, and W. B. Song, Incorporated oxygen in MoS2 ultrathin nanosheets for efficient ORR catalysis, J. Mater. Chem. A 3(31), 16050 (2015)
https://doi.org/10.1039/C5TA01600B
21 M. Asadi, B. Kumar, C. Liu, P. Phillips, P. Yasaei, A. Behranginia, P. Zapol, R. F. Klie, L. A. Curtiss, and A. Salehi-Khojin, Cathode based on molybdenum disulfide nanoflakes for lithium-oxygen batteries, ACS Nano 10(2), 2167 (2016)
https://doi.org/10.1021/acsnano.5b06672
22 H. Vrubel, D. Merki, and X. L. Hu, Hydrogen evolution catalyzed by MoS3 and MoS2 particles, Energy Environ. Sci. 5(3), 6136 (2012)
https://doi.org/10.1039/c2ee02835b
23 J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, and Y. Xie, Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution,Adv. Mater. 25(40), 5807 (2013)
https://doi.org/10.1002/adma.201302685
24 X. Zong, J. Han, G. Ma, H. Yan, G. Wu, and C. Li, Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation, J. Phys. Chem. C 115(24), 12202 (2011)
https://doi.org/10.1021/jp2006777
25 Y. Liang, Y. Li, H. Wang, and H. Dai, Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis, J. Am. Chem. Soc. 135(6), 2013 (2013)
https://doi.org/10.1021/ja3089923
26 L. Liao, J. Zhu, X. Bian, L. Zhu, M. D. Scanlon, H. H. Girault, and B. Liu, MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution, Adv. Funct. Mater. 23(42), 5326 (2013)
https://doi.org/10.1002/adfm.201300318
27 P. F. Liu, L. Zhou, T. Frauenheim, and L. M. Wu, New quantum spin Hall insulator in two-dimensional MoS2 with periodically distributed pores, Nanoscale 8(9), 4915 (2016)
https://doi.org/10.1039/C5NR08842A
28 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
https://doi.org/10.1038/nnano.2012.193
29 Z. S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, and K. Müllen, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction, J. Am. Chem. Soc. 134(22), 9082 (2012)
https://doi.org/10.1021/ja3030565
30 J. D. Benck, Z. Chen, L. Y. Kuritzky, A. J. Forman, and T. F. Jaramillo, Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity, ACS Catal. 2(9), 1916 (2012)
https://doi.org/10.1021/cs300451q
31 Y. H. Chang, C. T. Lin, T. Y. Chen, C. L. Hsu, Y. H. Lee, W. Zhang, K. H. Wei, and L. J. Li, Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams, Adv. Mater. 25(5), 756 (2013)
https://doi.org/10.1002/adma.201202920
32 A. B. Laursen, P. C. K. Vesborg, and I. Chorkendorff, A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability, Chem. Commun. 49(43), 4965 (2013)
https://doi.org/10.1039/c3cc41945b
33 R. J. H. Voorhoeve and J. C. M. Stuiver, The mechanism of the hydrogenation of cyclohexene and benzene on nickel-tungsten sulfide catalysts, J. Catal. 23(2), 243 (1971)
https://doi.org/10.1016/0021-9517(71)90046-7
34 G. Hagenbach, P. Courty, and B. Delmon, Physicochemical investigations and catalytic activity measurements on crystallized molydbenum sulfide-cobalt sulfide mixed catalysts, J. Catal. 31(2), 264 (1973)
https://doi.org/10.1016/0021-9517(73)90333-3
35 J. V. Lauritsen, M. Nyberg, J. K. Nørskov, B. S. Clausen, H. Topsøe, E. Lægsgaard, and F. Besenbacher, Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy, J. Catal. 224(1), 94 (2004)
https://doi.org/10.1016/j.jcat.2004.02.009
36 M. Daage and R. R. Chianelli, Structure-function relations in molybdenum sulfide catalysts: The “rim-edge” model, J. Catal. 149(2), 414 (1994)
https://doi.org/10.1006/jcat.1994.1308
37 Y. Iwata, Y. Araki, K. Honna, Y. Miki, K. Sato, and H. Shimada, Hydrogenation active sites of unsupported molybdenum sulfide catalysts for hydroprocessing heavy oils, Catal. Today 65(2–4), 335 (2001)
https://doi.org/10.1016/S0920-5861(00)00554-X
38 H. Shimada, Morphology and orientation of MoS2 clusters on Al2O3 and TiO2 supports and their effect on catalytic performance, Catal. Today 86(1–4), 17 (2003)
https://doi.org/10.1016/S0920-5861(03)00401-2
39 X. Zhang and Y. Xie, Recent advances in free-standing two-dimensional crystals with atomic thickness: Design, assembly and transfer strategies, Chem. Soc. Rev. 42(21), 8187 (2013)
https://doi.org/10.1039/c3cs60138b
40 Q. Fu, L. Yang, W. Wang, A. Han, J. Huang, P. Du, Z. Fan, J. Zhang, and B. Xiang, Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(1−x)Se2x with a tunable band gap, Adv. Mater. 27(32), 4732 (2015)
https://doi.org/10.1002/adma.201500368
41 J. Xie, X. Sun, N. Zhang, K. Xu, M. Zhou, and Y. Xie, Layer-by-layer b-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance, Nano Energy 2(1), 65 (2013)
https://doi.org/10.1016/j.nanoen.2012.07.016
42 B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution, J. Am. Chem. Soc. 127(15), 5308 (2005)
https://doi.org/10.1021/ja0504690
43 T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts, Science 317(5834), 100 (2007)
https://doi.org/10.1126/science.1141483
44 J. Deng, H. B. Li, J. P. Xiao, Y. C. Tu, D. H. Deng, H. Yang, and X. H. Bao, Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping, Energy Environ. Sci. 8(5), 1594 (2015)
https://doi.org/10.1039/C5EE00751H
45 H. Li, L. Wang, Y. Dai, Z. Pu, Z. Lao, Y. Chen, M. Wang, X. Zheng, J. Zhu, W. Zhang, R. Si, C. Ma, and J. Zeng, Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation, Nat. Nanotechnol. 13(5), 411 (2018)
https://doi.org/10.1038/s41565-018-0089-z
46 H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Norskov, and X. Zheng, Corrigendum: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat. Mater. 15(3), 364 (2016)
https://doi.org/10.1038/nmat4564
47 C. Tsai, H. Li, S. Park, J. Park, H. S. Han, J. K. Norskov, X. Zheng, and F. Abild-Pedersen, Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution, Nat. Commun. 8, 15113 (2017)
https://doi.org/10.1038/ncomms15113
48 R. Prins, V. H. J. De Beer, and G. A. Somorjai, Structure and function of the catalyst and the promoter in Co-Mo hydrodesulfurization catalysts, Catal. Rev. 31(1–2), 1 (1989)
https://doi.org/10.1080/01614948909351347
49 G. L. Liu, A. W. Robertson, M. M. J. Li, W. C. Kuo, M. T. Darby, M. H. Muhieddine, Y. C. Lin, K. Suenaga, M. Stamatakis, J. H. Warner, and S. C. E. Tsang, MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction, Nat. Chem. 9(8), 810 (2017)
https://doi.org/10.1038/nchem.2740
50 C. F. Zhang, H. G. Li, J. M. Lu, X. C. Zhang, K. E. MacArthur, M. Heggen, and F. Wang, Promoting lignin depolymerization and restraining the condensation via an oxidation-hydrogenation strategy, ACS Catal. 7(5), 3419 (2017)
https://doi.org/10.1021/acscatal.7b00148
51 V. S. Dorokhov, E. A. Permyakov, P. A. Nikulshin, V. V. Maximov, and V. M. Kogan, Experimental and computational study of syngas and ethanol conversion mechanisms over K-modified transition metal sulfide catalysts, J. Catal. 344, 841 (2016)
https://doi.org/10.1016/j.jcat.2016.08.005
52 H. Tao, Y. Gao, N. Talreja, F. Guo, J. Texter, C. Yan, and Z. Sun, Two-dimensional nanosheets for electrocatalysis in energy generation and conversion, J. Mater. Chem. A 5(16), 7257 (2017)
https://doi.org/10.1039/C7TA00075H
53 J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, and X. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting, Adv. Mater. 28(2), 215 (2016)
https://doi.org/10.1002/adma.201502696
54 J. Deng, H. B. Li, S. H. Wang, D. Ding, M. S. Chen, C. Liu, Z. Q. Tian, K. S. Novoselov, C. Ma, D. H. Deng, and X. H. Bao, Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production, Nat. Commun. 8, 14430 (2017)
https://doi.org/10.1038/ncomms14430
55 J. Zhang, Y. Liu, C. Sun, P. Xi, S. Peng, D. Gao, and D. Xue, Accelerated hydrogen evolution reaction in CoS2 by transition-metal doping, ACS Energ. Lett 3(4), 779 (2018)
https://doi.org/10.1021/acsenergylett.8b00066
56 J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, and Y. Xie, Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution, J. Am. Chem. Soc. 135(47), 17881 (2013)
https://doi.org/10.1021/ja408329q
57 Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc. 133(19), 7296 (2011)
https://doi.org/10.1021/ja201269b
58 H. Zhang, Y. Tian, J. Zhao, Q. Cai, and Z. Chen, Small dopants make big differences: Enhanced electrocatalytic performance of MoS2 monolayer for oxygen reduction reaction (ORR) by N- and P-doping, Electrochim. Acta 225, 543 (2017)
https://doi.org/10.1016/j.electacta.2016.12.144
59 K. Zhao, W. Gu, L. Zhao, C. Zhang, W. Peng, and Y. Xian, MoS2/nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction, Electrochim. Acta 169, 142 (2015)
https://doi.org/10.1016/j.electacta.2015.04.044
60 M. Asadi, B. Kumar, A. Behranginia, B. A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, R. F. Klie, P. Kral, J. Abiade, and A. Salehi-Khojin, Robust carbon dioxide reduction on molybdenum disulphide edges, Nat. Commun. 5(1), 4470 (2014)
https://doi.org/10.1038/ncomms5470
61 P. Abbasi, M. Asadi, C. Liu, S. Sharifi-Asl, B. Sayahpour, A. Behranginia, P. Zapol, R. Shahbazian-Yassar, L. A. Curtiss, and A. Salehi-Khojin, Tailoring the edge structure of molybdenum disulfide toward electrocatalytic reduction of carbon dioxide, ACS Nano 11(1), 453 (2017)
https://doi.org/10.1021/acsnano.6b06392
62 M. Asadi, B. Sayahpour, P. Abbasi, A. T. Ngo, K. Karis, J. R. Jokisaari, C. Liu, B. Narayanan, M. Gerard, P. Yasaei, X. Hu, A. Mukherjee, K. C. Lau, R. S. Assary, F. Khalili-Araghi, R. F. Klie, L. A. Curtiss, and A. Salehi-Khojin, A lithium-oxygen battery with a long cycle life in an air-like atmosphere, Nature 555(7697), 502 (2018)
https://doi.org/10.1038/nature25984
63 J. Balach, T. Jaumann, and L. Giebeler, Nanosized Li2S-based cathodes derived from MoS2 for high-energy density Li-S cells and Si-Li2S full cells in carbonatebased electrolyte, Energ. Storage Mater 8, 209 (2017)
https://doi.org/10.1016/j.ensm.2017.03.013
64 Z. Li, S. Deng, R. Xu, L. Wei, X. Su, and M. Wu, Combination of nitrogen-doped graphene with MoS2 nanoclusters for improved Li-S battery cathode: Synthetic effect between 2D components, Electrochim. Acta 252, 200 (2017)
https://doi.org/10.1016/j.electacta.2017.09.001
65 S. R. Meyers and M. W. Grinstaff, Biocompatible and bioactive surface modifications for prolonged in vivo efficacy, Chem. Rev. 112(3), 1615 (2012)
https://doi.org/10.1021/cr2000916
66 Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S. Wei, and Y. Xie, Freestanding tin disulfide single-layers realizing efficient visible-light water splitting, Angew. Chem. Int. Ed. 51(35), 8727 (2012)
https://doi.org/10.1002/anie.201204675
67 A. J. Esswein and D. G. Nocera, Hydrogen production by molecular photocatalysis, Chem. Rev. 107(10), 4022 (2007)
https://doi.org/10.1021/cr050193e
68 F. E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chem. Soc. Rev. 42(6), 2294 (2013)
https://doi.org/10.1039/C2CS35266D
69 F. A. Frame and F. E. Osterloh, CdSe-MoS2: A quantum size-confined photocatalyst for hydrogen evolution from water under visible light, J. Phys. Chem. C 114(23), 10628 (2010)
https://doi.org/10.1021/jp101308e
70 Y. Yan, B. Y. Xia, X. M. Ge, Z. L. Liu, J. Y. Wang, and X. Wang, Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution, ACS Appl. Mater. Interfaces 5(24), 12794 (2013)
https://doi.org/10.1021/am404843b
71 T. Jia, A. Kolpin, C. Ma, R. C. T. Chan, W. M. Kwok, and S. C. E. Tsang, A graphene dispersed CdS-MoS2 nanocrystal ensemble for cooperative photocatalytic hydrogen production from water, Chem. Commun. 50(10), 1185 (2014)
https://doi.org/10.1039/C3CC47301E
72 K. Pramoda, U. Gupta, I. Ahmad, R. Kumar, and C. N. R. Rao, Assemblies of covalently cross-linked nanosheetsof MoS2 and of MoS2-RGO: Synthesis and novel properties, J. Mater. Chem. A 4(23), 8989 (2016)
https://doi.org/10.1039/C6TA00645K
73 U. Maitra, U. Gupta, M. De, R. Datta, A. Govindaraj, and C. N. Rao, Highly effective visible-lightinduced H(2) generation by single-layer 1T-MoS(2) and a nanocomposite of few-layer 2H-MoS(2) with heavily nitrogenated graphene, Angew. Chem. Int. Ed. 52(49), 13057 (2013)
https://doi.org/10.1002/anie.201306918
74 S. Bai, L. Wang, X. Chen, J. Du, and Y. Xiong, Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals, Nano Res. 8(1), 175 (2015)
https://doi.org/10.1007/s12274-014-0606-9
75 M. Shen, Z. Yan, L. Yang, P. Du, J. Zhang, and B. Xiang, MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities, Chem. Commun. 50(97), 15447 (2014)
https://doi.org/10.1039/C4CC07351G
76 W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, and H. Zhang, Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities, Small 9(1), 140 (2013)
https://doi.org/10.1002/smll.201201161
77 Y. J. Yuan, F. Wang, B. Hu, H. W. Lu, Z. T. Yu, and Z. G. Zou, Significant enhancement in photocatalytic hydrogen evolution from water using a MoS2 nanosheetcoated ZnO heterostructure photocatalyst, Dalton T. 44(24), 10997 (2015)
https://doi.org/10.1039/C5DT00906E
78 S. Guo, X. Li, J. Zhu, T. Tong, and B. Wei, Au NPs@MoS2 sub-micrometer sphere-ZnO nanorod hybrid structures for efficient photocatalytic hydrogen evolution with excellent stability, Small 12(41), 5692 (2016)
https://doi.org/10.1002/smll.201602122
79 B. Zhu, B. Lin, Y. Zhou, P. Sun, Q. Yao, Y. Chen, and B. Gao, Enhanced photocatalytic H2 evolution on ZnS loaded with graphene and MoS2 nanosheets as cocatalysts, J. Mater. Chem. A 2(11), 3819 (2014)
https://doi.org/10.1039/C3TA14819J
80 X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen, L. Wang, and C. Li, Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation, J. Phys. Chem. C 114(4), 1963 (2010)
https://doi.org/10.1021/jp904350e
81 X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, and C. Li, Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, J. Am. Chem. Soc. 130(23), 7176 (2008)
https://doi.org/10.1021/ja8007825
82 J. Zhang, Z. Zhu, and X. Feng, Construction of twodimensional MoS2/CdS p-n nanohybrids for highly efficient photocatalytic hydrogen evolution, Chemistry 20(34), 10632 (2014)
https://doi.org/10.1002/chem.201402522
83 J. He, L. Chen, F. Wang, Y. Liu, P. Chen, C. T. Au, and S. F. Yin, CdS nanowires decorated with ultrathin MoS2 nanosheets as an efficient photocatalyst for hydrogen evolution, ChemSusChem 9(6), 624 (2016)
https://doi.org/10.1002/cssc.201501544
84 D. P. Kumar, S. Hong, D. A. Reddy, and T. K. Kim, Noble metal-free ultrathin MoS2 nanosheet-decorated CdS nanorods as an efficient photocatalyst for spectacular hydrogen evolution under solar light irradiation, J. Mater. Chem. A 4(47), 18551 (2016)
https://doi.org/10.1039/C6TA08628D
85 Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl, and I. Chorkendorff, Layered nanojunctions for hydrogen-evolution catalysis, Angew. Chem. Int. Ed. 52(13), 3621 (2013)
https://doi.org/10.1002/anie.201210294
86 L. Ge, C. Han, X. Xiao, and L. Guo, Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity, Int. J. Hydrogen Energy 38(17), 6960 (2013)
https://doi.org/10.1016/j.ijhydene.2013.04.006
87 X. Jin, X. Fan, J. Tian, R. Cheng, M. Li, and L. Zhang, MoS2 quantum dot decorated g-C3N4 composite photocatalyst with enhanced hydrogen evolution performance, RSC Advances 6(58), 52611 (2016)
https://doi.org/10.1039/C6RA07060D
88 L. Karimiech, Combination of mesoporous titanium dioxide with MoS2 nanosheets for high photocatalytic activity, Pol. J. Chem. Technol. 19, 56 (2017)
89 X. Hu, H. Zhao, J. Tian, J. Gao, Y. Li, and H. Cui, Synthesis of few-layer MoS2 nanosheets-coated TiO2 nanosheets on graphite fibers for enhanced photocatalytic properties, Sol. Energy Mater. Sol. Cells 172, 108 (2017)
https://doi.org/10.1016/j.solmat.2017.07.027
90 W. Dai, J. Yu, Y. Deng, X. Hu, T. Wang, and X. Luo, Facile synthesis of MoS2/Bi2WO6 nanocomposites for enhanced CO2 photoreduction activity under visible light irradiation, Appl. Surf. Sci. 403, 230 (2017)
https://doi.org/10.1016/j.apsusc.2017.01.171
91 J. Di, J. Xia, M. Ji, L. Xu, S. Yin, Z. Chen, and H. Li, Bidirectional acceleration of carrier separation spatially via N-CQDs/atomically-thin BiOI nanosheets nanojunctions for manipulating active species in a photocatalytic process, J. Mater. Chem. A 4(14), 5051 (2016)
https://doi.org/10.1039/C6TA00284F
92 L. Shi, W. Ding, S. Yang, Z. He, and S. Liu, Rationally designed MoS2/protonated g-C3N4 nanosheet composites as photocatalysts with an excellent synergistic effect toward photocatalytic degradation of organic pollutants, J. Hazard. Mater. 347, 431 (2018)
https://doi.org/10.1016/j.jhazmat.2018.01.010
93 S. Sun, X. Li, W. Wang, L. Zhang, and X. Sun, Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS2, Appl. Catal. B 200, 323 (2017)
https://doi.org/10.1016/j.apcatb.2016.07.025
94 Y. Wu, B. Yuan, M. Li, W. H. Zhang, Y. Liu, and C. Li, Well-defined BiOCl colloidal ultrathin nanosheets: Synthesis, characterization, and application in photocatalytic aerobic oxidation of secondary amines, Chem. Sci. 6(3), 1873 (2015)
https://doi.org/10.1039/C4SC03229B
95 L. S. Byskov, J. K. Nørskov, B. S. Clausen, and H. Topsøe, DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts, J. Catal. 187(1), 109 (1999)
https://doi.org/10.1006/jcat.1999.2598
96 H. Zhao, G. Yang, X. Gao, C. H. Pang, S. W. Kingman, and T. Wu, Hg0 capture over CoMoS/g-Al2O3 with MoS2 nanosheets at low temperatures, Environ. Sci. Technol. 50(2), 1056 (2016)
https://doi.org/10.1021/acs.est.5b04278
97 D. Wang, Z. Wang, L. Wang, L. Hu, and J. Jin, Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation, Nanoscale 7(42), 17649 (2015)
https://doi.org/10.1039/C5NR06321C
98 A. Midya, A. Ghorai, S. Mukherjee, R. Maiti, and S. K. Ray, Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic applications, J. Mater. Chem. A 4(12), 4534 (2016)
https://doi.org/10.1039/C5TA09003B
99 C. Liu, D. Kong, P. C. Hsu, H. Yuan, H.W. Lee, Y. Liu, H. Wang, S. Wang, K. Yan, D. Lin, P. A. Maraccini, K. M. Parker, A. B. Boehm, and Y. Cui, Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light, Nat. Nanotechnol. 11(12), 1098 (2016)
https://doi.org/10.1038/nnano.2016.138
100 W. Li, Y. Yang, J. K. Weber, G. Zhang, and R. Zhou, Tunable, strain-controlled nanoporous MoS2 filter for water desalination, ACS Nano 10(2), 1829 (2016)
https://doi.org/10.1021/acsnano.5b05250
101 K. Ai, C. Ruan, M. Shen, and L. Lu, MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in aquatic systems, Adv. Funct. Mater. 26(30), 5542 (2016)
https://doi.org/10.1002/adfm.201601338
102 S. Xie, Z. Shen, J. Deng, P. Guo, Q. Zhang, H. Zhang, C. Ma, Z. Jiang, J. Cheng, D. Deng, and Y. Wang, Visible light-driven C-H activation and C-C coupling of methanol into ethylene glycol, Nat. Commun. 9(1), 1181 (2018)
https://doi.org/10.1038/s41467-018-03543-y
103 Z. Li, D. Zhang, J. Ma, D. Wang, and C. Xie, Fabrication of MoS2 microflowers for hydrogenation of nitrobenzene, Mater. Lett. 213, 350 (2018)
https://doi.org/10.1016/j.matlet.2017.11.042
104 X. L. Wang, Z. Zhao, Z. T. Chen, J. M. Li, A. J. Duan, C. M. Xu, and J. Y. Fan, Effect of synthesis temperature on structure-activity-relationship over NiMo/g-Al2O3 catalysts for the hydrodesulfurization of DBT and 4, 6-DMDBT, Fuel Process. Technol. 161, 52 (2017)
https://doi.org/10.1016/j.fuproc.2017.03.003
105 P. Zheng, A. Duan, K. Chi, L. Zhao, C. Zhang, C. Xu, and J. Fan, Influence of sulfur vacancy on thiophene hydrodesulfurization mechanism at different MoS2 edges: A DFT study, Chem. Eng. Sci. 164, 292 (2017)
https://doi.org/10.1016/j.ces.2017.02.037
106 W. Wang, S. Tan, K. Wu, G. Zhu, Y. Liu, L. Tan, and Y. Yang, Hydrodeoxygenation of p-cresol as a model compound for bio-oil on MoS2: Effects of water and benzothiophene on the activity and structure of catalyst, Fuel 214, 480 (2018)
https://doi.org/10.1016/j.fuel.2017.11.067
107 M. Grilc, G. Veryasov, B. Likozar, A. Jesih, and J. Levec, Hydrodeoxygenation of solvolysed lignocellulosic biomass by unsupported MoS2, MoO2, Mo2C and WS2 catalysts, Appl. Catal. B 163, 467 (2015)
https://doi.org/10.1016/j.apcatb.2014.08.032
108 H. Wang, C. Tsai, D. Kong, K. Chan, F. Abild-Pedersen, J. K. Nørskov, and Y. Cui, Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution, Nano Res. 8(2), 566 (2015)
https://doi.org/10.1007/s12274-014-0677-7
109 J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. Nørskov, and I. Chorkendorff, Hydrogen evolution on nanoparticulate transition metal sulfides, Faraday Discuss. 140, 219 (2009)
https://doi.org/10.1039/B803857K
110 G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, and P. M. Ajayan, Defects engineeredmonolayer MoS2 for improved hydrogen evolution reaction, Nano Lett. 16(2), 1097 (2016)
https://doi.org/10.1021/acs.nanolett.5b04331
111 L. Tao, X. Duan, C. Wang, X. Duan, and S. Wang, Plasma-engineered MoS2 thin-film as an efficient electrocatalyst for hydrogen evolution reaction, Chem. Commun. 51(35), 7470 (2015)
https://doi.org/10.1039/C5CC01981H
112 S. Shin, Z. Jin, D. H. Kwon, R. Bose, and Y. S. Min, High turnover frequency of hydrogen evolution reaction on amorphous MoS2 thin film directly grown by atomic layer deposition, Langmuir 31(3), 1196 (2015)
https://doi.org/10.1021/la504162u
113 D. Merki, S. Fierro, H. Vrubel, and X. Hu, Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water, Chem. Sci. 2(7), 1262 (2011)
https://doi.org/10.1039/C1SC00117E
114 J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis, Nat. Mater. 11(11), 963 (2012)
https://doi.org/10.1038/nmat3439
115 D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, and Y. Cui, Synthesis of MoS2 and MoSe2 films with vertically aligned layers, Nano Lett. 13(3), 1341 (2013)
https://doi.org/10.1021/nl400258t
116 J. P. Shi, D. L. Ma, G. F. Han, Y. Zhang, Q. Q. Ji, T. Gao, J. Y. Sun, X. J. Song, C. Li, Y. S. Zhang, X. Y. Lang, Y. F. Zhang, and Z. F. Liu, Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction, ACS Nano 8(10), 10196 (2014)
https://doi.org/10.1021/nn503211t
117 L. Yang, H. Hong, Q. Fu, Y. Huang, J. Zhang, X. Cui, Z. Fan, K. Liu, and B. Xiang, Single-crystal atomiclayered molybdenum disulfide nanobelts with high surface activity, ACS Nano 9(6), 6478 (2015)
https://doi.org/10.1021/acsnano.5b02188
118 X. Sun, J. Huo, Y. Yang, L. Xu, and S. Wang, The Co3O4 nanosheet array as support for MoS2 as highly efficient electrocatalysts for hydrogen evolution reaction, J. Energ. Chem 26(6), 1136 (2017)
https://doi.org/10.1016/j.jechem.2017.05.006
119 M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets, J. Am. Chem. Soc. 135(28), 10274 (2013)
https://doi.org/10.1021/ja404523s
120 A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)
https://doi.org/10.1021/nl903868w
121 L. Yang, W. Zhou, D. Hou, K. Zhou, G. Li, Z. Tang, L. Li, and S. Chen, Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction, Nanoscale 7(12), 5203 (2015)
https://doi.org/10.1039/C4NR06754A
122 Y. Yan, X. Ge, Z. Liu, J. Y. Wang, J. M. Leea, and X. Wang, Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction., Nanoscale 5(17), 7768 (2013)
https://doi.org/10.1039/c3nr02994h
123 R. D. Nikam, A. Y. Lu, P. A. Sonawane, R. Kumar, K. Yadav, L. J. Li, and Y. T. Chen, Three-dimensional heterostructures of MoS2 nanosheets on conducting MoO2 as an efficient electrocatalyst to enhance hydrogen evolution reaction, ACS Appl. Mater. Interfaces 7(41), 23328 (2015)
https://doi.org/10.1021/acsami.5b07960
124 D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, and S. O. Kim, Molybdenum sulfide/Ndoped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction, Nano Lett. 14(3), 1228 (2014)
https://doi.org/10.1021/nl404108a
125 Y. Huang, Y. E. Miao, L. Zhang, W. W. Tjiu, J. Panb, and T. Liu, Synthesis of few-layered MoS2 nanosheetcoated electrospun SnO2 nanotube heterostructures for enhanced hydrogen evolution reaction, Nanoscale 6(18), 10673 (2014)
https://doi.org/10.1039/C4NR02014F
126 P. Ge, M. D. Scanlon, P. Peljo, X. Bian, H. Vubrel, A. O’Neill, J. N. Coleman, M. Cantoni, X. Hu, K. Kontturi, B. Liu, and H. H. Girault, Hydrogen evolution across nano-Schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems, Chem. Commun. 48(52), 6484 (2012)
https://doi.org/10.1039/c2cc31398g
127 M. R. Gao, J. X. Liang, Y. R. Zheng, Y. F. Xu, J. Jiang, Q. Gao, J. Li, and S. H. Yu, An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation, Nat. Commun. 6(1), 5982 (2015)
https://doi.org/10.1038/ncomms6982
128 Z. H. Deng, L. Li, W. Ding, K. Xiong, and Z. D. Wei, Synthesized ultrathin MoS2 nanosheets perpendicular to graphene for catalysis of hydrogen evolution reaction, Chem. Commun. 51(10), 1893 (2015)
https://doi.org/10.1039/C4CC08491H
129 Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, and T. F. Jaramillo, Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials, Nano Lett. 11(10), 4168 (2011)
https://doi.org/10.1021/nl2020476
130 Q. Gong, L. Cheng, C. Liu, M. Zhang, Q. Feng, H. Ye, M. Zeng, L. Xie, Z. Liu, and Y. Li, Ultrathin MoS2(1−x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction, ACS Catal. 5(4), 2213 (2015)
https://doi.org/10.1021/cs501970w
131 L. Yang, Q. Fu, W. Wang, J. Huang, J. Huang, J. Zhang, and B. Xiang, Large-area synthesis of monolayered MoS2(1−x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity, Nanoscale 7(23), 10490 (2015)
https://doi.org/10.1039/C5NR02652K
132 L. Yang, W. Wang, Q. Fu, J. Zhang, and B. Xiang, MoS2(1−x)Se2x nanobelts for enhanced hydrogen evolution, Electrochim. Acta 185, 236 (2015)
https://doi.org/10.1016/j.electacta.2015.10.153
133 R. Ye, P. del Angel-Vicente, Y. Liu, M. J. Arellano-Jimenez, Z. Peng, T. Wang, Y. Li, B. I. Yakobson, S. H. Wei, M. J. Yacaman, and J. M. Tour, High-performance hydrogen evolution from MoS2(1−x)Px solid solution, Adv. Mater. 28(7), 1427 (2016)
https://doi.org/10.1002/adma.201504866
134 X. Y. Yu, Y. Feng, Y. Jeon, B. Guan, X. W. Lou, and U. Paik, Formation of Ni-Co-MoS2 nanoboxes with enhanced electrocatalytic activity for hydrogen evolution, Adv. Mater. 28(40), 9006 (2016)
https://doi.org/10.1002/adma.201601188
135 C. Tang, L. Zhong, B. Zhang, H. F. Wang, and Q. Zhang, 3D mesoporous van der Waals heterostructures for trifunctional energy electrocatalysis, Adv. Mater. 30(5), 1705110 (2018)
https://doi.org/10.1002/adma.201705110
136 J. Zhao, J. Zhao, and Q. Cai, Single transition metal atom embedded into a MoS2 nanosheet as a promising catalyst for electrochemical ammonia synthesis, Phys. Chem. Chem. Phys. 20(14), 9248 (2018)
https://doi.org/10.1039/C7CP08626A
137 L. Yang, D. Zhong, J. Zhang, Z. Yan, S. Ge, P. Du, J. Jiang, D. Sun, X. Wu, Z. Fan, S. A. Dayeh, and B. Xiang, Optical properties of metal-molybdenum disulfide hybrid nanosheets and their application for enhanced photocatalytic hydrogen evolution, ACS Nano 8(7), 6979 (2014)
https://doi.org/10.1021/nn501807y
138 U. Gupta and C. N. R. Rao, Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides, Nano Energy 41, 49 (2017)
https://doi.org/10.1016/j.nanoen.2017.08.021
139 Q. Xiang, J. Yu, and M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles, J. Am. Chem. Soc. 134(15), 6575 (2012)
https://doi.org/10.1021/ja302846n
140 D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, and X. Bao, Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction, Angew. Chem. Int. Ed. 52(1), 371 (2013)
https://doi.org/10.1002/anie.201204958
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed