Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (1): 13603   https://doi.org/10.1007/s11467-018-0859-y
  本期目录
Graphene based functional devices: A short review
Rong Wang1, Xin-Gang Ren1,2(), Ze Yan3, Li-Jun Jiang1(), Wei E. I. Sha4, Guang-Cun Shan5,6()
1. Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
2. Key Laboratory of Intelligent Computing & Signal Processing, Ministry of Education, Anhui University, Hefei 230039, China
3. School of Instrumentation Science & Opto-electronics Engineering, Beihang University, Beijing 100191, China
4. Key Laboratory of Micro-nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
5. School of Instrumentation Science & Opto-electronics Engineering, Beihang University, Beijing 100191, China
6. California NanoSystem Institute and Department of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095, USA
 全文: PDF(4455 KB)  
Abstract

Graphene is an ideal 2D material system bridging electronic and photonic devices. It also breaks the fundamental speed and size limits by electronics and photonics, respectively. Graphene offers multiple functions of signal transmission, emission, modulation, and detection in a broad band, high speed, compact size, and low loss. Here, we have a brief view of graphene based functional devices at microwave, terahertz, and optical frequencies. Their fundamental physics and computational models were discussed as well.

Key wordsgraphene    terahertz    antenna    microwave
收稿日期: 2018-06-18      出版日期: 2019-01-01
Corresponding Author(s): Xin-Gang Ren,Li-Jun Jiang,Guang-Cun Shan   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(1): 13603.
Rong Wang, Xin-Gang Ren, Ze Yan, Li-Jun Jiang, Wei E. I. Sha, Guang-Cun Shan. Graphene based functional devices: A short review. Front. Phys. , 2019, 14(1): 13603.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0859-y
https://academic.hep.com.cn/fop/CN/Y2019/V14/I1/13603
1 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
2 A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)
https://doi.org/10.1126/science.1158877
3 M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev. 110(1), 132 (2010)
https://doi.org/10.1021/cr900070d
4 P. Avouris, Graphene: Electronic and photonic properties and devices, Nano Lett. 10(11), 4285 (2010)
https://doi.org/10.1021/nl102824h
5 F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics 4(9), 611 (2010)
https://doi.org/10.1038/nphoton.2010.186
6 Q. L. Bao and K. P. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices, ACS Nano 6(5), 3677 (2012)
https://doi.org/10.1021/nn300989g
7 A. N. Grigorenko, M. Polini, and K. S. Novoselov, Graphene plasmonics, Nat. Photonics 6(11), 749 (2012)
https://doi.org/10.1038/nphoton.2012.262
8 K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene, Nature 490, 192 (2012)
https://doi.org/10.1038/nature11458
9 P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics, Nat. Photonics 6(4), 259 (2012)
https://doi.org/10.1038/nphoton.2012.27
10 F. J. G. de Abajo, Graphene nanophotonics, Science 339(6122), 917 (2013)
https://doi.org/10.1126/science.1231119
11 F. J. G. de Abajo, Graphene plasmonics: Challenges and opportunities, ACS Photonics 1(3), 135 (2014)
https://doi.org/10.1021/ph400147y
12 T. Low and P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano 8(2), 1086 (2014)
https://doi.org/10.1021/nn406627u
13 T. Otsuji, V. Popov, and V. Ryzhii, Active graphene plasmonics for terahertz device applications, J. Phys. D Appl. Phys. 47(9), 094006 (2014)
https://doi.org/10.1088/0022-3727/47/9/094006
14 T. Stauber, Plasmonics in Dirac systems: from graphene to topological insulators, J. Phys.: Condens. Matter 26(12), 123201 (2014)
https://doi.org/10.1088/0953-8984/26/12/123201
15 N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, Graphene: A dynamic platform for electrical control of plasmonic resonance, Nanophotonics 4, 214 (2015)
https://doi.org/10.1515/nanoph-2015-0014
16 S. S. Xiao, X. L. Zhu, B. H. Li, and N. A. Mortensen, Graphene-plasmon polaritons: From fundamental properties to potential applications, Front. Phys. 11(2), 117801 (2016)
https://doi.org/10.1007/s11467-016-0551-z
17 S. Y. Huang, C. Y. Song, G. W. Zhang, and H. G. Yan, Graphene plasmonics: Physics and potential applications, Nanophotonics-Berlin 6, 1191 (2017)
https://doi.org/10.1515/nanoph-2016-0126
18 V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Magneto-optical conductivity in graphene, J. Phys.: Condens. Matter 19(2), 026222 (2007)
https://doi.org/10.1088/0953-8984/19/2/026222
19 M. Jablan, H. Buljan, and M. Soljačić, Plasmonics in graphene at infrared frequencies, Phys. Rev. B 80(24), 245435 (2009)
https://doi.org/10.1103/PhysRevB.80.245435
20 Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, Broad electrical tuning of grapheneloaded plasmonic antennas, Nano Lett. 13(3), 1257 (2013)
https://doi.org/10.1021/nl3047943
21 V. Nayyeri, M. Soleimani, and O. M. Ramahi, Modeling graphene in the finite-difference time-domain method using a surface boundary condition, IEEE Trans. An-tennas Propag. 61(8), 4176 (2013)
https://doi.org/10.1109/TAP.2013.2260517
22 P. Li, L. J. Jiang, and H. Bagci, A resistive boundary condition enhanced DGTD scheme for the transient analysis of graphene, IEEE Trans. Antenn. Propag. 63(7), 3065 (2015)
https://doi.org/10.1109/TAP.2015.2426198
23 P. Li, and L. J. Jiang, Modeling of magnetized graphene from microwave to THz range by DGTD with a scalar RBC and an ADE, IEEE Trans. Antenn. Propag. 63(10), 4458 (2015)
https://doi.org/10.1109/TAP.2015.2456977
24 Y. Shao, J. J. Yang, and M. Huang, A review of computational electromagnetic methods for graphene modeling, Int. J. Antennas Propag. 2016, 1 (2016)
https://doi.org/10.1155/2016/7478621
25 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Twodimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102(30), 10451 (2005)
https://doi.org/10.1073/pnas.0502848102
26 P. Neugebauer, M. Orlita, C. Faugeras, A. L. Barra, and M. Potemski, How perfect can graphene be? Phys. Rev. Lett. 103(13), 136403 (2009)
https://doi.org/10.1103/PhysRevLett.103.136403
27 D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, and A. K. Geim, Dirac cones reshaped by interaction effects in suspended graphene, Nat. Phys. 7(9), 701 (2011)
28 C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, and E. H. Conrad, Electronic confinement and coherence in patterned epitaxial graphene, Science 312(5777), 1191 (2006)
https://doi.org/10.1126/science.1125925
29 K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, and E. Rotenberg, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nat. Mater. 8(3), 203 (2009)
https://doi.org/10.1038/nmat2382
30 W. A. De Heer, C. Berger, M. Ruan, M. Sprinkle, X. Li, Y. Hu, and E. Conrad, Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide, Proc. Natl. Acad. Sci. USA 108(41), 16900 (2011)
https://doi.org/10.1073/pnas.1105113108
31 J. Hass, J. E. Millán-Otoya, P. N. First, and E. H. Conrad, Interface structure of epitaxial graphene grown on 4HSiC (0001), Phys. Rev. B 78(20), 205424 (2008)
https://doi.org/10.1103/PhysRevB.78.205424
32 Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene, Science 327(5966), 662 (2010)
https://doi.org/10.1126/science.1184289
33 R. F. Davis, G. Kelner, M. Shur, J. W. Palmour, and J. A. Edmond, Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide, Proc. IEEE 79(5), 677 (1991)
https://doi.org/10.1109/5.90132
34 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-area synthesis of highquality and uniform graphene films on copper foils, Science 324(5932), 1312 (2009)
https://doi.org/10.1126/science.1171245
35 N. Petrone, C. R. Dean, I. Meric, A. M. van Der Zande, P. Y. Huang, L. Wang, and J. Hone, Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene, Nano Lett. 12(6), 2751 (2012)
https://doi.org/10.1021/nl204481s
36 X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, and L. Fu, Graphene films with large domain size by a two-step chemical vapor deposition process, Nano Lett. 10(11), 4328 (2010)
https://doi.org/10.1021/nl101629g
37 C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, and J. Hone, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)
https://doi.org/10.1038/nnano.2010.172
38 R. Wang, S. Raju, M. Chan, and L. J. Jiang, Low frequency behavior of CVD graphene from DC to 40 GHz, Prog. Electromagnetics Res. 71, 1 (2017)
https://doi.org/10.2528/PIERC16111901
39 M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets, J. Appl. Phys. 112(11), 114915 (2012)
https://doi.org/10.1063/1.4768840
40 Z. Chang, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, Generation of THz wave with orbital angular momentum by graphene patch reectarray, Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2015 IEEE MTT-S International Microwave Workshop, pp 1–3 (2015)
41 Y. L. Xu, X. C. Wei, and E. P. Li, Three-dimensional tunable frequency selective surface based on vertical graphene micro-ribbons, J. Electromagnet. Wave 29(16), 2130 (2015)
https://doi.org/10.1080/09205071.2015.1065770
42 G. W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene, J. Appl. Phys. 103(6), 064302 (2008)
https://doi.org/10.1063/1.2891452
43 Y. S. Cao, L. J. Jiang, and A. E. Ruehli, An equivalent circuit model for graphene-based terahertz antenna using the PEEC method, IEEE Trans. Antenn. Propag. 64(4), 1385 (2016)
https://doi.org/10.1109/TAP.2016.2521881
44 L. Pierantoni, D. Mencarelli, M. Bozzi, R. Moro, S. Moscato, L. Perregrini, and S. Bellucci, Broadband microwave attenuator based on few layer graphene akes, IEEE Trans. Microw. Theory 63(8), 2491 (2015)
https://doi.org/10.1109/TMTT.2015.2441062
45 R. Wang and L. J. Jiang, Electrically tunable behavior of graphene on high-resistivity silicon substrate, Antennas and Propagation and USNC/URSI National Radio Science Meeting, 2017 IEEE International Symposium, pp 1031–1032 (2017)
46 J. Yang, F. Kong, and K. Li, Broad tunable nanoantenna based on graphene log-periodic toothed structure, Plasmonics 11(4), 981 (2016)
https://doi.org/10.1007/s11468-015-0132-y
47 Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, Active tunable absorption enhancement with graphene nanodisk arrays, Nano Lett. 14(1), 299 (2014)
https://doi.org/10.1021/nl404042h
48 Z. Y. Fang, Y. M. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, and N. J. Halas, Plasmon-induced doping of graphene, ACS Nano 6(11), 10222 (2012)
https://doi.org/10.1021/nn304028b
49 J. Wu, Tunable ultra-narrow spectrum selective absorption in a graphene monolayer at terahertz frequency, J. Phys. D Appl. Phys. 49(21), 215108 (2016)
https://doi.org/10.1088/0022-3727/49/21/215108
50 F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, Ultrabroad band, more than one order absorption enhancement in graphene with plasmonic light trapping, Sci. Rep. 5(1), 16998 (2015)
https://doi.org/10.1038/srep16998
51 V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, Electronic modulation of infrared radiation in graphene plasmonic resonators, Nat. Commun. 6(1), 7032 (2015)
https://doi.org/10.1038/ncomms8032
52 B. Mehta, and M. E. Zaghloul, Tuning the scattering response of the optical nano antennas using graphene, IEEE Photonics J. 6(1), 1 (2014)
https://doi.org/10.1109/JPHOT.2014.2300501
53 D. Sikdar, W. Zhu, W. Cheng, and M. Premaratne, Substrate-mediated broadband tunability in plasmonic resonances of metal nanoantennas on finite highpermittivity dielectric substrate, Plasmonics 10(6), 1663 (2015)
https://doi.org/10.1007/s11468-015-9968-4
54 A. Locatelli, G. E. Town, and C. De Angelis, Graphenebased terahertz waveguide modulators, IEEE Trans. Terahertz Sci. Technol. 5(3), 351 (2015)
https://doi.org/10.1109/TTHZ.2015.2416067
55 R. Yu, V. Pruneri, and F. J. Garcia de Abajo, Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas, Sci. Rep. 6(1), 32144 (2016)
https://doi.org/10.1038/srep32144
56 Z. Li and N. Yu, Modulation of mid-infrared light using graphene-metal plasmonic antennas, Appl. Phys. Lett. 102(13), 131108 (2013)
https://doi.org/10.1063/1.4800931
57 N. Yi, Z. Liu, S. Sun, Q. Song, and S. Xiao, Midinfrared tunable magnetic response in graphene-based diabolo nanoantennas, Carbon 94, 501 (2015)
https://doi.org/10.1016/j.carbon.2015.07.031
58 Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, Wide wavelength tuning of optical antennas on graphene with nanosecond response time, Nano Lett. 14(1), 214 (2014)
https://doi.org/10.1021/nl403751p
59 Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators, Nano Lett. 14(11), 6526 (2014)
https://doi.org/10.1021/nl503104n
60 X. C. Wang, W. S. Zhao, J. Hu, and W. Y. Yin, Reconfigurable terahertz leaky-wave antenna using graphenebased high-impedance surface, IEEE T. Nanotechnology 14(1), 62 (2015)
61 Y. Qin, X. Y. Z. Xiong, W. E. I. Sha, and L. J. Jiang, Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna, J. Phys.: Condens. Matter 30(14), 144007 (2018)
https://doi.org/10.1088/1361-648X/aab227
62 W. Fuscaldo, P. Burghignoli, P. Baccarelli, and A. Galli, Graphene Fabry-Perot cavity leaky-wave antennas: Plasmonic versus nonplasmonic solutions, IEEE T. Antenn. Propag. 65(4), 1651 (2017)
https://doi.org/10.1109/TAP.2017.2670520
63 Y. Wu, M. Qu, L. Jiao, Y. Liu, and Z. Ghassemlooy, Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns, AIP Adv. 6(6), 065308 (2016)
https://doi.org/10.1063/1.4953916
64 A. Hosseinbeig, A. Pirooj, and F. B. Zarrabi, A reconfigurable subwavelength plasmonic fano nano-antenna based on split ring resonator, J. Magn. Magn. Mater. 423, 203 (2017)
https://doi.org/10.1016/j.jmmm.2016.09.076
65 F. B. Zarrabi, M. Mohaghegh, M. Bazgir, and A. S. Arezoomand, Graphene-Gold Nano-ring antenna for Dualresonance optical application,Opt. Mater. 51, 98 (2016)
https://doi.org/10.1016/j.optmat.2015.11.024
66 Z. Dong, C. Sun, J. Si, and X. Deng, A tunable plasmonic nano-antenna based on metal-graphene doublenanorods, Laser Phys. Lett. 15(5), 056202 (2018)
https://doi.org/10.1088/1612-202X/aab445
67 A. Cabellos-Aparicio, I. Llatser, E. Alarcon, A. Hsu, and T. Palacios, Use of terahertz photoconductive sources to characterize tunable graphene RF plasmonic antennas, IEEE T. Nanotechnology 14(2), 390 (2015)
68 M. M. Seyedsharbaty, and R. A. Sadeghzadeh, Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load, Opt. Quantum Electron. 49(6), 221 (2017)
https://doi.org/10.1007/s11082-017-1052-1
69 S. Abadal, I. Llatser, A. Mestres, H. Lee, E. Alarcon, and A. Cabellos-Aparicio, Time-domain analysis of graphenebased miniaturized antennas for ultra-short-range impulse radio communications, Ieee. T. Commun. 63(4), 1470 (2015)
https://doi.org/10.1109/TCOMM.2015.2406691
70 X. He, P. Gao, and W. Shi, A further comparison of graphene and thin metal layers for plasmonics, Nanoscale 8(19), 10388 (2016)
https://doi.org/10.1039/C5NR09061J
71 Y. Bao, S. Zu, Y. Zhang, and Z. Fang, Active control of graphene-based unidirectional surface plasmon launcher, ACS Photonics 2(8), 1135 (2015)
https://doi.org/10.1021/acsphotonics.5b00182
72 X. L. Zhao, C. Yuan, L. Zhu, and J. Q. Yao, Graphenebased tunable terahertz plasmon-induced transparency metamaterial, Nanoscale 8(33), 15273 (2016)
https://doi.org/10.1039/C5NR07114C
73 M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, Tunable terahertz hybrid metal-graphene plasmons, Nano Lett. 15(10), 7099 (2015)
https://doi.org/10.1021/acs.nanolett.5b03191
74 X. G. Ren, W. E. I. Sha, and W. C. H. Choy, Tuning optical responses of metallic dipole nanoantenna using graphene, Opt. Express 21(26), 31824 (2013)
https://doi.org/10.1364/OE.21.031824
75 Z. Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. L. Ma, Y. M. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. G. de Abajo, Gated tunability and hybridization of localized plasmons in nanostructured graphene, ACS Nano 7(3), 2388 (2013)
https://doi.org/10.1021/nn3055835
76 B. Du, L. Lin, W. Liu, S. Zu, Y. Yu, Z. Li, Y. Kang, H. Peng, X. Zhu, and Z. Fang, Plasmonic hot electron tunneling photo-detection in vertical Au-graphene hybrid nanostructures, Laser Photonics Rev. 11(1), 1600148 (2017)
https://doi.org/10.1002/lpor.201600148
77 R. Filter, M. Farhat, M. Steglich, R. Alaee, C. Rockstuhl, and F. Lederer, Tunable graphene antennas for selective enhancement of THz-emission, Opt. Express 21(3), 3737 (2013)
https://doi.org/10.1364/OE.21.003737
78 T. Zhou, Z. Cheng, H. Zhang, M. Le Berre, L. Militaru, and F. Calmon, Miniaturized tunable terahertz antenna based on graphene, Opt. Techn. Let. 56(8), 1792 (2014)
https://doi.org/10.1002/mop.28450
79 M. Dragoman, M. Aldrigo, A. Dinescu, D. Dragoman, and A. Costanzo, Towards a terahertz direct receiver based on graphene up to 10 THz, J. Appl. Phys. 115(4), 044307 (2014)
https://doi.org/10.1063/1.4863305
80 D. Correas-Serrano, J. S. Gomez-Diaz, A. Alu, and A. Alvarez-Melcon, Electrically and magnetically biased graphene-based cylindrical waveguides: Analysis and applications as reconfigurable antennas, IEEE Trans. Terahertz Sci. Technol. 5(6), 951 (2015)
https://doi.org/10.1109/TTHZ.2015.2472985
81 J. M. Jornet, and I. F. Akyildiz, Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks, IEEE J. Sel. Area. Comm. 31(12), 685 (2013)
https://doi.org/10.1109/JSAC.2013.SUP2.1213001
82 J. Li, M. He, C. Wu, and C. Zhang, Radiation pattern reconfigurable graphene leaky-wave antenna at terahertz band based on dielectric grating structure,IEEE Antennas Wirel. Propag. Lett. 16, 1771 (2017)
https://doi.org/10.1109/LAWP.2017.2676121
83 W. Fuscaldo, P. Burghignoli, P. Baccarelli, and A. Galli, A reconfigurable substrate? superstrate graphene-based leaky-wave THz antenna, IEEE Antennas Wirel. Propag. Lett. 15, 1545 (2016)
https://doi.org/10.1109/LAWP.2016.2550198
84 G. Moreno, H. Mehrpour Bernety, and A. B. Yakovlev, Reduction of mutual coupling between strip dipole antennas at terahertz frequencies with an elliptically shaped graphene monolayer, IEEE Antennas Wirel. Propag. Lett. 15, 1533 (2016)
https://doi.org/10.1109/LAWP.2015.2505333
85 X. H. Cheng, Y. Yao, S. W. Qu, Y. L. Wu, J. S. Yu, and X. D. Chen, Circular beam-reconfigurable antenna base on graphene-metal hybrid, Electron. Lett. 52(7), 494 (2016)
https://doi.org/10.1049/el.2015.4435
86 M. Tamagnone and J. R. Mosig, Theoretical Limits on the Efficiency of Reconfigurable and Nonreciprocal Graphene Antennas, IEEE Antennas Wirel. Propag. Lett. 15, 1549 (2016)
https://doi.org/10.1109/LAWP.2016.2521835
87 B. Zhu, G. Ren, Y. Gao, B. Wu, Y. Lian, and S. Jian, Creation of graphene plasmons vortex via cross shape nanoantennas under linearly polarized incidence, Plasmonics 12(3), 863 (2017)
https://doi.org/10.1007/s11468-016-0336-9
88 Z. Chang, B. You, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, A reconfigurable graphene reectarray for generation of vortex THz waves, IEEE Antennas Wirel. Propag. Lett. 15, 1537 (2016)
https://doi.org/10.1109/LAWP.2016.2519545
89 S. Kosuga, R. Suga, O. Hashimoto, and S. Koh, Graphene-based optically transparent dipole antenna, Appl. Phys. Lett. 110(23), 233102 (2017)
https://doi.org/10.1063/1.4984956
90 T. T. Tung, S. J. Chen, C. Fumeaux, and D. Losic, Scalable realization of conductive graphene films for highefficiency microwave antennas, J. Mater. Chem. C 4(45), 10620 (2016)
https://doi.org/10.1039/C6TC03583C
91 M. Dragoman, D. Neculoiu, A. C. Bunea, G. Deligeorgis, M. Aldrigo, D. Vasilache, A. Dinescu, G. Konstantinidis, D. Mencarelli, L. Pierantoni, and M. Modreanu, A tunable microwave slot antenna based on graphene, Appl. Phys. Lett. 106(15), 153101 (2015)
https://doi.org/10.1063/1.4917564
92 C. Nunez Alvarez, R. Cheung, and J. S. Thompson, Performance analysis of hybrid metal-graphene frequency reconfigurable antennas in the microwave regime, Ieee. T. Antenn. Propag. 65(4), 1558 (2017)
https://doi.org/10.1109/TAP.2017.2670327
93 M. Aldrigo, M. Dragoman, and D. Dragoman, Smart antennas based on graphene, J. Appl. Phys. 116(11), 114302 (2014)
https://doi.org/10.1063/1.4895739
94 P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns, Science 344(6190), 1369 (2014)
https://doi.org/10.1126/science.1253202
95 M. Esquius-Morote, J. S. Gomez-Diaz, and J. Perruisseau-Carrier, Sinusoidally modulated graphene leaky-wave antenna for electronic beam-scanning at THz, IEEE Trans. Terahertz Sci. Technol. 4(1), 116 (2014)
https://doi.org/10.1109/TTHZ.2013.2294538
96 D. Correas-Serrano, J. S. Gomez-Diaz, D. L. Sounas, Y. Hadad, A. Alvarez-Melcon, and A. Alu, Nonreciprocal graphene devices and antennas based on spatiotemporal modulation, IEEE Antennas Wirel. Propag. Lett. 15, 1529 (2016)
https://doi.org/10.1109/LAWP.2015.2510818
97 P. Y. Chen, M. Farhat, A. N. Askarpour, M. Tymchenko, and A. Alu, Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer, J. Opt. 16(9), 094008 (2014)
https://doi.org/10.1088/2040-8978/16/9/094008
98 Y. Cheng, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, A sinusoidally-modulated leaky-wave antenna with gapped graphene ribbons, IEEE Antennas Wirel. Propag. Lett. 16, 3000 (2017)
https://doi.org/10.1109/LAWP.2017.2757240
99 Z. Zhu, S. Joshi, S. Grover, and G. Moddel, Graphene geometric diodes for terahertz rectennas, J. Phys. D Appl. Phys. 46(18), 185101 (2013)
https://doi.org/10.1088/0022-3727/46/18/185101
100 C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. Nick Vamivakas, Optical antenna enhanced graphene photodetector, Appl. Phys. Lett. 105(24), 241114 (2014)
https://doi.org/10.1063/1.4904800
101 X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, Highly flexible and conductive printed graphene for wireless wearable communications applications, Sci. Rep. 5(1), 18298 (2016)
https://doi.org/10.1038/srep18298
102 M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider and M. Helm, Ultrafast graphenebased broadband THz detector, Appl. Phys. Lett. 103(2), 021113 (2013)
https://doi.org/10.1063/1.4813621
103 Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, High-responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection, Nano Lett. 14(7), 3749 (2014)
https://doi.org/10.1021/nl500602n
104 Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, Graphene-antenna sandwich photodetector, Nano Lett. 12(7), 3808 (2012)
https://doi.org/10.1021/nl301774e
105 S. Anand, D. Sriram Kumar, R. J. Wu, and M. Chavali, Graphene nanoribbon based terahertz antenna on polyimide substrate, Optik 125(19), 5546 (2014)
https://doi.org/10.1016/j.ijleo.2014.06.085
106 A. S. Thampy, M. S. Darak, and S. K. Dhamodharan, Analysis of graphene based optically transparent patch antenna for terahertz communications, Physica E 66, 67 (2015)
https://doi.org/10.1016/j.physe.2014.09.023
107 S. A. Naghdehforushha and G. Moradi, High directivity plasmonic graphene-based patch array antennas with tunable THz band communications, Optik 168, 440 (2018)
https://doi.org/10.1016/j.ijleo.2018.04.104
108 R. Bala and A. Marwaha, Characterization of graphene for performance enhancement of patch antenna in THz region, Optik 127(4), 2089 (2016)
https://doi.org/10.1016/j.ijleo.2015.11.029
109 Y. Dong, P. Liu, D. Yu, G. Li, and F. Tao, Dual-band reconfigurable terahertz patch antenna with graphenestack- based backing cavity, IEEE Antennas Wirel. Propag. Lett. 15, 1541 (2016)
https://doi.org/10.1109/LAWP.2016.2533018
110 R. Bala, and A. Marwaha, Development of computational model for tunable characteristics of graphene based triangular patch antenna in THz regime, J. Comput. Electron. 15(1), 222 (2016)
https://doi.org/10.1007/s10825-015-0761-6
111 P. Kopyt, B. Salski, M. Olszewska-Placha, D. Janczak, M. Sloma, T. Kurkus, M. Jakubowska, and W. Gwarek, Graphene-based dipole antenna for a UHF RFID tag, IEEE T. Antenn. Propag. 64(7), 2862 (2016)
https://doi.org/10.1109/TAP.2016.2565696
112 M. Akbari, M. W. A. Khan, M. Hasani, T. Bjorninen, L. Sydanheimo, and L. Ukkonen, Fabrication and characterization of graphene antenna for low-cost and environmentally friendly RFID tags, IEEE Antennas Wirel. Propag. Lett. 15, 1569 (2016)
https://doi.org/10.1109/LAWP.2015.2498944
113 X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, Binder-free highly conductive graphene laminate for low cost printed radio frequency applications, Appl. Phys. Lett. 106(20), 203105 (2015)
https://doi.org/10.1063/1.4919935
114 Z. Xu, X. Dong, and J. Bornemann, Design of a Reconfigurable MIMO System for THz communications based on graphene antennas, IEEE Trans. Terahertz Sci. Technol. 4(5), 609 (2014)
https://doi.org/10.1109/TTHZ.2014.2331496
115 S. Abadal, E. Alarcon, A. Cabellos-Aparicio, M. C. Lemme, and M. Nemirovsky, Graphene-enabled wireless communication for massive multicore architectures, IEEE Commun. Mag. 51(11), 137 (2013)
https://doi.org/10.1109/MCOM.2013.6658665
116 B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. (Grace) Xing, Unique prospects for graphene-based terahertz modulators, Appl. Phys. Lett. 99(11), 113104 (2011)
https://doi.org/10.1063/1.3636435
117 X. He and S. Kim, Tunable terahertz graphene metamaterials, Carbon 86, 237 (2015)
https://doi.org/10.1016/j.carbon.2014.10.066
118 A. Tredicucci, and M. S. Vitiello, Device concepts for graphene-based terahertz photonics, IEEE J. Sel. Top. Quantum Electron. 20(1), 130 (2014)
https://doi.org/10.1109/JSTQE.2013.2271692
119 M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, Fundamental limits and nearoptimal design of graphene modulators and nonreciprocal devices, Nat. Photonics 8(7), 556 (2014)
https://doi.org/10.1038/nphoton.2014.109
120 Y. Chen, H. Huang, D. Akinwande, and A. Alu, Graphene-based plasmonic platform for reconfigurable terahertz nanodevices, ACS Photonics 1(8), 647 (2014)
https://doi.org/10.1021/ph500046r
121 M. Rahm, J. S. Li, and W. J. Padilla, THz wave modulators: A brief review on different modulation techniques, J. Infrared Millim. Terahertz Waves 34(1), 1 (2013)
https://doi.org/10.1007/s10762-012-9946-2
122 P. Y. Chen, and A. Alu, Terahertz metamaterial devices based on graphene nanostructures, IEEE Trans. Terahertz Sci. Technol. 3(6), 748 (2013)
https://doi.org/10.1109/TTHZ.2013.2285629
123 H. Tanoto, L. Ding, and J. H. Teng, Tunable terahertz metamaterials, Terahertz Sci. Technol. 6(1), 1 (2013)
124 S. H. Lee, H. D. Kim, H. J. Choi, B. Kang, Y. R. Cho, and B. Min, Broadband modulation of terahertz waves with non-resonant graphene meta-devices, IEEE Trans. Terahertz Sci. Technol. 3(6), 764 (2013)
https://doi.org/10.1109/TTHZ.2013.2285615
125 Y. Zhou, X. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene, Phys. Chem. Chem. Phys. 15(14), 5084 (2013)
https://doi.org/10.1039/c3cp43994a
126 A. Andryieuski and A. V. Lavrinenko, Graphene metamaterials based tunable terahertz absorber: Effective surface conductivity approach, Opt. Express 21(7), 9144 (2013)
https://doi.org/10.1364/OE.21.009144
127 M. Amin, M. Farhat, and H. Bagci, A dynamically reconfigurable fano metamaterial through graphene tuning for switching and sensing applications, Sci. Rep. 3(1), 2105 (2013)
https://doi.org/10.1038/srep02105
128 B. Vasić, M. M. Jakovljević, G. Isić, and R. Gajić, Tunable metamaterials based on split ring resonators and doped graphene, Appl. Phys. Lett. 103(1), 011102 (2013)
https://doi.org/10.1063/1.4812989
129 K. Yang, S. Liu, S. Arezoomandan, A. Nahata, and B. Sensale-Rodriguez, Graphene-based tunable metamaterial terahertz filters, Appl. Phys. Lett. 105(9), 093105 (2014)
https://doi.org/10.1063/1.4894807
130 Y. Bludov, V. N. M. R. Peres, and M. I. Vasilevskiy, Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence, J. Opt. 15(11), 114004 (2013)
https://doi.org/10.1088/2040-8978/15/11/114004
131 J. T. Liu, N. H. Liu, L. Wang, X. H. Deng, and F. H. Su, Gate-tunable nearly total absorption in graphene with resonant metal back reflector, Europhys. Lett. 104(5), 57002 (2013)
https://doi.org/10.1209/0295-5075/104/57002
132 B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, Broadband graphene terahertz modulators enabled by intraband transitions, Nat. Commun. 3(1), 780 (2012)
https://doi.org/10.1038/ncomms1787
133 I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy, Nano Lett. 12(2), 551 (2012)
https://doi.org/10.1021/nl202442b
134 B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, Extraordinary control of terahertz beam reflectance in graphene electroabsorption modulators, Nano Lett. 12(9), 4518 (2012)
https://doi.org/10.1021/nl3016329
135 B. Sensale-Rodriguez, S. Rafique, R. Yan, M. Zhu, V. Protasenko, D. Jena, L. Liu, and H. G. Xing, Terahertz imaging employing graphene modulator arrays, Opt. Express 21(2), 2324 (2013)
https://doi.org/10.1364/OE.21.002324
136 L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol. 6(10), 630 (2011)
https://doi.org/10.1038/nnano.2011.146
137 B. Sensale-Rodriguez, R. Yan, M. Zhu, D. Jena, L. Liu, and H. G. Xing, Efficient terahertz electro-absorption modulation employing graphene plasmonic structures, Appl. Phys. Lett. 101(26), 261115 (2012)
https://doi.org/10.1063/1.4773374
138 X.-J. He, T.-Y. Li, L. Wang, J.-M. Wang, J.-X. Jiang, G.-H. Yang, F.-Y. Meng, and Q. Wu, Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene, J. Appl. Phys. 115, 17B903 (2014)
139 Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency, Opt. Express 22(19), 22743 (2014)
https://doi.org/10.1364/OE.22.022743
140 J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows, Sci. Rep. 4(1), 6128 (2015)
https://doi.org/10.1038/srep06128
141 Z. Wang, M. Zhou, X. Lin, H. Liu, H. Wang, F. Yu, S. Lin, E. Li, and H. Chen, A circuit method to integrate metamaterial and graphene in absorber design, Opt. Commun. 329, 76 (2014)
https://doi.org/10.1016/j.optcom.2014.05.010
142 B. Grześkiewicz, A. Sierakowski, J. Marczewski, N. Pałka, and E. Wolarz, Polarization-insensitive metamaterial absorber of selective response in terahertz frequency range, J. Opt. 16(10), 105104 (2014)
https://doi.org/10.1088/2040-8978/16/10/105104
143 L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, Highly sensitive and wideband tunable terahertz response of plasma waves based on graphene field effect transistors, Sci. Rep. 4(1), 5470 (2015)
https://doi.org/10.1038/srep05470
144 N. Born, M. Scheller, M. Koch, and J. V. Moloney, Cavity enhanced terahertz modulation, Appl. Phys. Lett. 104(10), 103508 (2014)
https://doi.org/10.1063/1.4868416
145 B. Wang, X. Zhang, K. P. Loh, and J. Teng, Tunable broadband transmission and phase modulation of light through graphene multilayers, J. Appl. Phys. 115(21), 213102 (2014)
https://doi.org/10.1063/1.4880336
146 D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, Hybrid graphene plasmonic waveguide modulators, Nat. Commun. 6(1), 8846 (2015)
https://doi.org/10.1038/ncomms9846
147 Q. Mao, Q. Y. Wen, W. Tian, T. L. Wen, Z. Chen, Q. H. Yang, and H. W. Zhang, High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors, Opt. Lett. 39(19), 5649 (2014)
https://doi.org/10.1364/OL.39.005649
148 X. He and H. Lu, Graphene-supported tunable extraordinary transmission, Nanotechnology 25(32), 325201 (2014)
https://doi.org/10.1088/0957-4484/25/32/325201
149 S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, Switching terahertz waves with gate-controlled active graphene metamaterials, Nat. Mater. 11(11), 936 (2012)
https://doi.org/10.1038/nmat3433
150 R. Yan, B. Sensale-Rodriguez, L. Liu, D. Jena, and H. G. Xing, A new class of tunable metamaterial terahertz modulators, Opt. Express 20(27), 28664 (2012)
https://doi.org/10.1364/OE.20.028664
151 R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, Low-bias terahertz amplitude modulator based on split-ring resonators and graphene, ACS Nano 8(3), 2548 (2014)
https://doi.org/10.1021/nn406136c
152 A. Novitsky, A. M. Ivinskaya, M. Zalkovskij, R. Malureanu, P. Uhd Jepsen, and A. V. Lavrinenko, Non-resonant terahertz field enhancement in periodically arranged nanoslits, J. Appl. Phys. 112(7), 074318 (2012)
https://doi.org/10.1063/1.4757024
153 S. F. Shi, B. Zeng, H. L. Han, X. Hong, H. Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures, Nano Lett. 15(1), 372 (2015)
https://doi.org/10.1021/nl503670d
154 Y. Wu, C. Laovorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. M. Chia, and H. Yang, Graphene terahertz modulators by ionic liquid gating, Adv. Mater. 27(11), 1874 (2015)
https://doi.org/10.1002/adma.201405251
155 P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, Spectrally wide-band terahertz wave modulator based on optically tuned graphene, ACS Nano 6(10), 9118 (2012)
https://doi.org/10.1021/nn303392s
156 Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, Graphene based all-optical spatial terahertz modulator, Sci. Rep. 4(1), 7409 (2015)
https://doi.org/10.1038/srep07409
157 S. A. Mikhailov, Non-linear graphene optics for terahertz applications, Microelectronics J. 40(4–5), 712 (2009)
https://doi.org/10.1016/j.mejo.2008.11.042
158 K. Yang, S. Arezoomandan, and B. Sensale-Rodriguez, The linear and nonlinear THz properties of graphene, Terahertz Sci. Technol. 6(4), 223 (2016)
159 I. Khromova, A. Andryieuski, and A. Lavrinenko, Ultrasensitive terahertz/infrared waveguide modulators based on multilayer graphene metamaterials, Laser Photonics Rev. 8(6), 916 (2014)
https://doi.org/10.1002/lpor.201400075
160 G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, Integrated terahertz graphene modulator with 100 modulation depth, ACS Photonics 2(11), 1559 (2015)
https://doi.org/10.1021/acsphotonics.5b00317
161 Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, and W. Zhang, Active graphene-silicon hybrid diode for terahertz waves, Nat. Commun. 6(1), 7082 (2015)
https://doi.org/10.1038/ncomms8082
162 A. Tredicucci and M. S. Vitiello, Device concepts for graphene-based terahertz photonics, IEEE J. Sel. Top. Quantum Electron. 20, 8500109 (2007)
163 F. Sizov and A. Rogalski, THz detectors, Prog. Quantum Electron. 34(5), 278 (2010)
https://doi.org/10.1016/j.pquantelec.2010.06.002
164 N. Zhang, R. Song, M. Hu, G. Shan, C. Wang, and J. Yang, A low-loss design of bandpass filter at the terahertz band, IEEE Microw. Wirel. Compon. Lett. 28(7), 573 (2018)
https://doi.org/10.1109/LMWC.2018.2835650
165 A. Pitanti, D. Coquillat, D. Ercolani, L. Sorba, F. Teppe, W. Knap, G. De Simoni, F. Beltram, A. Tredicucci, and M. S. Vitiello, Terahetz detection by heterostructured InAs/InSb nanowire based field effect transistors, Appl. Phys. Lett. 101(14), 141103 (2012)
https://doi.org/10.1063/1.4757005
166 W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Lausakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, A. El Fatimy, Y. M. Meziani, and T. Otsuji, Field effect transistors for terahertz detection: Physics and first imaging applications, J. Infrared Millim. Terahertz Waves 30, 1319 (2009)
https://doi.org/10.1007/s10762-009-9564-9
167 E. Ojefors, U. R. Pfeiffer, A. Lisauskas, and H. G. Roskos, A 0.65 THz focal-plane array in a quarter-micron CMOS process technology, IEEE J. Solid-State Circuits 44(7), 1968 (2009)
https://doi.org/10.1109/JSSC.2009.2021911
168 M. B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-González, K. Watanabe, T. Taniguchi, J. Hone, R. Hillenbrand, and F. H. L. Koppens, Thermoelectric detection and imaging of propagating graphene plasmons, Nat. Mater. 16(2), 204 (2017)
https://doi.org/10.1038/nmat4755
169 L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, Graphene field-effect transistors as Roomtemperature terahertz detectors, Nat. Mater. 11(10), 865 (2012)
https://doi.org/10.1038/nmat3417
170 R. M. Feenstra, D. Jena, and G. Gu, Single-particle tunneling in doped graphene insulator-graphene junctions, J. Appl. Phys. 111(4), 043711 (2012)
https://doi.org/10.1063/1.3686639
171 V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V. Mitin, and M. S. Shur, Dynamic effects in double graphenelayer structures with inter-layer resonant-tunnelling negative conductivity, J. Phys. D Appl. Phys. 46(31), 315107 (2013)
https://doi.org/10.1088/0022-3727/46/31/315107
172 A. Mishchenko, J. S. Tu, Y. Cao, R. V. Gorbachev, J. R. Wallbank, M. T. Greenaway, V. E. Morozov, S. V. Morozov, M. J. Zhu, S. L. Wong, F. Withers, C. R. Woods, Y. J. Kim, K. Watanabe, T. Taniguchi, E. E. Vdovin, O. Makarovsky, T. M. Fromhold, V. I. Fal’ko, A. K. Geim, L. Eaves, and K. S. Novoselov, Twist controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures, Nat. Nanotechnol. 9(10), 808 (2014)
https://doi.org/10.1038/nnano.2014.187
173 B. Fallahazad, K. Lee, S. Kang, J. Xue, S. Larentis, C. Corbet, K. Kim, H. C. P. Movva, T. Taniguchi, K. Watanabe, L. F. Register, S. K. Banerjee, and E. Tutuc, Gate-tunable resonant tunneling in double bilayer graphene heterostructures, Nano Lett. 15(1), 428 (2015)
https://doi.org/10.1021/nl503756y
174 A. Tomadin, A. Tredicucci, V. Pellegrini, M. S. Vitiello, and M. Polini, Photocurrent-based detection of terahertz radiation in graphene, Appl. Phys. Lett. 103(21), 211120 (2013)
https://doi.org/10.1063/1.4831682
175 V. Ryzhii, T. Otsuji, M. Ryzhii, V. Ya Aleshkin, A. A. Dubinov, D. Svintsov, V. Mitin, M. S. Shur, Graphene vertical cascade interband terahertz and infrared photodetectors, 2D Mater. 2(2), 025002 (2015)
176 B. Sensale-Rodriguez, Graphene-insulator-graphene active plasmonic terahertz devices, Appl. Phys. Lett. 103(12), 123109 (2013)
https://doi.org/10.1063/1.4821221
177 A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, Antenna-Integrated 0.6 THz FET direct detectors based on CVD graphene, Nano Lett. 14(10), 5834 (2014)
https://doi.org/10.1021/nl5027309
178 G. C. Shan, C. H. Shek, and M. J. Hu, Developments of Cavity-Controlled Devices with Graphene and Graphene Nanoribbon for Optoelectronics Applications, Graphene Science Handbook, Chapter 24, pp 395–410, CRC Press, 2016
179 W. Knap, S. Rumyantsev, M. S. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, Nanometer size field effect transistors for terahertz detectors, Nanotechnology 24(21), 214002 (2013)
https://doi.org/10.1088/0957-4484/24/21/214002
180 J. C. W. Song, M. S. Rudner, C. M. Marcus, and L. S. Levitov, Hot carrier transport and photocurrent response in graphene, Nano Lett. 11(11), 4688 (2011)
https://doi.org/10.1021/nl202318u
181 M. Freitag, T. Low, F. Xia, and P. Avouris, Photoconductivity of biased graphene, Nat. Photonics 7(1), 53 (2013)
https://doi.org/10.1038/nphoton.2012.314
182 J. Yan, M. H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, Dual-gated bilayer graphene hot-electron bolometer, Nat. Nanotechnol. 7(7), 472 (2012)
https://doi.org/10.1038/nnano.2012.88
183 X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene, Nat. Nanotechnol. 9(10), 814 (2014)
https://doi.org/10.1038/nnano.2014.182
184 A. V. Muraviev, S. L. Rumyantsev, G. Liu, A. A. Balandin, W. Knap, and M. S. Shur, Plasmonic and bolometric terahertz detection by graphene field-effect transistor, Appl. Phys. Lett. 103(18), 181114 (2013)
https://doi.org/10.1063/1.4826139
185 F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
https://doi.org/10.1038/nnano.2010.89
186 F. Schwierz, Graphene transistors: Status, prospects, and problems, Proc. IEEE 101(7), 1567 (2013)
https://doi.org/10.1109/JPROC.2013.2257633
187 W. Y. Fu, L. Jiang, E. P. van Geest, L. M. C. Lima, and G. F. Schneider, Sensing at the surface of graphene field-effect transistors, Adv. Mater. 29(6), 1603610 (2017)
https://doi.org/10.1002/adma.201603610
188 J. S. Friedman, A. Girdhar, R. M. Gelfand, G. Memik, H. Mohseni, A. Taove, B. W. Wessels, J. P. Leburton, and A. V. Sahakian, Cascaded spintronic logic with lowdimensional carbon, Nat. Commun. 8, 15635 (2017)
https://doi.org/10.1038/ncomms15635
189 E. C. Ahn, H. S. P. Wong and E. Pop, Carbon nanomaterials for non-volatile memories, Nature Reviews Materials 3(3), (2018)
190 F. Hui, E. Grustan-Gutierrez, S. B. Long, Q. Liu, A. K. Ott, A. C. Ferrari and M. Lanza, Graphene and related materials for resistive random access memories, Advanced Electronic Materials 3(8), (2017)
191 J. Y. Son, Y. H. Shin, H. Kim, and H. M. Jang, NiO Resistive Random Access Memory Nanocapacitor Array on Graphene, ACS Nano 4(5), 2655 (2010)
https://doi.org/10.1021/nn100234x
192 H. J. Hwang, J. H. Yang, Y. G. Lee, C. Cho, C. G. Kang, S. C. Kang, W. Park, and B. H. Lee, Ferroelectric polymer-gated graphene memory with high speed conductivity modulation, Nanotechnology 24(17), 175202 (2013)
https://doi.org/10.1088/0957-4484/24/17/175202
193 H. Tian, H. Y. Chen, B. Gao, S. Yu, J. Liang, Y. Yang, D. Xie, J. Kang, T. L. Ren, Y. Zhang, and H. S. Wong, Monitoring oxygen movement by Raman spectroscopy of resistive random access memory with a graphene-inserted electrode, Nano Lett. 13(2), 651 (2013)
https://doi.org/10.1021/nl304246d
194 Y. Ji, S. Lee, B. Cho, S. Song, and T. Lee, Flexible organic memory devices with multilayer graphene electrodes, ACS Nano 5(7), 5995 (2011)
https://doi.org/10.1021/nn201770s
195 X. Wang, W. Xie, and J. B. Xu, Graphene based nonvolatile memory devices, Adv. Mater. 26(31), 5496 (2014)
https://doi.org/10.1002/adma.201306041
196 A. Nag, A. Mitra, and S. C. Mukhopadhyay, Graphene and its sensor-based applications: A review, Sensors and Actuators A-Physical 270, 177 (2018)
https://doi.org/10.1016/j.sna.2017.12.028
197 C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, and T. A. P. Rocha-Santos, Graphene based sensors and biosensors, TrAC Trends in Analytical Chemistry 91, 53 (2017)
https://doi.org/10.1016/j.trac.2017.04.003
198 T. Wang, D. Huang, Z. Yang, S. S. Xu, G. L. He, X. L. Li, N. T. Hu, G. L. Yin, D. N. He, and L. Y. Zhang, A review on graphene-based gas/vapor sensors with unique properties and potential applications, Nano-Micro Lett. 8(2), 95 (2016)
https://doi.org/10.1007/s40820-015-0073-1
199 E. W. Hill, A. Vijayaragahvan, and K. Novoselov, Graphene sensors, IEEE Sens. J. 11(12), 3161 (2011)
https://doi.org/10.1109/JSEN.2011.2167608
200 E. Singh, M. Meyyappan, and H. S. Nalwa, Flexible graphene-based wearable gas and chemical sensors, ACS Appl. Mater. Interfaces 9(40), 34544 (2017)
https://doi.org/10.1021/acsami.7b07063
201 A. Gutés, B. Hsia, A. Sussman, W. Mickelson, A. Zettl, C. Carraro, and R. Maboudian, Graphene decoration with metal nanoparticles: towards easy integration for sensing applications, Nanoscale 4(2), 438 (2012)
https://doi.org/10.1039/C1NR11537E
202 X. H. Li, W. C. H. Choy, X. G. Ren, D. Zhang, and H. F. Lu, Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system, Adv. Funct. Mater. 24(21), 3114 (2014)
https://doi.org/10.1002/adfm.201303384
203 X. Li, X. Ren, Y. Zhang, W. C. H. Choy, and B. Wei, An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS, Nanoscale 7(26), 11291 (2015)
https://doi.org/10.1039/C5NR00944H
204 Y. Zhao and Y. W. Zhu, Graphene-based hybrid films for plasmonic sensing, Nanoscale 7(35), 14561 (2015)
https://doi.org/10.1039/C5NR03458B
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed