Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2014, Vol. 9 Issue (3): 303-322   https://doi.org/10.1007/s11467-013-0343-7
  Special Issue: Nanoscience and Emerging Nanotechnologies (Edited by C. M. Lieber) 本期目录
Hierarchical nanowires for high-performance electrochemical energy storage
Shuo Li(李硕),Yi-Fan Dong(董轶凡),Dan-Dan Wang(王丹丹),Wei Chen(陈伟)(),Lei Huang(黄磊),Chang-Wei Shi(石长玮),Li-Qiang Mai(麦立强)()
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, WUT–Harvard Joint Nano Key Laboratory, Wuhan University of Technology, Wuhan 430070, China
 全文: PDF(1788 KB)  
Abstract

Nanowires are promising candidates for energy storage devices such as lithium-ion batteries, supercapacitors and lithium-air batteries. However, simple-structured nanowires have some limitations hence the strategies to make improvements need to be explored and investigated. Hierarchical nanowires with enhanced performance have been considered as an ideal candidate for energy storage due to the novel structures and/or synergistic properties. This review describes some of the recent progresses in the hierarchical nanowire merits, classification, synthesis and performance in energy storage applications. Herein we discuss the hierarchical nanowires based on their structural design from three major categories, including exterior design, interior design and aligned nanowire assembly. This review also briefly outlines the prospects of hierarchical nanowires in morphology control, property enhancement and application versatility.

Key wordshierarchical nanowires    exterior design    interior design    electrochemical performance    energy storage
收稿日期: 2013-03-31      出版日期: 2014-06-26
Corresponding Author(s): Wei Chen(陈伟)   
 引用本文:   
. [J]. Frontiers of Physics, 2014, 9(3): 303-322.
Shuo Li(李硕), Yi-Fan Dong(董轶凡), Dan-Dan Wang(王丹丹), Wei Chen(陈伟), Lei Huang(黄磊), Chang-Wei Shi(石长玮), Li-Qiang Mai(麦立强). Hierarchical nanowires for high-performance electrochemical energy storage. Front. Phys. , 2014, 9(3): 303-322.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0343-7
https://academic.hep.com.cn/fop/CN/Y2014/V9/I3/303
1 M. Armand and J. M. Tarascon, Building better batteries, Nature, 2008, 451(7179): 652
doi: 10.1038/451652a
2 D. R. Rolison and L. F. Nazar, Electrochemical energy storage to power the 21st century, MRS Bull., 2011, 36(07): 486
doi: 10.1557/mrs.2011.136
3 S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 2012, 488(7411): 294
doi: 10.1038/nature11475
4 B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources, 2010, 195(9): 2419
doi: 10.1016/j.jpowsour.2009.11.048
5 M. M. Thackeray, C. Wolverton, and E. D. Isaacs, Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries, Energy Environ. Sci., 2012, 5(7): 7854
doi: 10.1039/c2ee21892e
6 J. Liu, Addressing the grand challenges in energy storage, Adv. Funct. Mater., 2013, 23(8): 924
doi: 10.1002/adfm.201203058
7 L. Su, Y. Jing, and Z. Zhou, Li ion battery materials with core-shell nanostructures, Nanoscale, 2011, 3(10): 3967
doi: 10.1039/c1nr10550g
8 T. Nagaura and K. Tozawa, Lithium ion rechargeable battery, Progress in Batteries and Solar Cells, 1990, 9: 209
9 B. Dunn, H. Kamath, and J. M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 2011, 334(6058): 928
doi: 10.1126/science.1212741
10 P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nat. Mater., 2012, 11(1): 19
doi: 10.1038/nmat3191
11 C. Bai and M. Liu, From chemistry to nanoscience: Not just a matter of size, Angew. Chem. Int. Ed., 2013, 52(10): 2678
doi: 10.1002/anie.201210058
12 P. G. Bruce, B. Scrosati, and J. M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed., 2008, 47(16): 2930
doi: 10.1002/anie.200702505
13 J. Thomas, Lithium batteries: A spectacularly reactive cathode, Nat. Mater., 2003, 2(11): 705
doi: 10.1038/nmat1010
14 A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 2005, 4(5): 366
doi: 10.1038/nmat1368
15 J. B. Goodenough, Cathode materials: A personal perspective, J. Power Sources, 2007, 174(2): 996
doi: 10.1016/j.jpowsour.2007.06.217
16 L. Q. Mai, F. Yang, Y. L. Zhao, X. Xu, L. Xu, B. Hu, Y. Z. Luo, and H. Y. Liu, Molybdenum oxide nanowires: Synthesis & properties, Mater. Today, 2011, 14(7-8): 346
doi: 10.1016/S1369-7021(11)70165-1
17 M. Hu, X. Pang, and Z. Zhou, Recent progress in highvoltage lithium ion batteries, J. Power Sources, 2013, 237: 229
doi: 10.1016/j.jpowsour.2013.03.024
18 C. M. Lieber, One-dimensional nanostructures: Chemistry, physics & applications, Solid State Commun., 1998, 107(11): 607
doi: 10.1016/S0038-1098(98)00209-9
19 Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, One-dimensional nanostructures: Synthesis, characterization, and applications, Adv. Mater., 2003, 15(5): 353
doi: 10.1002/adma.200390087
20 A. I. Hochbaum and P. Yang, Semiconductor nanowires for energy conversion, Chem. Rev., 2010, 110(1): 527
doi: 10.1021/cr900075v
21 X. Duan and C. M. Lieber, General synthesis of compound semiconductor nanowires, Adv. Mater., 2000, 12(4): 298
doi: 10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y
22 P. Yang, R. Yan, and M. Fardy, Semiconductor nanowire: What’s next? Nano Lett., 2010, 10(5): 1529
doi: 10.1021/nl100665r
23 T. J. Kempa, R. W. Day, S.K. Kim, H.G. Park, and C. M. Lieber, Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells, Energy Environ. Sci., 2013, 6(3): 719
doi: 10.1039/c3ee24182c
24 J.-M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414(6861): 359
doi: 10.1038/35104644
25 L. Q. Mai, B. Hu, W. Chen, Y. Y. Qi, C. Lao, R. Yang, Y. Dai, and Z. L.Wang, Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries, Adv. Mater., 2007, 19(21): 3712
doi: 10.1002/adma.200700883
26 X. H. Liu, J. W. Wang, S. Huang, F. Fan, X. Huang, Y. Liu, S. Krylyuk, J. Yoo, S. A. Dayeh, A. V. Davydov, S. X. Mao, S. T. Picraux, S. Zhang, J. Li, T. Zhu, and J. Y. Huang, In situ atomic-scale imaging of electrochemical lithiation in silicon, Nat. Nanotechnol., 2012, 7(11): 749
doi: 10.1038/nnano.2012.170
27 M. T. McDowell, I. Ryu, S. W. Lee, C. Wang, W. D. Nix, and Y. Cui, Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy, Adv. Mater., 2012, 24(45): 6034
doi: 10.1002/adma.201202744
28 R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, and Y. Cui, Impedance analysis of silicon nanowire lithium ion battery anodes, J. Phys. Chem. C, 2009, 113(26): 11390
doi: 10.1021/jp901594g
29 A. R. Armstrong, C. Lyness, P. M. Panchmatia, M. S. Islam, and P. G. Bruce, The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1-xO2, Nat. Mater., 2011, 10(3): 223
doi: 10.1038/nmat2967
30 M. Pharr, K. Zhao, X. Wang, Z. Suo, and J. J. Vlassak, Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries, Nano Lett., 2012, 12(9): 5039
doi: 10.1021/nl302841y
31 Y. Yang, C. Xie, R. Ruffo, H. Peng, K. Kim, and Y. Cui, Single nanorod devices for battery diagnostics: A case study on LiMn2O4, Nano Lett., 2009, 9(12): 4109
doi: 10.1021/nl902315u
32 L. Q. Mai, Y. J. Dong, L. Xu, and C. H. Han, Single nanowire electrochemical devices, Nano Lett., 2010, 10(10): 4273
doi: 10.1021/nl102845r
33 J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, and J. Li, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode, Science, 2010, 330(6010): 1515
doi: 10.1126/science.1195628
34 R. Liu, J. Duay, and S. B. Lee, Heterogeneous nanostructured electrode materials for electrochemical energy storage, Chem. Commun., 2010, 47(5): 1384
doi: 10.1039/c0cc03158e
35 X. Liu, Y. Lin, S. Zhou, S. Sheehan, and D. Wang, Complex nanostructures: Synthesis and energetic applications, Energies, 2010, 3(3): 285
doi: 10.3390/en3030285
36 C. Cheng and H. J. Fan, Branched nanowires: Synthesis and energy applications, Nano Today, 2012, 7(4): 327
doi: 10.1016/j.nantod.2012.06.002
37 H. Li, A. G. Kanaras, and L. Manna, Colloidal branched semiconductor nanocrystals: State of the art and perspectives, Acc. Chem. Res., 2013
doi: 10.1021/ar3002409
38 S. K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K. D. Song, H. G. Park, and C. M. Lieber, Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design, Nano Lett., 2012, 12(9): 4971
doi: 10.1021/nl302578z
39 J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, Solutionprocessed core-shell nanowires for efficient photovoltaic cells, Nat. Nanotechnol., 2011, 6(9): 568
doi: 10.1038/nnano.2011.139
40 B. Tian, T. J. Kempa, and C. M. Lieber, Single nanowire photovoltaics, Chem. Soc. Rev., 2009, 38(1): 16
doi: 10.1039/b718703n
41 Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties, Nano Lett., 2012, 12(3): 1678
doi: 10.1021/nl3001138
42 Y. J. Hwang, A. Boukai, and P. D. Yang, High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity, Nano Lett., 2009, 9(1): 410
doi: 10.1021/nl8032763
43 C. Pan, S. Niu, Y. Ding, L. Dong, R. Yu, Y. Liu, G. Zhu, and Z. L. Wang, Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect, Nano Lett., 2012, 12(6): 3302
doi: 10.1021/nl3014082
44 Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, Coaxial group III-nitride nanowire photovoltaics, Nano Lett., 2009, 9(5): 2183
doi: 10.1021/nl900858v
45 F. Zhang, Y. Ding, Y. Zhang, X. Zhang, and Z. L. Wang, Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire, ACS Nano, 2012, 6(10): 9229
doi: 10.1021/nn3035765
46 T. J. Kempa, J. F. Cahoon, S. K. Kim, R. W. Day, D. C. Bell, H. G. Park, and C. M. Lieber, Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics, Proc. Natl. Acad. Sci. USA, 2012, 109(5): 1407
doi: 10.1073/pnas.1120415109
47 B. Z. Tian and C. M. Lieber, Design, synthesis, and characterization of novel nanowire structures for photovoltaics and intracellular probes, Pure Appl. Chem., 2011, 83(12): 2153
doi: 10.1351/PAC-CON-11-08-25
48 Y. Hu, J. Xiang, G. Liang, H. Yan, and C. M. Lieber, Sub- 100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed, Nano Lett., 2008, 8(3): 925
doi: 10.1021/nl073407b
49 Q. Yang, Y. Liu, C. Pan, J. Chen, X.Wen, and Z. L. Wang, Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect, Nano Lett., 2013, 13(2): 607
doi: 10.1021/nl304163n
50 H. Peng, C. Xie, D. T. Schoen, K. McIlwrath, X. F. Zhang, and Y. Cui, Ordered vacancy compounds and nanotube formation in CuInSe2-CdS coreshell nanowires, Nano Lett., 2007, 7(12): 3734
doi: 10.1021/nl0721463
51 G. Liang, J. Xiang, N. Kharche, G. Klimeck, C. M. Lieber, and M. Lundstrom, Performance analysis of a Ge/Si core/shell nanowire field-effect transistor, Nano Lett., 2007, 7(3): 642
doi: 10.1021/nl062596f
52 L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructures, Nature, 2002, 420(6911): 57
doi: 10.1038/nature01141
53 Y. Hu, F. Kuemmeth, C. M. Lieber, and C. M. Marcus, Hole spin relaxation in Ge-Si core-shell nanowire qubits, Nat. Nanotechnol., 2012, 7(1): 47
doi: 10.1038/nnano.2011.234
54 B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature, 2007, 449(7164): 885
doi: 10.1038/nature06181
55 Y. Dong, G. Yu, M. C. McAlpine, W. Lu, and C. M. Lieber, Si/a-Si core/shell nanowires as nonvolatile crossbar switches, Nano Lett., 2008, 8(2): 386
doi: 10.1021/nl073224p
56 Y. Hu, H. O. Churchill, D. J. Reilly, J. Xiang, C. M. Lieber, and C. M. Marcus, A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor, Nat. Nanotechnol., 2007, 2(10): 622
doi: 10.1038/nnano.2007.302
57 T. Mokari, S. E. Habas, M. Zhang, and P. Yang, Synthesis of lead chalcogenide alloy and core-shell nanowires, Angew Chem. Int. Ed., 2008, 47(30): 5605
doi: 10.1002/anie.200801162
58 C. R. Ghosh and S. Paria, Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev., 2012, 112(4): 2373
doi: 10.1021/cr100449n
59 S. Wei, Q. Wang, J. Zhu, L. Sun, H. Lin, and Z. Guo, Multifunctional composite coreshell nanoparticles, Nanoscale, 2011, 3(11): 4474
doi: 10.1039/c1nr11000d
60 W. M. Zhang, X. L. Wu, J. S. Hu, Y. G. Guo, and L. J. Wan, Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries, Adv. Funct. Mater., 2008, 18(24): 3941
doi: 10.1002/adfm.200801386
61 A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, and P. M. Ajayan, Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries, Nano Lett., 2009, 9(3): 1002
doi: 10.1021/nl803081j
62 B. Luo, B. Wang, M. Liang, J. Ning, X. Li, and L. Zhi, Reduced graphene oxidemediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties, Adv. Mater., 2012, 24(11): 1405
doi: 10.1002/adma.201104362
63 S. M. Yuan, J. X. Li, L. T. Yang, L. W. Su, L. Liu, and Z. Zhou, Preparation and lithium storage performances of mesoporous Fe3O4@C microcapsules, ACS Appl. Mater. Interfaces, 2011, 3(3): 705
doi: 10.1021/am1010095
64 H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. Mc-Dowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, and Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solidelectrolyte interphase control, Nat. Nanotechnol., 2012, 7(5): 310
doi: 10.1038/nnano.2012.35
65 D. W. Kim, I. S. Hwang, S. J. Kwon, H. Y. Kang, K. S. Park, Y. J. Choi, K. J. Choi, and J. G. Park, Highly conductive coaxial SnO2-In2O3 heterostructured nanowires for Li ion battery electrodes, Nano Lett., 2007, 7(10): 3041
doi: 10.1021/nl0715037
66 L. Q. Mai, X. Xu, C. H. Han, Y. Z. Luo, L. Xu, Y. A. Wu, and Y. L. Zhao, Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property, Nano Lett., 2011, 11(11): 4992
doi: 10.1021/nl202943b
67 S. Li, C. H. Han, L. Q. Mai, J. H. Han, X. Xu, and Y. Q. Zhu, Rational synthesis of coaxial MoO3/PTh nanowires with improved electrochemical cyclability, Int. J. Electrochem. Sci., 2011, 6: 4504
68 L. Q. Mai, F. Dong, X. Xu, Y. Z. Luo, Q. Y. An, Y. L. Zhao, J. Pan, and J. N. Yang, Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene) & MnO2 nanowires with enhanced electrochemical cyclability, Nano Lett., 2013, 13(2): 740
doi: 10.1021/nl304434v
69 R. Liu and S. B. Lee, MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage, J. Am. Chem. Soc., 2008, 130(10): 2942
doi: 10.1021/ja7112382
70 X. Jiang, B. Tian, J. Xiang, F. Qian, G. Zheng, H. Wang, L. Q. Mai, and C. M. Lieber, Rational growth of branched nanowire heterostructures with synthetically encoded properties and function, Proc. Natl. Acad. Sci. USA, 2011, 108(30): 12212
doi: 10.1073/pnas.1108584108
71 B. Tian, P. Xie, T. J. Kempa, D. C. Bell, and C. M. Lieber, Single-crystalline kinked semiconductor nanowire superstructures, Nat. Nanotechnol., 2009, 4(12): 824
doi: 10.1038/nnano.2009.304
72 S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell, Nano Lett., 2011, 11(2): 666
doi: 10.1021/nl1037962
73 J. W. Long, B. Dunn, D. R. Rolison, and H. S. White, Three-dimensional battery architectures, Chem. Rev., 2004, 104(10): 4463
doi: 10.1021/cr020740l
74 W. Zhou, C. Cheng, J. Liu, Y. Y. Tay, J. Jiang, X. Jia, J. Zhang, H. Gong, H. H. Hng, T. Yu, and H. J. Fan, Epitaxial growth of branched –Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance, Adv. Funct. Mater., 2011, 21(13): 2439
doi: 10.1002/adfm.201100088
75 J. Liu, J. Jiang, M. Bosman, and H. J. Fan, Threedimensional tubular arrays of MnO2-NiO nanoflakes with high areal pseudocapacitance, J. Mater. Chem., 2012, 22(6): 2419
doi: 10.1039/c1jm14804d
76 J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, and H. J. Fan, Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: A new class of high-performance pseudocapacitive materials, Adv. Mater., 2011, 23(18): 2076
doi: 10.1002/adma.201100058
77 L. Yang, S. Wang, J. Mao, J. Deng, Q. Gao, Y. Tang, and O. G. Schmidt, Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries, Adv. Mater., 2013, 25(8): 1180
doi: 10.1002/adma.201203999
78 J. Zhao, Z. Lu, M. Shao, D. Yan, M. Wei, D. G. Evans, and X. Duan, Flexible hierarchical nanocomposites based on MnO2 nanowires/CoAl hydrotalcite/carbon fibers for highperformance supercapacitors, RSC Adv., 2012, 3(4): 1045
doi: 10.1039/c2ra22566b
79 S. Zhou, X. Yang, Y. Lin, J. Xie, and D. Wang, A nanonetenabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime, ACS Nano, 2012, 6(1): 919
doi: 10.1021/nn204479n
80 S. He, X. Hu, S. Chen, H. Hu, M. Hanif, and H. Hou, Needlelike polyaniline nanowires on graphite nanofibers: Hierarchical micro/nano-architecture for high performance supercapacitors, J. Mater. Chem., 2012, 22(11): 5114
doi: 10.1039/c2jm15668g
81 J. G. Kim, S. H. Nam, S. H. Lee, S. M. Choi, and W. B. Kim, SnO2 nanorod-planted graphite: An effective nanostructure configuration for reversible lithium ion storage, ACS Appl. Mater. Interfaces, 2011, 3(3): 828
doi: 10.1021/am101169k
82 L. Q. Mai, F. Yang, Y. L. Zhao, X. Xu, L. Xu, and Y. Z. Luo, Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance, Nat. Commun., 2011, 2: 381
doi: 10.1038/ncomms1387
83 F. Schüth, Non-siliceous mesostructured and mesoporous materials, Chem. Mater., 2001, 13(10): 3184
doi: 10.1021/cm011030j
84 M. E. Davis, Ordered porous materials for emerging applications, Nature, 2002, 417(6891): 813
doi: 10.1038/nature00785
85 F. Schüth and W. Schmidt, Microporous and mesoporous materials, Adv. Eng. Mater., 2002, 4(5): 269
doi: 10.1002/1527-2648(20020503)4:5<269::AID-ADEM269>3.0.CO;2-7
86 C. Liang, Z. Li, and S. Dai, Mesoporous carbon materials: Synthesis and modification, Angew. Chem. Int. Ed., 2008, 47(20): 3696
doi: 10.1002/anie.200702046
87 A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev., 1997, 97(6): 2373
doi: 10.1021/cr960406n
88 J. Lee, J. Kim, and T. Hyeon, Recent progress in the synthesis of porous carbon materials, Adv. Mater., 2006, 18(16): 2073
doi: 10.1002/adma.200501576
89 F. D. Wu and Y. Wang, Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@CNT for lithium-ion batteries, J. Mater. Chem., 2011, 21(18): 6636
doi: 10.1039/c0jm04346j
90 H. Jiang, J. Ma, and C. Li, Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors, Chem. Commun., 2012, 48(37): 4465
doi: 10.1039/c2cc31418e
91 D. Yu, C. Chen, S. Xie, Y. Liu, K. Park, X. Zhou, Q. Zhang, J. Li, and G. Cao, Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ionstorage properties by electrospinning, Energy Environ. Sci., 2011, 4(3): 858
doi: 10.1039/c0ee00313a
92 L. Q. Mai, L. Xu, C. H. Han, X. Xu, Y. Z. Luo, S. Y. Zhao, and Y. L. Zhao, Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries, Nano Lett., 2010, 10(11): 4750
doi: 10.1021/nl103343w
93 Y. L. Zhao, L. Xu, L. Q. Mai, C. H. Han, Q. Y. An, X. Xu, X. Liu, and Q. J. Zhang, Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Liair batteries, Proc. Natl. Acad. Sci. USA, 2012, 109(48): 19569
doi: 10.1073/pnas.1210315109
94 G. M. Koenig, Jr., I. Belharouak, H. X. Deng, Y. K. Sun, and K. Amine, Compositiontailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials, Chem. Mater., 2011, 23(7): 1954
doi: 10.1021/cm200058c
95 Y. K. Sun, S. T. Myung, B. C. Park, J. Prakash, I. Belharouak, and K. Amine, Highenergy cathode material for long-life and safe lithium batteries, Nat. Mater., 2009, 8(4): 320
doi: 10.1038/nmat2418
96 Y. K. Sun, Z. Chen, H. J. Noh, D. J. Lee, H. G. Jung, Y. Ren, S. Wang, C. S. Yoon, S. T. Myung, and K. Amine, Nanostructured high-energy cathode materials for advanced lithium batteries, Nat. Mater., 2012, 11(11): 942
doi: 10.1038/nmat3435
97 R. Krishnan, T. M. Lu, and N. Koratkar, Functionally strain-graded nanoscoops for high power Li-ion battery anodes, Nano Lett., 2011, 11(2): 377
doi: 10.1021/nl102981d
98 J. Jiang, Y. Li, J. Liu, and X. Huang, Building onedimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes, Nanoscale, 2011, 3(1): 45
doi: 10.1039/c0nr00472c
99 C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 2008, 3(1): 31
doi: 10.1038/nnano.2007.411
100 P. Meduri, E. Clark, J. H. Kim, E. Dayalan, G. U. Sumanasekera, and M. K. Sunkara, MoO3-x nanowire arrays as stable and high-capacity anodes for lithium ion batteries, Nano Lett., 2012, 12(4): 1784
doi: 10.1021/nl203649p
101 S. Chen, M. Wang, J. Ye, J. Cai, Y. Ma, H. Zhou, and L. Qi, Kineticscontrolled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance, Nano Res., 2013, 6(4): 243
doi: 10.1007/s12274-013-0300-3
102 K. Wang, Q. Meng, Y. Zhang, Z. Wei, and M. Miao, Highperformance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays, Adv. Mater., 2013, 25(10): 1494
doi: 10.1002/adma.201204598
103 L. Shen, E. Uchaker, X. Zhang, and G. Cao, Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries, Adv. Mater., 2012, 24(48): 6502
doi: 10.1002/adma.201203151
104 F. F. Cao, J. W. Deng, S. Xin, H. X. Ji, O. G. Schmidt, L. J. Wan, and Y. G. Guo, Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries, Adv. Mater., 2011, 23(38): 4415
doi: 10.1002/adma.201102062
105 C. H. Han, Y. Q. Pi, Q. Y. An, L. Q. Mai, J. L. Xie, X. Xu, L. Xu, Y. L. Zhao, C. J. Niu, A. M. Khan, and X. He, Substrate-assisted self-organization of radial –AgVO3 nanowire clusters for high rate rechargeable lithium batteries, Nano Lett., 2012, 12(9): 4668
doi: 10.1021/nl301993v
106 L. Q. Mai, Y. H. Gu, C. H. Han, B. Hu, W. Chen, P. Zhang, L. Xu, W. L. Guo, and Y. Dai, Orientated Langmuir–Blodgett assembly of VO2 nanowires, Nano Lett., 2009, 9(2): 826
doi: 10.1021/nl803550k
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed