Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (2): 23601   https://doi.org/10.1007/s11467-018-0864-1
  本期目录
Dynamics of the phase-change material GeTe across the structural phase transition
T. Chatterji1, S. Rols1, U. D. Wdowik2()
1. Institut Laue-Langevin, 71 avenue des Martyres, 38000 Grenoble, France
2. Institut of Technology, Pedagogical University, Podchorazych 2, PL-30-084 Krakow, Poland
 全文: PDF(1215 KB)  
Abstract

Results of inelastic neutron scattering experiments and ab initio molecular dynamics simulations for GeTe – the parent compound of phase-change materials are reported. The inelastic neutron spectra of GeTe powder samples have been determined in the temperature range extending from 300 to 700 K. The phonon peaks undergo thermal shifts resulting from anharmonic effects being weaker for acoustic than optic modes. A small concentration of free charge carries arising from the presence of Ge-vacancies was found not to affect significantly the neutron weighted phonon densities of states of GeTe. The spectral pattern changes qualitatively across the structural phase transition, but the local structure of GeTe remains hardly affected, as confirmed by the analysis of temperature dependence of the pairdistribution function obtained from ab initio molecular dynamics investigations. The present theoretical studies support in a wide extent our experimental observations and also those provided by local probe methods.

Key wordsphase-change materials    inelastic neutron scattering    ab initio molecular dynamics
出版日期: 2018-10-24
Corresponding Author(s): U. D. Wdowik   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(2): 23601.
T. Chatterji, S. Rols, U. D. Wdowik. Dynamics of the phase-change material GeTe across the structural phase transition. Front. Phys. , 2019, 14(2): 23601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0864-1
https://academic.hep.com.cn/fop/CN/Y2019/V14/I2/23601
1 M. Wuttig and N. Yamada, Phase-change materials for rewriteable data storage, Nat. Mater. 6(11), 824 (2007)
https://doi.org/10.1038/nmat2009
2 S. Raoux, F. Xiong, M. Wuttig, and E. Pop, Phase change materials and phase change memory, MRS Bull. 39(08), 703 (2014)
https://doi.org/10.1557/mrs.2014.139
3 L. Wang, L. Tu, and J. Wen, Application of phase-change materials in memory taxonomy, Sci. Technol. Adv. Mater. 18(1), 406 (2017)
https://doi.org/10.1080/14686996.2017.1332455
4 E. F. Steigmeier and G. Harbeke, Soft phonon mode and ferroelectricity in GeTe, Solid State Commun. 8(16), 1275 (1970)
https://doi.org/10.1016/0038-1098(70)90619-8
5 T. Chattopadhyay, J. X. Boucherele, and H. von Schnering, Neutron diffraction study on the structural phase transition in GeTe, J. Phys. C 20(10), 1431 (1987)
6 P. Fons, A. V. Kolobov, M. Krbal, J. Tominaga, K. S. Andrikopoulos, S. N. Yannopoulos, G. A. Voyiatzis, and T. Uruga, Phase transition in crystalline GeTe: Pitfalls of averaging effects, Phys. Rev. B 82(15), 155209 (2010)
https://doi.org/10.1103/PhysRevB.82.155209
7 T. Matsunaga, P. Fons, V. Kolobov, J. Tominaga, and N. Yamada, The order-disorder transition in GeTe: Views from different length-scales, Appl. Phys. Lett. 99(23), 231907 (2011)
https://doi.org/10.1063/1.3665067
8 F. Kadlec, C. Kadlec, P. Kužel, and J. Petzelt, Study of the ferroelectric phase transition in germanium telluride using time-domain terahertz spectroscopy, Phys. Rev. B 84(20), 205209 (2011)
https://doi.org/10.1103/PhysRevB.84.205209
9 M. J. Polking, J. J. Urban, D. J. Milliron, H. Zheng, E. Chan, M. A. Caldwell, S. Raoux, C. F. Kisielowski, J. W. III Ager, R. Ramesh, and A. P. Alivisatos, Sizedependent polar ordering in colloidal GeTe nanocrystals, Nano Lett. 11(3), 1147 (2011)
https://doi.org/10.1021/nl104075v
10 J. Hudspeth, T. Chatterji, S. Billinge, and S. Kimber, Unifying local and average structure in the phase change material GeTe, arXiv: 1506.08944 (2015)
11 T. Chatterji, C. Kumar, and U. D. Wdowik, Anomalous temperature-induced volume contraction in GeTe, Phys. Rev. B 91(5), 054110 (2015)
https://doi.org/10.1103/PhysRevB.91.054110
12 G. Kalra and S. Murugavel, The role of atomic vacancies on phonon confinement in a-GeTe, AIP Adv. 5(4), 047127 (2015)
https://doi.org/10.1063/1.4918696
13 D. Yang, T. Chatterji, J. A. Schiemer, and M. A. Carpenter, Strain coupling, microstructure dynamics, and acoustic mode softening in germanium telluride, Phys. Rev. B 93(14), 144109 (2016)
https://doi.org/10.1103/PhysRevB.93.144109
14 M. Sist, H. Kasai, E. M. J. Hedegaard, and B. B. Iversen, Role of vacancies in the high-temperature pseudodisplacive phase transition in GeTe, Phys. Rev. B 97(9), 094116 (2018)
https://doi.org/10.1103/PhysRevB.97.094116
15 S. D. Gupta, G. V. Varada, and G. S. Agarwal, Surface plasmons in two-sided corrugated thin films, Phys. Rev. B 36(12), 6331 (1987)
https://doi.org/10.1103/PhysRevB.36.6331
16 J. Raty, V. Godlevsky, P. Ghosez, C. Bichara, J. Gaspard, and J. Chelikowsky, Evidence of a reentrant Peierls distortion in liquid GeTe, Phys. Rev. Lett. 85(9), 1950 (2000)
https://doi.org/10.1103/PhysRevLett.85.1950
17 R. Shaltaf, X. Gonze, M. Cardona, R. K. Kremer, and G. Siegle, Lattice dynamics and specific heat of a-GeTe: Theoretical and experimental study, Phys. Rev. B 79(7), 075204 (2009)
https://doi.org/10.1103/PhysRevB.79.075204
18 A. J. Bevolo, H. R. Shanks, and D. E. Eckels, Molar heat capacity of GeTe, SnTe, and PbTe from 0.9 to 60 K, Phys. Rev. B 13(8), 3523 (1976)
https://doi.org/10.1103/PhysRevB.13.3523
19 J. Raty, P. Noé, G. Ghezzi, S. Maitrejean, C. Bichara, and F. Hippert, Vibrational properties and stabilization mechanism of the amorphous phase of doped GeTe, Phys. Rev. B 88(1), 014203 (2013)
https://doi.org/10.1103/PhysRevB.88.014203
20 U. D. Wdowik, K. Parlinski, S. Rols, and T. Chatterji, Soft-phonon mediated structural phase transition in GeTe, Phys. Rev. B 89(22), 224306 (2014)
https://doi.org/10.1103/PhysRevB.89.224306
21 K. Jeong, S. Park, D. Park, M. Ahn, J. Han, W. Yang, H. S. Jeong, and M. H. Cho, Evolution of crystal structures in GeTe during phase transition, Sci. Rep. 7(1), 955 (2017)
https://doi.org/10.1038/s41598-017-01154-z
22 -D. Dangić, A. R. Murphy, É. D. Murray, S. Fahy, and I. Savić, Coupling between acoustic and soft transverse optical phonons leads to negative thermal expansion of GeTe near the ferroelectric phase transition, Phys. Rev. B 97(22), 224106 (2018)
https://doi.org/10.1103/PhysRevB.97.224106
23 R. Mittal, M. K. Gupta, S. L. Chaplot, M. Zbiri, S. Rols, H. Schober, Y. Su, T. Brueckel, and T. Wolf, Spin-phonon coupling in K0.8Fe1.6Se2 and KFe2Se2: Inelastic neutron scattering and ab initiophonon calculations, Phys. Rev. B 87(18), 184502 (2013)
https://doi.org/10.1103/PhysRevB.87.184502
24 H. Schober, A. Tölle, B. Renker, R. Heid, and F. Gompf, Microscopic dynamics of A 60C compounds in the plastic, polymer, and dimer phases investigated by inelastic neutron scattering, Phys. Rev. B 56(10), 5937 (1997)
https://doi.org/10.1103/PhysRevB.56.5937
25 S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Clarendon Press, 1986
26 G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering, Dover Publications, 1997
27 V. F. Sears, Neutron scattering lengths and cross sections, Neutron News 3(3), 26 (1992)
https://doi.org/10.1080/10448639208218770
28 U. D. Wdowik, K. Parlinski, T. Chatterji, S. Rols, and H. Schober, Lattice dynamics of rhenium trioxide from the quasiharmonic approximation, Phys. Rev. B 82(10), 104301 (2010)
https://doi.org/10.1103/PhysRevB.82.104301
29 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
30 G. Kresse and J. Furthmüller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
31 G. Kresse and J. Hafner, Ab initiomolecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
https://doi.org/10.1103/PhysRevB.47.558
32 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
33 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)], Phys. Rev. Lett. 78(7), 1396 (1997)
https://doi.org/10.1103/PhysRevLett.78.1396
34 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
35 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1998)
https://doi.org/10.1103/PhysRevB.59.1758
36 S. H. Garofalini, Molecular dynamics simulation of the frequency spectrum of amorphous silica, J. Chem. Phys. 76(6), 3189 (1982)
https://doi.org/10.1063/1.443363
37 T. Róg, K. Murzyn, K. Hinsen, and G. R. Kneller, nMoldyn: A program package for a neutron scattering oriented analysis of molecular dynamics simulations, J. Comput. Chem. 24(5), 657 (2003)
https://doi.org/10.1002/jcc.10243
38 D. B. Zhang, T. Sun, and R. M. Wentzcovitch, Phonon quasiparticles and anharmonic free energy in complex systems, Phys. Rev. Lett. 112(5), 058501 (2014)
https://doi.org/10.1103/PhysRevLett.112.058501
39 T. Sun, D. B. Zhang, and R. M. Wentzcovitch, Dynamic stabilization of cubic CaSiO3 perovskite at high temperatures and pressures from ab initiomolecular dynamics, Phys. Rev. B 89(9), 094109 (2014)
https://doi.org/10.1103/PhysRevB.89.094109
40 U. D. Wdowik and K. Parlinski, Lattice dynamics of cobalt-deficient CoO from first principles, Phys. Rev. B 78(22), 224114 (2008)
https://doi.org/10.1103/PhysRevB.78.224114
41 U. D. Wdowik and K. Parlinski, Lattice dynamics of Fedoped CoO from first principles, J. Phys.: Condens. Matter 21(12), 125601 (2009)
https://doi.org/10.1088/0953-8984/21/12/125601
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed